2009-11-29 15:14:45 +00:00
|
|
|
/****************************************************************************
|
|
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
2011-02-25 00:01:34 +00:00
|
|
|
* Copyright 2006-2011 Solarflare Communications Inc.
|
2009-11-29 15:14:45 +00:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/delay.h>
|
2011-06-06 10:43:46 +00:00
|
|
|
#include <linux/interrupt.h>
|
2009-11-29 15:14:45 +00:00
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/seq_file.h>
|
2013-05-22 17:03:35 +00:00
|
|
|
#include <linux/cpu_rmap.h>
|
2009-11-29 15:14:45 +00:00
|
|
|
#include "net_driver.h"
|
|
|
|
#include "bitfield.h"
|
|
|
|
#include "efx.h"
|
|
|
|
#include "nic.h"
|
|
|
|
#include "regs.h"
|
|
|
|
#include "io.h"
|
|
|
|
#include "workarounds.h"
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Configurable values
|
|
|
|
*
|
|
|
|
**************************************************************************
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* This is set to 16 for a good reason. In summary, if larger than
|
|
|
|
* 16, the descriptor cache holds more than a default socket
|
|
|
|
* buffer's worth of packets (for UDP we can only have at most one
|
|
|
|
* socket buffer's worth outstanding). This combined with the fact
|
|
|
|
* that we only get 1 TX event per descriptor cache means the NIC
|
|
|
|
* goes idle.
|
|
|
|
*/
|
|
|
|
#define TX_DC_ENTRIES 16
|
|
|
|
#define TX_DC_ENTRIES_ORDER 1
|
|
|
|
|
|
|
|
#define RX_DC_ENTRIES 64
|
|
|
|
#define RX_DC_ENTRIES_ORDER 3
|
|
|
|
|
|
|
|
/* If EFX_MAX_INT_ERRORS internal errors occur within
|
|
|
|
* EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
|
|
|
|
* disable it.
|
|
|
|
*/
|
|
|
|
#define EFX_INT_ERROR_EXPIRE 3600
|
|
|
|
#define EFX_MAX_INT_ERRORS 5
|
|
|
|
|
|
|
|
/* Depth of RX flush request fifo */
|
|
|
|
#define EFX_RX_FLUSH_COUNT 4
|
|
|
|
|
2012-02-07 23:39:18 +00:00
|
|
|
/* Driver generated events */
|
|
|
|
#define _EFX_CHANNEL_MAGIC_TEST 0x000101
|
|
|
|
#define _EFX_CHANNEL_MAGIC_FILL 0x000102
|
2012-02-08 00:11:20 +00:00
|
|
|
#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
|
|
|
|
#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
|
2010-06-01 11:19:09 +00:00
|
|
|
|
2012-02-07 23:39:18 +00:00
|
|
|
#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
|
|
|
|
#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
|
|
|
|
|
|
|
|
#define EFX_CHANNEL_MAGIC_TEST(_channel) \
|
|
|
|
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
|
2012-02-07 23:49:52 +00:00
|
|
|
#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
|
|
|
|
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
|
|
|
|
efx_rx_queue_index(_rx_queue))
|
2012-02-08 00:11:20 +00:00
|
|
|
#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
|
|
|
|
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
|
|
|
|
efx_rx_queue_index(_rx_queue))
|
|
|
|
#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
|
|
|
|
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
|
|
|
|
(_tx_queue)->queue)
|
2010-06-01 11:19:39 +00:00
|
|
|
|
2012-10-02 12:36:18 +00:00
|
|
|
static void efx_magic_event(struct efx_channel *channel, u32 magic);
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Solarstorm hardware access
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
|
|
|
|
unsigned int index)
|
|
|
|
{
|
|
|
|
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
|
|
|
|
value, index);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read the current event from the event queue */
|
|
|
|
static inline efx_qword_t *efx_event(struct efx_channel *channel,
|
|
|
|
unsigned int index)
|
|
|
|
{
|
2011-04-04 13:22:11 +00:00
|
|
|
return ((efx_qword_t *) (channel->eventq.addr)) +
|
|
|
|
(index & channel->eventq_mask);
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* See if an event is present
|
|
|
|
*
|
|
|
|
* We check both the high and low dword of the event for all ones. We
|
|
|
|
* wrote all ones when we cleared the event, and no valid event can
|
|
|
|
* have all ones in either its high or low dwords. This approach is
|
|
|
|
* robust against reordering.
|
|
|
|
*
|
|
|
|
* Note that using a single 64-bit comparison is incorrect; even
|
|
|
|
* though the CPU read will be atomic, the DMA write may not be.
|
|
|
|
*/
|
|
|
|
static inline int efx_event_present(efx_qword_t *event)
|
|
|
|
{
|
2010-09-23 05:40:09 +00:00
|
|
|
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
|
|
|
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
|
|
|
|
const efx_oword_t *mask)
|
|
|
|
{
|
|
|
|
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
|
|
|
|
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
int efx_nic_test_registers(struct efx_nic *efx,
|
|
|
|
const struct efx_nic_register_test *regs,
|
|
|
|
size_t n_regs)
|
|
|
|
{
|
|
|
|
unsigned address = 0, i, j;
|
|
|
|
efx_oword_t mask, imask, original, reg, buf;
|
|
|
|
|
|
|
|
for (i = 0; i < n_regs; ++i) {
|
|
|
|
address = regs[i].address;
|
|
|
|
mask = imask = regs[i].mask;
|
|
|
|
EFX_INVERT_OWORD(imask);
|
|
|
|
|
|
|
|
efx_reado(efx, &original, address);
|
|
|
|
|
|
|
|
/* bit sweep on and off */
|
|
|
|
for (j = 0; j < 128; j++) {
|
|
|
|
if (!EFX_EXTRACT_OWORD32(mask, j, j))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Test this testable bit can be set in isolation */
|
|
|
|
EFX_AND_OWORD(reg, original, mask);
|
|
|
|
EFX_SET_OWORD32(reg, j, j, 1);
|
|
|
|
|
|
|
|
efx_writeo(efx, ®, address);
|
|
|
|
efx_reado(efx, &buf, address);
|
|
|
|
|
|
|
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* Test this testable bit can be cleared in isolation */
|
|
|
|
EFX_OR_OWORD(reg, original, mask);
|
|
|
|
EFX_SET_OWORD32(reg, j, j, 0);
|
|
|
|
|
|
|
|
efx_writeo(efx, ®, address);
|
|
|
|
efx_reado(efx, &buf, address);
|
|
|
|
|
|
|
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
efx_writeo(efx, &original, address);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
|
|
"wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
|
|
|
|
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
|
|
|
|
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
|
2009-11-29 15:14:45 +00:00
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Special buffer handling
|
|
|
|
* Special buffers are used for event queues and the TX and RX
|
|
|
|
* descriptor rings.
|
|
|
|
*
|
|
|
|
*************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialise a special buffer
|
|
|
|
*
|
|
|
|
* This will define a buffer (previously allocated via
|
|
|
|
* efx_alloc_special_buffer()) in the buffer table, allowing
|
|
|
|
* it to be used for event queues, descriptor rings etc.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
|
|
|
{
|
|
|
|
efx_qword_t buf_desc;
|
2012-02-13 23:14:23 +00:00
|
|
|
unsigned int index;
|
2009-11-29 15:14:45 +00:00
|
|
|
dma_addr_t dma_addr;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
EFX_BUG_ON_PARANOID(!buffer->addr);
|
|
|
|
|
|
|
|
/* Write buffer descriptors to NIC */
|
|
|
|
for (i = 0; i < buffer->entries; i++) {
|
|
|
|
index = buffer->index + i;
|
2012-02-02 21:21:15 +00:00
|
|
|
dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
|
|
"mapping special buffer %d at %llx\n",
|
|
|
|
index, (unsigned long long)dma_addr);
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_QWORD_3(buf_desc,
|
|
|
|
FRF_AZ_BUF_ADR_REGION, 0,
|
|
|
|
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
|
|
|
|
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
|
|
|
|
efx_write_buf_tbl(efx, &buf_desc, index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unmaps a buffer and clears the buffer table entries */
|
|
|
|
static void
|
|
|
|
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
|
|
|
{
|
|
|
|
efx_oword_t buf_tbl_upd;
|
|
|
|
unsigned int start = buffer->index;
|
|
|
|
unsigned int end = (buffer->index + buffer->entries - 1);
|
|
|
|
|
|
|
|
if (!buffer->entries)
|
|
|
|
return;
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
|
|
|
|
buffer->index, buffer->index + buffer->entries - 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
EFX_POPULATE_OWORD_4(buf_tbl_upd,
|
|
|
|
FRF_AZ_BUF_UPD_CMD, 0,
|
|
|
|
FRF_AZ_BUF_CLR_CMD, 1,
|
|
|
|
FRF_AZ_BUF_CLR_END_ID, end,
|
|
|
|
FRF_AZ_BUF_CLR_START_ID, start);
|
|
|
|
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a new special buffer
|
|
|
|
*
|
|
|
|
* This allocates memory for a new buffer, clears it and allocates a
|
|
|
|
* new buffer ID range. It does not write into the buffer table.
|
|
|
|
*
|
|
|
|
* This call will allocate 4KB buffers, since 8KB buffers can't be
|
|
|
|
* used for event queues and descriptor rings.
|
|
|
|
*/
|
|
|
|
static int efx_alloc_special_buffer(struct efx_nic *efx,
|
|
|
|
struct efx_special_buffer *buffer,
|
|
|
|
unsigned int len)
|
|
|
|
{
|
|
|
|
len = ALIGN(len, EFX_BUF_SIZE);
|
|
|
|
|
2010-09-10 06:41:26 +00:00
|
|
|
buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
|
|
|
|
&buffer->dma_addr, GFP_KERNEL);
|
2009-11-29 15:14:45 +00:00
|
|
|
if (!buffer->addr)
|
|
|
|
return -ENOMEM;
|
|
|
|
buffer->len = len;
|
|
|
|
buffer->entries = len / EFX_BUF_SIZE;
|
|
|
|
BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
|
|
|
|
|
|
|
|
/* Select new buffer ID */
|
|
|
|
buffer->index = efx->next_buffer_table;
|
|
|
|
efx->next_buffer_table += buffer->entries;
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
|
|
BUG_ON(efx_sriov_enabled(efx) &&
|
|
|
|
efx->vf_buftbl_base < efx->next_buffer_table);
|
|
|
|
#endif
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
|
|
"allocating special buffers %d-%d at %llx+%x "
|
|
|
|
"(virt %p phys %llx)\n", buffer->index,
|
|
|
|
buffer->index + buffer->entries - 1,
|
|
|
|
(u64)buffer->dma_addr, len,
|
|
|
|
buffer->addr, (u64)virt_to_phys(buffer->addr));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
|
|
|
{
|
|
|
|
if (!buffer->addr)
|
|
|
|
return;
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"deallocating special buffers %d-%d at %llx+%x "
|
|
|
|
"(virt %p phys %llx)\n", buffer->index,
|
|
|
|
buffer->index + buffer->entries - 1,
|
|
|
|
(u64)buffer->dma_addr, buffer->len,
|
|
|
|
buffer->addr, (u64)virt_to_phys(buffer->addr));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2010-09-10 06:41:26 +00:00
|
|
|
dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
|
|
|
|
buffer->dma_addr);
|
2009-11-29 15:14:45 +00:00
|
|
|
buffer->addr = NULL;
|
|
|
|
buffer->entries = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Generic buffer handling
|
2012-05-17 17:40:54 +00:00
|
|
|
* These buffers are used for interrupt status, MAC stats, etc.
|
2009-11-29 15:14:45 +00:00
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
2012-09-18 20:59:52 +00:00
|
|
|
unsigned int len, gfp_t gfp_flags)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2012-05-17 16:46:55 +00:00
|
|
|
buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
|
2013-03-15 07:23:58 +00:00
|
|
|
&buffer->dma_addr,
|
2012-09-18 20:59:52 +00:00
|
|
|
gfp_flags | __GFP_ZERO);
|
2009-11-29 15:14:45 +00:00
|
|
|
if (!buffer->addr)
|
|
|
|
return -ENOMEM;
|
|
|
|
buffer->len = len;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
|
|
|
|
{
|
|
|
|
if (buffer->addr) {
|
2012-05-17 16:46:55 +00:00
|
|
|
dma_free_coherent(&efx->pci_dev->dev, buffer->len,
|
|
|
|
buffer->addr, buffer->dma_addr);
|
2009-11-29 15:14:45 +00:00
|
|
|
buffer->addr = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* TX path
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/* Returns a pointer to the specified transmit descriptor in the TX
|
|
|
|
* descriptor queue belonging to the specified channel.
|
|
|
|
*/
|
|
|
|
static inline efx_qword_t *
|
|
|
|
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
|
|
|
{
|
2010-09-23 05:40:09 +00:00
|
|
|
return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
|
|
|
|
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
unsigned write_ptr;
|
|
|
|
efx_dword_t reg;
|
|
|
|
|
2010-09-10 06:42:22 +00:00
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
|
|
|
|
efx_writed_page(tx_queue->efx, ®,
|
|
|
|
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
|
|
|
|
}
|
|
|
|
|
sfc: Use TX push whenever adding descriptors to an empty queue
Whenever we add DMA descriptors to a TX ring and update the ring
pointer, the TX DMA engine must first read the new DMA descriptors and
then start reading packet data. However, all released Solarflare 10G
controllers have a 'TX push' feature that allows us to reduce latency
by writing the first new DMA descriptor along with the pointer update.
This is only useful when the queue is empty. The hardware should
ignore the pushed descriptor if the queue is not empty, but this check
is buggy, so we must do it in software.
In order to tell whether a TX queue is empty, we need to compare the
previous transmission count (write_count) and completion count
(read_count). However, if we do that every time we update the ring
pointer then read_count may ping-pong between the caches of two CPUs
running the transmission and completion paths for the queue.
Therefore, we split the check for an empty queue between the
completion path and the transmission path:
- Add an empty_read_count field representing a point at which the
completion path saw the TX queue as empty.
- Add an old_write_count field for use on the completion path.
- On the completion path, whenever read_count reaches or passes
old_write_count the TX queue may be empty. We then read
write_count, set empty_read_count if read_count == write_count,
and update old_write_count.
- On the transmission path, we read empty_read_count. If it's set, we
compare it with the value of write_count before the current set of
descriptors was added. If they match, the queue really is empty and
we can use TX push.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-15 23:53:11 +00:00
|
|
|
/* Write pointer and first descriptor for TX descriptor ring */
|
|
|
|
static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
|
|
|
|
const efx_qword_t *txd)
|
|
|
|
{
|
|
|
|
unsigned write_ptr;
|
|
|
|
efx_oword_t reg;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
|
|
|
|
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
|
|
|
|
|
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
|
|
|
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
|
|
|
|
FRF_AZ_TX_DESC_WPTR, write_ptr);
|
|
|
|
reg.qword[0] = *txd;
|
|
|
|
efx_writeo_page(tx_queue->efx, ®,
|
|
|
|
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool
|
|
|
|
efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
|
|
|
|
{
|
|
|
|
unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
|
|
|
|
|
|
|
|
if (empty_read_count == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
tx_queue->empty_read_count = 0;
|
2013-02-27 16:50:38 +00:00
|
|
|
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
|
|
|
|
&& tx_queue->write_count - write_count == 1;
|
sfc: Use TX push whenever adding descriptors to an empty queue
Whenever we add DMA descriptors to a TX ring and update the ring
pointer, the TX DMA engine must first read the new DMA descriptors and
then start reading packet data. However, all released Solarflare 10G
controllers have a 'TX push' feature that allows us to reduce latency
by writing the first new DMA descriptor along with the pointer update.
This is only useful when the queue is empty. The hardware should
ignore the pushed descriptor if the queue is not empty, but this check
is buggy, so we must do it in software.
In order to tell whether a TX queue is empty, we need to compare the
previous transmission count (write_count) and completion count
(read_count). However, if we do that every time we update the ring
pointer then read_count may ping-pong between the caches of two CPUs
running the transmission and completion paths for the queue.
Therefore, we split the check for an empty queue between the
completion path and the transmission path:
- Add an empty_read_count field representing a point at which the
completion path saw the TX queue as empty.
- Add an old_write_count field for use on the completion path.
- On the completion path, whenever read_count reaches or passes
old_write_count the TX queue may be empty. We then read
write_count, set empty_read_count if read_count == write_count,
and update old_write_count.
- On the transmission path, we read empty_read_count. If it's set, we
compare it with the value of write_count before the current set of
descriptors was added. If they match, the queue really is empty and
we can use TX push.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-15 23:53:11 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* For each entry inserted into the software descriptor ring, create a
|
|
|
|
* descriptor in the hardware TX descriptor ring (in host memory), and
|
|
|
|
* write a doorbell.
|
|
|
|
*/
|
|
|
|
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
|
|
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
efx_qword_t *txd;
|
|
|
|
unsigned write_ptr;
|
sfc: Use TX push whenever adding descriptors to an empty queue
Whenever we add DMA descriptors to a TX ring and update the ring
pointer, the TX DMA engine must first read the new DMA descriptors and
then start reading packet data. However, all released Solarflare 10G
controllers have a 'TX push' feature that allows us to reduce latency
by writing the first new DMA descriptor along with the pointer update.
This is only useful when the queue is empty. The hardware should
ignore the pushed descriptor if the queue is not empty, but this check
is buggy, so we must do it in software.
In order to tell whether a TX queue is empty, we need to compare the
previous transmission count (write_count) and completion count
(read_count). However, if we do that every time we update the ring
pointer then read_count may ping-pong between the caches of two CPUs
running the transmission and completion paths for the queue.
Therefore, we split the check for an empty queue between the
completion path and the transmission path:
- Add an empty_read_count field representing a point at which the
completion path saw the TX queue as empty.
- Add an old_write_count field for use on the completion path.
- On the completion path, whenever read_count reaches or passes
old_write_count the TX queue may be empty. We then read
write_count, set empty_read_count if read_count == write_count,
and update old_write_count.
- On the transmission path, we read empty_read_count. If it's set, we
compare it with the value of write_count before the current set of
descriptors was added. If they match, the queue really is empty and
we can use TX push.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-15 23:53:11 +00:00
|
|
|
unsigned old_write_count = tx_queue->write_count;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
|
|
|
|
|
|
|
|
do {
|
2010-09-10 06:42:22 +00:00
|
|
|
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
|
2009-11-29 15:14:45 +00:00
|
|
|
buffer = &tx_queue->buffer[write_ptr];
|
|
|
|
txd = efx_tx_desc(tx_queue, write_ptr);
|
|
|
|
++tx_queue->write_count;
|
|
|
|
|
|
|
|
/* Create TX descriptor ring entry */
|
2012-05-17 19:52:20 +00:00
|
|
|
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_QWORD_4(*txd,
|
2012-05-17 19:52:20 +00:00
|
|
|
FSF_AZ_TX_KER_CONT,
|
|
|
|
buffer->flags & EFX_TX_BUF_CONT,
|
2009-11-29 15:14:45 +00:00
|
|
|
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
|
|
|
|
FSF_AZ_TX_KER_BUF_REGION, 0,
|
|
|
|
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
|
|
|
|
} while (tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
|
|
|
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
sfc: Use TX push whenever adding descriptors to an empty queue
Whenever we add DMA descriptors to a TX ring and update the ring
pointer, the TX DMA engine must first read the new DMA descriptors and
then start reading packet data. However, all released Solarflare 10G
controllers have a 'TX push' feature that allows us to reduce latency
by writing the first new DMA descriptor along with the pointer update.
This is only useful when the queue is empty. The hardware should
ignore the pushed descriptor if the queue is not empty, but this check
is buggy, so we must do it in software.
In order to tell whether a TX queue is empty, we need to compare the
previous transmission count (write_count) and completion count
(read_count). However, if we do that every time we update the ring
pointer then read_count may ping-pong between the caches of two CPUs
running the transmission and completion paths for the queue.
Therefore, we split the check for an empty queue between the
completion path and the transmission path:
- Add an empty_read_count field representing a point at which the
completion path saw the TX queue as empty.
- Add an old_write_count field for use on the completion path.
- On the completion path, whenever read_count reaches or passes
old_write_count the TX queue may be empty. We then read
write_count, set empty_read_count if read_count == write_count,
and update old_write_count.
- On the transmission path, we read empty_read_count. If it's set, we
compare it with the value of write_count before the current set of
descriptors was added. If they match, the queue really is empty and
we can use TX push.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-15 23:53:11 +00:00
|
|
|
|
|
|
|
if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
|
|
|
|
txd = efx_tx_desc(tx_queue,
|
|
|
|
old_write_count & tx_queue->ptr_mask);
|
|
|
|
efx_push_tx_desc(tx_queue, txd);
|
|
|
|
++tx_queue->pushes;
|
|
|
|
} else {
|
|
|
|
efx_notify_tx_desc(tx_queue);
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate hardware resources for a TX queue */
|
|
|
|
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = tx_queue->efx;
|
2010-09-10 06:42:22 +00:00
|
|
|
unsigned entries;
|
|
|
|
|
|
|
|
entries = tx_queue->ptr_mask + 1;
|
2009-11-29 15:14:45 +00:00
|
|
|
return efx_alloc_special_buffer(efx, &tx_queue->txd,
|
2010-09-10 06:42:22 +00:00
|
|
|
entries * sizeof(efx_qword_t));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = tx_queue->efx;
|
2011-01-10 21:18:20 +00:00
|
|
|
efx_oword_t reg;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Pin TX descriptor ring */
|
|
|
|
efx_init_special_buffer(efx, &tx_queue->txd);
|
|
|
|
|
|
|
|
/* Push TX descriptor ring to card */
|
2011-01-10 21:18:20 +00:00
|
|
|
EFX_POPULATE_OWORD_10(reg,
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_TX_DESCQ_EN, 1,
|
|
|
|
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
|
|
|
|
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
|
|
|
|
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
|
|
|
|
FRF_AZ_TX_DESCQ_EVQ_ID,
|
|
|
|
tx_queue->channel->channel,
|
|
|
|
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
|
|
|
|
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
|
|
|
|
FRF_AZ_TX_DESCQ_SIZE,
|
|
|
|
__ffs(tx_queue->txd.entries),
|
|
|
|
FRF_AZ_TX_DESCQ_TYPE, 0,
|
|
|
|
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
|
|
|
|
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
2010-04-28 09:30:43 +00:00
|
|
|
int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
|
2011-01-10 21:18:20 +00:00
|
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
|
|
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
|
2009-11-29 15:14:45 +00:00
|
|
|
!csum);
|
|
|
|
}
|
|
|
|
|
2011-01-10 21:18:20 +00:00
|
|
|
efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
|
2009-11-29 15:14:45 +00:00
|
|
|
tx_queue->queue);
|
|
|
|
|
|
|
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
|
|
|
|
/* Only 128 bits in this register */
|
2010-04-28 09:30:43 +00:00
|
|
|
BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
|
2010-04-28 09:30:43 +00:00
|
|
|
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
|
2012-10-05 00:13:03 +00:00
|
|
|
__clear_bit_le(tx_queue->queue, ®);
|
2009-11-29 15:14:45 +00:00
|
|
|
else
|
2012-10-05 00:13:03 +00:00
|
|
|
__set_bit_le(tx_queue->queue, ®);
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
|
|
|
|
}
|
2011-01-10 21:18:20 +00:00
|
|
|
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
|
|
|
EFX_POPULATE_OWORD_1(reg,
|
|
|
|
FRF_BZ_TX_PACE,
|
|
|
|
(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
|
|
|
|
FFE_BZ_TX_PACE_OFF :
|
|
|
|
FFE_BZ_TX_PACE_RESERVED);
|
|
|
|
efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL,
|
|
|
|
tx_queue->queue);
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
efx_oword_t tx_flush_descq;
|
|
|
|
|
2012-10-02 12:36:18 +00:00
|
|
|
WARN_ON(atomic_read(&tx_queue->flush_outstanding));
|
|
|
|
atomic_set(&tx_queue->flush_outstanding, 1);
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_OWORD_2(tx_flush_descq,
|
|
|
|
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
|
|
|
|
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
|
|
|
|
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
efx_oword_t tx_desc_ptr;
|
|
|
|
|
|
|
|
/* Remove TX descriptor ring from card */
|
|
|
|
EFX_ZERO_OWORD(tx_desc_ptr);
|
|
|
|
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
|
|
|
tx_queue->queue);
|
|
|
|
|
|
|
|
/* Unpin TX descriptor ring */
|
|
|
|
efx_fini_special_buffer(efx, &tx_queue->txd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free buffers backing TX queue */
|
|
|
|
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
|
|
|
|
{
|
|
|
|
efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* RX path
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
|
|
|
static inline efx_qword_t *
|
|
|
|
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
|
|
|
{
|
2010-09-23 05:40:09 +00:00
|
|
|
return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* This creates an entry in the RX descriptor queue */
|
|
|
|
static inline void
|
|
|
|
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
|
|
|
|
{
|
|
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
efx_qword_t *rxd;
|
|
|
|
|
|
|
|
rxd = efx_rx_desc(rx_queue, index);
|
|
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
EFX_POPULATE_QWORD_3(*rxd,
|
|
|
|
FSF_AZ_RX_KER_BUF_SIZE,
|
|
|
|
rx_buf->len -
|
|
|
|
rx_queue->efx->type->rx_buffer_padding,
|
|
|
|
FSF_AZ_RX_KER_BUF_REGION, 0,
|
|
|
|
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This writes to the RX_DESC_WPTR register for the specified receive
|
|
|
|
* descriptor ring.
|
|
|
|
*/
|
|
|
|
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
2010-09-10 06:42:22 +00:00
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_dword_t reg;
|
|
|
|
unsigned write_ptr;
|
|
|
|
|
|
|
|
while (rx_queue->notified_count != rx_queue->added_count) {
|
2010-09-10 06:42:22 +00:00
|
|
|
efx_build_rx_desc(
|
|
|
|
rx_queue,
|
|
|
|
rx_queue->notified_count & rx_queue->ptr_mask);
|
2009-11-29 15:14:45 +00:00
|
|
|
++rx_queue->notified_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
wmb();
|
2010-09-10 06:42:22 +00:00
|
|
|
write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
|
2010-09-10 06:42:22 +00:00
|
|
|
efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_index(rx_queue));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
2010-09-10 06:42:22 +00:00
|
|
|
unsigned entries;
|
|
|
|
|
|
|
|
entries = rx_queue->ptr_mask + 1;
|
2009-11-29 15:14:45 +00:00
|
|
|
return efx_alloc_special_buffer(efx, &rx_queue->rxd,
|
2010-09-10 06:42:22 +00:00
|
|
|
entries * sizeof(efx_qword_t));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
|
|
|
efx_oword_t rx_desc_ptr;
|
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
|
|
|
|
bool iscsi_digest_en = is_b0;
|
2013-01-29 23:33:15 +00:00
|
|
|
bool jumbo_en;
|
|
|
|
|
|
|
|
/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
|
|
|
|
* DMA to continue after a PCIe page boundary (and scattering
|
|
|
|
* is not possible). In Falcon B0 and Siena, it enables
|
|
|
|
* scatter.
|
|
|
|
*/
|
|
|
|
jumbo_en = !is_b0 || efx->rx_scatter;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"RX queue %d ring in special buffers %d-%d\n",
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
|
2010-06-23 11:30:07 +00:00
|
|
|
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2013-01-29 23:33:15 +00:00
|
|
|
rx_queue->scatter_n = 0;
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Pin RX descriptor ring */
|
|
|
|
efx_init_special_buffer(efx, &rx_queue->rxd);
|
|
|
|
|
|
|
|
/* Push RX descriptor ring to card */
|
|
|
|
EFX_POPULATE_OWORD_10(rx_desc_ptr,
|
|
|
|
FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
|
|
|
|
FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
|
|
|
|
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
|
|
|
|
FRF_AZ_RX_DESCQ_EVQ_ID,
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_channel(rx_queue)->channel,
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
|
2010-09-10 06:41:36 +00:00
|
|
|
FRF_AZ_RX_DESCQ_LABEL,
|
|
|
|
efx_rx_queue_index(rx_queue),
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_RX_DESCQ_SIZE,
|
|
|
|
__ffs(rx_queue->rxd.entries),
|
|
|
|
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
|
2013-01-29 23:33:15 +00:00
|
|
|
FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_RX_DESCQ_EN, 1);
|
|
|
|
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_index(rx_queue));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
efx_oword_t rx_flush_descq;
|
|
|
|
|
|
|
|
EFX_POPULATE_OWORD_2(rx_flush_descq,
|
|
|
|
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
|
2010-09-10 06:41:36 +00:00
|
|
|
FRF_AZ_RX_FLUSH_DESCQ,
|
|
|
|
efx_rx_queue_index(rx_queue));
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
|
|
|
efx_oword_t rx_desc_ptr;
|
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
|
|
|
|
/* Remove RX descriptor ring from card */
|
|
|
|
EFX_ZERO_OWORD(rx_desc_ptr);
|
|
|
|
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_index(rx_queue));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Unpin RX descriptor ring */
|
|
|
|
efx_fini_special_buffer(efx, &rx_queue->rxd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free buffers backing RX queue */
|
|
|
|
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
|
|
|
|
{
|
|
|
|
efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
|
|
|
|
}
|
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Flush handling
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/* efx_nic_flush_queues() must be woken up when all flushes are completed,
|
|
|
|
* or more RX flushes can be kicked off.
|
|
|
|
*/
|
|
|
|
static bool efx_flush_wake(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
/* Ensure that all updates are visible to efx_nic_flush_queues() */
|
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
return (atomic_read(&efx->drain_pending) == 0 ||
|
|
|
|
(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
|
|
|
|
&& atomic_read(&efx->rxq_flush_pending) > 0));
|
|
|
|
}
|
|
|
|
|
2012-10-02 12:36:18 +00:00
|
|
|
static bool efx_check_tx_flush_complete(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
bool i = true;
|
|
|
|
efx_oword_t txd_ptr_tbl;
|
|
|
|
struct efx_channel *channel;
|
|
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
|
|
efx_reado_table(efx, &txd_ptr_tbl,
|
|
|
|
FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
|
|
|
|
if (EFX_OWORD_FIELD(txd_ptr_tbl,
|
|
|
|
FRF_AZ_TX_DESCQ_FLUSH) ||
|
|
|
|
EFX_OWORD_FIELD(txd_ptr_tbl,
|
|
|
|
FRF_AZ_TX_DESCQ_EN)) {
|
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"flush did not complete on TXQ %d\n",
|
|
|
|
tx_queue->queue);
|
|
|
|
i = false;
|
|
|
|
} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
|
|
|
|
1, 0)) {
|
|
|
|
/* The flush is complete, but we didn't
|
|
|
|
* receive a flush completion event
|
|
|
|
*/
|
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"flush complete on TXQ %d, so drain "
|
|
|
|
"the queue\n", tx_queue->queue);
|
|
|
|
/* Don't need to increment drain_pending as it
|
|
|
|
* has already been incremented for the queues
|
|
|
|
* which did not drain
|
|
|
|
*/
|
|
|
|
efx_magic_event(channel,
|
|
|
|
EFX_CHANNEL_MAGIC_TX_DRAIN(
|
|
|
|
tx_queue));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
/* Flush all the transmit queues, and continue flushing receive queues until
|
|
|
|
* they're all flushed. Wait for the DRAIN events to be recieved so that there
|
|
|
|
* are no more RX and TX events left on any channel. */
|
|
|
|
int efx_nic_flush_queues(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
|
|
|
|
struct efx_channel *channel;
|
|
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
efx->type->prepare_flush(efx);
|
|
|
|
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
|
|
atomic_inc(&efx->drain_pending);
|
|
|
|
efx_flush_tx_queue(tx_queue);
|
|
|
|
}
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
|
|
atomic_inc(&efx->drain_pending);
|
|
|
|
rx_queue->flush_pending = true;
|
|
|
|
atomic_inc(&efx->rxq_flush_pending);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (timeout && atomic_read(&efx->drain_pending) > 0) {
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
/* If SRIOV is enabled, then offload receive queue flushing to
|
|
|
|
* the firmware (though we will still have to poll for
|
|
|
|
* completion). If that fails, fall back to the old scheme.
|
|
|
|
*/
|
|
|
|
if (efx_sriov_enabled(efx)) {
|
|
|
|
rc = efx_mcdi_flush_rxqs(efx);
|
|
|
|
if (!rc)
|
|
|
|
goto wait;
|
|
|
|
}
|
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
/* The hardware supports four concurrent rx flushes, each of
|
|
|
|
* which may need to be retried if there is an outstanding
|
|
|
|
* descriptor fetch
|
|
|
|
*/
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
|
|
if (atomic_read(&efx->rxq_flush_outstanding) >=
|
|
|
|
EFX_RX_FLUSH_COUNT)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (rx_queue->flush_pending) {
|
|
|
|
rx_queue->flush_pending = false;
|
|
|
|
atomic_dec(&efx->rxq_flush_pending);
|
|
|
|
atomic_inc(&efx->rxq_flush_outstanding);
|
|
|
|
efx_flush_rx_queue(rx_queue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
wait:
|
2012-02-08 00:11:20 +00:00
|
|
|
timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
|
|
|
|
timeout);
|
|
|
|
}
|
|
|
|
|
2012-10-02 12:36:18 +00:00
|
|
|
if (atomic_read(&efx->drain_pending) &&
|
|
|
|
!efx_check_tx_flush_complete(efx)) {
|
2012-02-08 00:11:20 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
|
|
|
|
"(rx %d+%d)\n", atomic_read(&efx->drain_pending),
|
|
|
|
atomic_read(&efx->rxq_flush_outstanding),
|
|
|
|
atomic_read(&efx->rxq_flush_pending));
|
|
|
|
rc = -ETIMEDOUT;
|
|
|
|
|
|
|
|
atomic_set(&efx->drain_pending, 0);
|
|
|
|
atomic_set(&efx->rxq_flush_pending, 0);
|
|
|
|
atomic_set(&efx->rxq_flush_outstanding, 0);
|
|
|
|
}
|
|
|
|
|
2012-09-06 15:52:31 +00:00
|
|
|
efx->type->finish_flush(efx);
|
2011-05-23 11:18:45 +00:00
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Event queue processing
|
|
|
|
* Event queues are processed by per-channel tasklets.
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/* Update a channel's event queue's read pointer (RPTR) register
|
|
|
|
*
|
|
|
|
* This writes the EVQ_RPTR_REG register for the specified channel's
|
|
|
|
* event queue.
|
|
|
|
*/
|
|
|
|
void efx_nic_eventq_read_ack(struct efx_channel *channel)
|
|
|
|
{
|
|
|
|
efx_dword_t reg;
|
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
|
2011-04-04 13:22:11 +00:00
|
|
|
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
|
|
|
|
channel->eventq_read_ptr & channel->eventq_mask);
|
sfc: Remove confusing MMIO functions
efx_writed_table() uses a step of 16 bytes but efx_readd_table() uses
a step of 4 bytes. Why are they different?
Firstly, register access is asymmetric:
- The EVQ_RPTR table and RX_INDIRECTION_TBL can (or must?) be written
as dwords even though they have a step size of 16 bytes, unlike
most other CSRs.
- In general, a read of any width is valid for registers, so long as
it does not cross register boundaries. There is also no latching
behaviour in the BIU, contrary to rumour.
We write to the EVQ_RPTR table with efx_writed_table() but never read
it back as it's write-only. We write to the RX_INDIRECTION_TBL with
efx_writed_table(), but only read it back for the register dump, where
we use efx_reado_table() as for any other table with step size of 16.
We read MC_TREG_SMEM with efx_readd_table() for the register dump, but
normally read and write it with efx_readd() and efx_writed() using
offsets calculated in bytes.
Since these functions are trivial and have few callers, it's clearer
to open-code them at the call sites. While we're at it, update the
comments on the BIU behaviour again.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-09-18 00:56:50 +00:00
|
|
|
|
|
|
|
/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
|
|
|
|
* of 4 bytes, but it is really 16 bytes just like later revisions.
|
|
|
|
*/
|
|
|
|
efx_writed(efx, ®,
|
|
|
|
efx->type->evq_rptr_tbl_base +
|
|
|
|
FR_BZ_EVQ_RPTR_STEP * channel->channel);
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Use HW to insert a SW defined event */
|
2012-02-10 22:23:41 +00:00
|
|
|
void efx_generate_event(struct efx_nic *efx, unsigned int evq,
|
|
|
|
efx_qword_t *event)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
|
|
|
efx_oword_t drv_ev_reg;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
|
|
|
|
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
|
|
|
|
drv_ev_reg.u32[0] = event->u32[0];
|
|
|
|
drv_ev_reg.u32[1] = event->u32[1];
|
|
|
|
drv_ev_reg.u32[2] = 0;
|
|
|
|
drv_ev_reg.u32[3] = 0;
|
2012-02-10 22:23:41 +00:00
|
|
|
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
|
|
|
|
efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
2012-02-07 23:39:18 +00:00
|
|
|
static void efx_magic_event(struct efx_channel *channel, u32 magic)
|
|
|
|
{
|
|
|
|
efx_qword_t event;
|
|
|
|
|
|
|
|
EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
|
|
|
|
FSE_AZ_EV_CODE_DRV_GEN_EV,
|
|
|
|
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
|
2012-02-10 22:23:41 +00:00
|
|
|
efx_generate_event(channel->efx, channel->channel, &event);
|
2012-02-07 23:39:18 +00:00
|
|
|
}
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Handle a transmit completion event
|
|
|
|
*
|
|
|
|
* The NIC batches TX completion events; the message we receive is of
|
|
|
|
* the form "complete all TX events up to this index".
|
|
|
|
*/
|
2010-04-28 09:29:42 +00:00
|
|
|
static int
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
|
|
|
|
{
|
|
|
|
unsigned int tx_ev_desc_ptr;
|
|
|
|
unsigned int tx_ev_q_label;
|
|
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
struct efx_nic *efx = channel->efx;
|
2010-04-28 09:29:42 +00:00
|
|
|
int tx_packets = 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
|
|
|
|
return 0;
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
|
|
|
|
/* Transmit completion */
|
|
|
|
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
|
|
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
|
2010-09-10 06:41:47 +00:00
|
|
|
tx_queue = efx_channel_get_tx_queue(
|
|
|
|
channel, tx_ev_q_label % EFX_TXQ_TYPES);
|
2010-04-28 09:29:42 +00:00
|
|
|
tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
|
2010-09-10 06:42:22 +00:00
|
|
|
tx_queue->ptr_mask);
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
|
|
|
|
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
|
|
|
|
/* Rewrite the FIFO write pointer */
|
|
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
|
2010-09-10 06:41:47 +00:00
|
|
|
tx_queue = efx_channel_get_tx_queue(
|
|
|
|
channel, tx_ev_q_label % EFX_TXQ_TYPES);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2012-01-09 19:47:08 +00:00
|
|
|
netif_tx_lock(efx->net_dev);
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_notify_tx_desc(tx_queue);
|
2012-01-09 19:47:08 +00:00
|
|
|
netif_tx_unlock(efx->net_dev);
|
2009-11-29 15:14:45 +00:00
|
|
|
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
|
|
|
|
EFX_WORKAROUND_10727(efx)) {
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
|
|
} else {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
|
|
"channel %d unexpected TX event "
|
|
|
|
EFX_QWORD_FMT"\n", channel->channel,
|
|
|
|
EFX_QWORD_VAL(*event));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
2010-04-28 09:29:42 +00:00
|
|
|
|
|
|
|
return tx_packets;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Detect errors included in the rx_evt_pkt_ok bit. */
|
2011-08-26 17:05:11 +00:00
|
|
|
static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
|
|
|
|
const efx_qword_t *event)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2010-09-10 06:41:36 +00:00
|
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
|
|
|
|
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
|
|
|
|
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
|
|
|
|
bool rx_ev_other_err, rx_ev_pause_frm;
|
|
|
|
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
|
|
unsigned rx_ev_pkt_type;
|
|
|
|
|
|
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
|
|
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
|
|
|
|
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
|
|
|
|
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
|
|
|
|
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
|
|
|
|
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
|
|
|
|
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
|
|
|
|
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
|
|
|
|
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
|
|
|
|
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
|
|
|
|
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
|
|
|
|
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
|
|
|
|
rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
|
|
|
|
0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
|
|
|
|
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
|
|
|
|
|
|
|
|
/* Every error apart from tobe_disc and pause_frm */
|
|
|
|
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
|
|
|
|
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
|
|
|
|
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
|
|
|
|
|
|
|
|
/* Count errors that are not in MAC stats. Ignore expected
|
|
|
|
* checksum errors during self-test. */
|
|
|
|
if (rx_ev_frm_trunc)
|
2010-09-10 06:41:36 +00:00
|
|
|
++channel->n_rx_frm_trunc;
|
2009-11-29 15:14:45 +00:00
|
|
|
else if (rx_ev_tobe_disc)
|
2010-09-10 06:41:36 +00:00
|
|
|
++channel->n_rx_tobe_disc;
|
2009-11-29 15:14:45 +00:00
|
|
|
else if (!efx->loopback_selftest) {
|
|
|
|
if (rx_ev_ip_hdr_chksum_err)
|
2010-09-10 06:41:36 +00:00
|
|
|
++channel->n_rx_ip_hdr_chksum_err;
|
2009-11-29 15:14:45 +00:00
|
|
|
else if (rx_ev_tcp_udp_chksum_err)
|
2010-09-10 06:41:36 +00:00
|
|
|
++channel->n_rx_tcp_udp_chksum_err;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* TOBE_DISC is expected on unicast mismatches; don't print out an
|
|
|
|
* error message. FRM_TRUNC indicates RXDP dropped the packet due
|
|
|
|
* to a FIFO overflow.
|
|
|
|
*/
|
2011-11-04 22:29:14 +00:00
|
|
|
#ifdef DEBUG
|
2010-06-23 11:30:07 +00:00
|
|
|
if (rx_ev_other_err && net_ratelimit()) {
|
|
|
|
netif_dbg(efx, rx_err, efx->net_dev,
|
|
|
|
" RX queue %d unexpected RX event "
|
|
|
|
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
|
2010-09-10 06:41:36 +00:00
|
|
|
efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
|
2010-06-23 11:30:07 +00:00
|
|
|
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
|
|
|
|
rx_ev_ip_hdr_chksum_err ?
|
|
|
|
" [IP_HDR_CHKSUM_ERR]" : "",
|
|
|
|
rx_ev_tcp_udp_chksum_err ?
|
|
|
|
" [TCP_UDP_CHKSUM_ERR]" : "",
|
|
|
|
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
|
|
|
|
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
|
|
|
|
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
|
|
|
|
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
|
|
|
|
rx_ev_pause_frm ? " [PAUSE]" : "");
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
#endif
|
2011-08-26 17:05:11 +00:00
|
|
|
|
|
|
|
/* The frame must be discarded if any of these are true. */
|
|
|
|
return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
|
|
|
|
rx_ev_tobe_disc | rx_ev_pause_frm) ?
|
|
|
|
EFX_RX_PKT_DISCARD : 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
2013-01-29 23:33:15 +00:00
|
|
|
/* Handle receive events that are not in-order. Return true if this
|
|
|
|
* can be handled as a partial packet discard, false if it's more
|
|
|
|
* serious.
|
|
|
|
*/
|
|
|
|
static bool
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
|
|
|
|
{
|
2013-01-29 23:33:15 +00:00
|
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
unsigned expected, dropped;
|
|
|
|
|
2013-01-29 23:33:15 +00:00
|
|
|
if (rx_queue->scatter_n &&
|
|
|
|
index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
|
|
|
|
rx_queue->ptr_mask)) {
|
|
|
|
++channel->n_rx_nodesc_trunc;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-09-10 06:42:22 +00:00
|
|
|
expected = rx_queue->removed_count & rx_queue->ptr_mask;
|
|
|
|
dropped = (index - expected) & rx_queue->ptr_mask;
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_info(efx, rx_err, efx->net_dev,
|
|
|
|
"dropped %d events (index=%d expected=%d)\n",
|
|
|
|
dropped, index, expected);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
|
|
|
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
2013-01-29 23:33:15 +00:00
|
|
|
return false;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle a packet received event
|
|
|
|
*
|
|
|
|
* The NIC gives a "discard" flag if it's a unicast packet with the
|
|
|
|
* wrong destination address
|
|
|
|
* Also "is multicast" and "matches multicast filter" flags can be used to
|
|
|
|
* discard non-matching multicast packets.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
|
|
|
|
{
|
|
|
|
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
|
|
|
|
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
|
|
unsigned expected_ptr;
|
2013-01-29 23:33:15 +00:00
|
|
|
bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
|
2011-08-26 17:05:11 +00:00
|
|
|
u16 flags;
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_rx_queue *rx_queue;
|
2012-02-08 00:11:20 +00:00
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
|
|
|
|
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
|
|
|
|
return;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2013-01-29 23:33:15 +00:00
|
|
|
rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
|
|
|
|
rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
|
2009-11-29 15:14:45 +00:00
|
|
|
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
|
|
|
|
channel->channel);
|
|
|
|
|
2010-09-10 06:41:47 +00:00
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
|
2013-01-29 23:33:15 +00:00
|
|
|
expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
|
|
|
|
rx_queue->ptr_mask);
|
|
|
|
|
|
|
|
/* Check for partial drops and other errors */
|
|
|
|
if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
|
|
|
|
unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
|
|
|
|
if (rx_ev_desc_ptr != expected_ptr &&
|
|
|
|
!efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Discard all pending fragments */
|
|
|
|
if (rx_queue->scatter_n) {
|
|
|
|
efx_rx_packet(
|
|
|
|
rx_queue,
|
|
|
|
rx_queue->removed_count & rx_queue->ptr_mask,
|
|
|
|
rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
|
|
|
|
rx_queue->removed_count += rx_queue->scatter_n;
|
|
|
|
rx_queue->scatter_n = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return if there is no new fragment */
|
|
|
|
if (rx_ev_desc_ptr != expected_ptr)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Discard new fragment if not SOP */
|
|
|
|
if (!rx_ev_sop) {
|
|
|
|
efx_rx_packet(
|
|
|
|
rx_queue,
|
|
|
|
rx_queue->removed_count & rx_queue->ptr_mask,
|
|
|
|
1, 0, EFX_RX_PKT_DISCARD);
|
|
|
|
++rx_queue->removed_count;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
++rx_queue->scatter_n;
|
|
|
|
if (rx_ev_cont)
|
|
|
|
return;
|
|
|
|
|
|
|
|
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
|
|
|
|
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
|
|
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
if (likely(rx_ev_pkt_ok)) {
|
2013-05-16 17:38:11 +00:00
|
|
|
/* If packet is marked as OK then we can rely on the
|
|
|
|
* hardware checksum and classification.
|
2009-11-29 15:14:45 +00:00
|
|
|
*/
|
2013-05-16 17:38:11 +00:00
|
|
|
flags = 0;
|
|
|
|
switch (rx_ev_hdr_type) {
|
|
|
|
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
|
|
|
|
flags |= EFX_RX_PKT_TCP;
|
|
|
|
/* fall through */
|
|
|
|
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
|
|
|
|
flags |= EFX_RX_PKT_CSUMMED;
|
|
|
|
/* fall through */
|
|
|
|
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
|
|
|
|
case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
|
|
|
|
break;
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
} else {
|
2011-08-26 17:05:11 +00:00
|
|
|
flags = efx_handle_rx_not_ok(rx_queue, event);
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Detect multicast packets that didn't match the filter */
|
|
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
|
|
|
|
if (rx_ev_mcast_pkt) {
|
|
|
|
unsigned int rx_ev_mcast_hash_match =
|
|
|
|
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
|
|
|
|
|
|
|
|
if (unlikely(!rx_ev_mcast_hash_match)) {
|
|
|
|
++channel->n_rx_mcast_mismatch;
|
2011-08-26 17:05:11 +00:00
|
|
|
flags |= EFX_RX_PKT_DISCARD;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
channel->irq_mod_score += 2;
|
|
|
|
|
|
|
|
/* Handle received packet */
|
2013-01-29 23:33:15 +00:00
|
|
|
efx_rx_packet(rx_queue,
|
|
|
|
rx_queue->removed_count & rx_queue->ptr_mask,
|
|
|
|
rx_queue->scatter_n, rx_ev_byte_cnt, flags);
|
|
|
|
rx_queue->removed_count += rx_queue->scatter_n;
|
|
|
|
rx_queue->scatter_n = 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
/* If this flush done event corresponds to a &struct efx_tx_queue, then
|
|
|
|
* send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
|
|
|
|
* of all transmit completions.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
|
|
|
|
{
|
|
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
int qid;
|
|
|
|
|
|
|
|
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
|
|
|
|
if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
|
|
|
|
tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
|
|
|
|
qid % EFX_TXQ_TYPES);
|
2012-10-02 12:36:18 +00:00
|
|
|
if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
|
|
|
|
efx_magic_event(tx_queue->channel,
|
|
|
|
EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
|
|
|
|
}
|
2012-02-08 00:11:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
|
|
|
|
* was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
|
|
|
|
* the RX queue back to the mask of RX queues in need of flushing.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
|
|
|
|
{
|
|
|
|
struct efx_channel *channel;
|
|
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
int qid;
|
|
|
|
bool failed;
|
|
|
|
|
|
|
|
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
|
|
|
|
failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
|
|
|
|
if (qid >= efx->n_channels)
|
|
|
|
return;
|
|
|
|
channel = efx_get_channel(efx, qid);
|
|
|
|
if (!efx_channel_has_rx_queue(channel))
|
|
|
|
return;
|
|
|
|
rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
|
|
|
|
if (failed) {
|
|
|
|
netif_info(efx, hw, efx->net_dev,
|
|
|
|
"RXQ %d flush retry\n", qid);
|
|
|
|
rx_queue->flush_pending = true;
|
|
|
|
atomic_inc(&efx->rxq_flush_pending);
|
|
|
|
} else {
|
|
|
|
efx_magic_event(efx_rx_queue_channel(rx_queue),
|
|
|
|
EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
|
|
|
|
}
|
|
|
|
atomic_dec(&efx->rxq_flush_outstanding);
|
|
|
|
if (efx_flush_wake(efx))
|
|
|
|
wake_up(&efx->flush_wq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
efx_handle_drain_event(struct efx_channel *channel)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
|
|
|
|
WARN_ON(atomic_read(&efx->drain_pending) == 0);
|
|
|
|
atomic_dec(&efx->drain_pending);
|
|
|
|
if (efx_flush_wake(efx))
|
|
|
|
wake_up(&efx->flush_wq);
|
|
|
|
}
|
|
|
|
|
2010-06-01 11:19:39 +00:00
|
|
|
static void
|
|
|
|
efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = channel->efx;
|
2012-02-07 23:49:52 +00:00
|
|
|
struct efx_rx_queue *rx_queue =
|
|
|
|
efx_channel_has_rx_queue(channel) ?
|
|
|
|
efx_channel_get_rx_queue(channel) : NULL;
|
2012-02-08 00:11:20 +00:00
|
|
|
unsigned magic, code;
|
2010-06-01 11:19:39 +00:00
|
|
|
|
2012-02-07 23:39:18 +00:00
|
|
|
magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
|
2012-02-08 00:11:20 +00:00
|
|
|
code = _EFX_CHANNEL_MAGIC_CODE(magic);
|
2012-02-07 23:39:18 +00:00
|
|
|
|
2012-02-08 00:11:20 +00:00
|
|
|
if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
|
2012-02-28 23:40:21 +00:00
|
|
|
channel->event_test_cpu = raw_smp_processor_id();
|
2012-02-08 00:11:20 +00:00
|
|
|
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
|
2010-06-01 11:19:39 +00:00
|
|
|
/* The queue must be empty, so we won't receive any rx
|
|
|
|
* events, so efx_process_channel() won't refill the
|
|
|
|
* queue. Refill it here */
|
2012-02-07 23:49:52 +00:00
|
|
|
efx_fast_push_rx_descriptors(rx_queue);
|
2012-02-08 00:11:20 +00:00
|
|
|
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
|
|
|
|
rx_queue->enabled = false;
|
|
|
|
efx_handle_drain_event(channel);
|
|
|
|
} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
|
|
|
|
efx_handle_drain_event(channel);
|
|
|
|
} else {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev, "channel %d received "
|
|
|
|
"generated event "EFX_QWORD_FMT"\n",
|
|
|
|
channel->channel, EFX_QWORD_VAL(*event));
|
2012-02-08 00:11:20 +00:00
|
|
|
}
|
2010-06-01 11:19:39 +00:00
|
|
|
}
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
static void
|
|
|
|
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
unsigned int ev_sub_code;
|
|
|
|
unsigned int ev_sub_data;
|
|
|
|
|
|
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
|
|
|
|
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
|
|
|
|
|
|
|
|
switch (ev_sub_code) {
|
|
|
|
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
|
|
|
|
channel->channel, ev_sub_data);
|
2012-02-08 00:11:20 +00:00
|
|
|
efx_handle_tx_flush_done(efx, event);
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
efx_sriov_tx_flush_done(efx, event);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
|
|
|
|
channel->channel, ev_sub_data);
|
2012-02-08 00:11:20 +00:00
|
|
|
efx_handle_rx_flush_done(efx, event);
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
efx_sriov_rx_flush_done(efx, event);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_EVQ_INIT_DONE_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d EVQ %d initialised\n",
|
|
|
|
channel->channel, ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_SRM_UPD_DONE_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d SRAM update done\n", channel->channel);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_WAKE_UP_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d RXQ %d wakeup event\n",
|
|
|
|
channel->channel, ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_TIMER_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d RX queue %d timer expired\n",
|
|
|
|
channel->channel, ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AA_RX_RECOVER_EV:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
|
|
"channel %d seen DRIVER RX_RESET event. "
|
2009-11-29 15:14:45 +00:00
|
|
|
"Resetting.\n", channel->channel);
|
|
|
|
atomic_inc(&efx->rx_reset);
|
|
|
|
efx_schedule_reset(efx,
|
|
|
|
EFX_WORKAROUND_6555(efx) ?
|
|
|
|
RESET_TYPE_RX_RECOVERY :
|
|
|
|
RESET_TYPE_DISABLE);
|
|
|
|
break;
|
|
|
|
case FSE_BZ_RX_DSC_ERROR_EV:
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
if (ev_sub_data < EFX_VI_BASE) {
|
|
|
|
netif_err(efx, rx_err, efx->net_dev,
|
|
|
|
"RX DMA Q %d reports descriptor fetch error."
|
|
|
|
" RX Q %d is disabled.\n", ev_sub_data,
|
|
|
|
ev_sub_data);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
|
|
|
|
} else
|
|
|
|
efx_sriov_desc_fetch_err(efx, ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_BZ_TX_DSC_ERROR_EV:
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
if (ev_sub_data < EFX_VI_BASE) {
|
|
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
|
|
"TX DMA Q %d reports descriptor fetch error."
|
|
|
|
" TX Q %d is disabled.\n", ev_sub_data,
|
|
|
|
ev_sub_data);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
|
|
} else
|
|
|
|
efx_sriov_desc_fetch_err(efx, ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
default:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d unknown driver event code %d "
|
|
|
|
"data %04x\n", channel->channel, ev_sub_code,
|
|
|
|
ev_sub_data);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-28 09:29:42 +00:00
|
|
|
int efx_nic_process_eventq(struct efx_channel *channel, int budget)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2010-09-10 06:42:22 +00:00
|
|
|
struct efx_nic *efx = channel->efx;
|
2009-11-29 15:14:45 +00:00
|
|
|
unsigned int read_ptr;
|
|
|
|
efx_qword_t event, *p_event;
|
|
|
|
int ev_code;
|
2010-04-28 09:29:42 +00:00
|
|
|
int tx_packets = 0;
|
|
|
|
int spent = 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
read_ptr = channel->eventq_read_ptr;
|
|
|
|
|
2010-04-28 09:29:42 +00:00
|
|
|
for (;;) {
|
2009-11-29 15:14:45 +00:00
|
|
|
p_event = efx_event(channel, read_ptr);
|
|
|
|
event = *p_event;
|
|
|
|
|
|
|
|
if (!efx_event_present(&event))
|
|
|
|
/* End of events */
|
|
|
|
break;
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(channel->efx, intr, channel->efx->net_dev,
|
|
|
|
"channel %d event is "EFX_QWORD_FMT"\n",
|
|
|
|
channel->channel, EFX_QWORD_VAL(event));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Clear this event by marking it all ones */
|
|
|
|
EFX_SET_QWORD(*p_event);
|
|
|
|
|
2011-04-04 13:22:11 +00:00
|
|
|
++read_ptr;
|
2010-04-28 09:29:42 +00:00
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
|
|
|
|
|
|
|
|
switch (ev_code) {
|
|
|
|
case FSE_AZ_EV_CODE_RX_EV:
|
|
|
|
efx_handle_rx_event(channel, &event);
|
2010-04-28 09:29:42 +00:00
|
|
|
if (++spent == budget)
|
|
|
|
goto out;
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_EV_CODE_TX_EV:
|
2010-04-28 09:29:42 +00:00
|
|
|
tx_packets += efx_handle_tx_event(channel, &event);
|
2010-09-10 06:42:22 +00:00
|
|
|
if (tx_packets > efx->txq_entries) {
|
2010-04-28 09:29:42 +00:00
|
|
|
spent = budget;
|
|
|
|
goto out;
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_EV_CODE_DRV_GEN_EV:
|
2010-06-01 11:19:39 +00:00
|
|
|
efx_handle_generated_event(channel, &event);
|
2009-11-29 15:14:45 +00:00
|
|
|
break;
|
|
|
|
case FSE_AZ_EV_CODE_DRIVER_EV:
|
|
|
|
efx_handle_driver_event(channel, &event);
|
|
|
|
break;
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
case FSE_CZ_EV_CODE_USER_EV:
|
|
|
|
efx_sriov_event(channel, &event);
|
|
|
|
break;
|
2009-11-29 15:15:41 +00:00
|
|
|
case FSE_CZ_EV_CODE_MCDI_EV:
|
|
|
|
efx_mcdi_process_event(channel, &event);
|
|
|
|
break;
|
2010-12-02 13:47:45 +00:00
|
|
|
case FSE_AZ_EV_CODE_GLOBAL_EV:
|
|
|
|
if (efx->type->handle_global_event &&
|
|
|
|
efx->type->handle_global_event(channel, &event))
|
|
|
|
break;
|
|
|
|
/* else fall through */
|
2009-11-29 15:14:45 +00:00
|
|
|
default:
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(channel->efx, hw, channel->efx->net_dev,
|
|
|
|
"channel %d unknown event type %d (data "
|
|
|
|
EFX_QWORD_FMT ")\n", channel->channel,
|
|
|
|
ev_code, EFX_QWORD_VAL(event));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
2010-04-28 09:29:42 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2010-04-28 09:29:42 +00:00
|
|
|
out:
|
2009-11-29 15:14:45 +00:00
|
|
|
channel->eventq_read_ptr = read_ptr;
|
2010-04-28 09:29:42 +00:00
|
|
|
return spent;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
2011-04-04 13:22:11 +00:00
|
|
|
/* Check whether an event is present in the eventq at the current
|
|
|
|
* read pointer. Only useful for self-test.
|
|
|
|
*/
|
|
|
|
bool efx_nic_event_present(struct efx_channel *channel)
|
|
|
|
{
|
|
|
|
return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Allocate buffer table entries for event queue */
|
|
|
|
int efx_nic_probe_eventq(struct efx_channel *channel)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = channel->efx;
|
2010-09-10 06:42:22 +00:00
|
|
|
unsigned entries;
|
|
|
|
|
|
|
|
entries = channel->eventq_mask + 1;
|
2009-11-29 15:14:45 +00:00
|
|
|
return efx_alloc_special_buffer(efx, &channel->eventq,
|
2010-09-10 06:42:22 +00:00
|
|
|
entries * sizeof(efx_qword_t));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_init_eventq(struct efx_channel *channel)
|
|
|
|
{
|
2009-11-29 15:15:41 +00:00
|
|
|
efx_oword_t reg;
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_dbg(efx, hw, efx->net_dev,
|
|
|
|
"channel %d event queue in special buffers %d-%d\n",
|
|
|
|
channel->channel, channel->eventq.index,
|
|
|
|
channel->eventq.index + channel->eventq.entries - 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2009-11-29 15:15:41 +00:00
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
|
|
|
|
EFX_POPULATE_OWORD_3(reg,
|
|
|
|
FRF_CZ_TIMER_Q_EN, 1,
|
|
|
|
FRF_CZ_HOST_NOTIFY_MODE, 0,
|
|
|
|
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
|
|
|
|
efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
|
|
|
|
}
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Pin event queue buffer */
|
|
|
|
efx_init_special_buffer(efx, &channel->eventq);
|
|
|
|
|
|
|
|
/* Fill event queue with all ones (i.e. empty events) */
|
|
|
|
memset(channel->eventq.addr, 0xff, channel->eventq.len);
|
|
|
|
|
|
|
|
/* Push event queue to card */
|
2009-11-29 15:15:41 +00:00
|
|
|
EFX_POPULATE_OWORD_3(reg,
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_EVQ_EN, 1,
|
|
|
|
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
|
|
|
|
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
|
2009-11-29 15:15:41 +00:00
|
|
|
efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
|
2009-11-29 15:14:45 +00:00
|
|
|
channel->channel);
|
|
|
|
|
|
|
|
efx->type->push_irq_moderation(channel);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_fini_eventq(struct efx_channel *channel)
|
|
|
|
{
|
2009-11-29 15:15:41 +00:00
|
|
|
efx_oword_t reg;
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
|
|
|
|
/* Remove event queue from card */
|
2009-11-29 15:15:41 +00:00
|
|
|
EFX_ZERO_OWORD(reg);
|
|
|
|
efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
|
2009-11-29 15:14:45 +00:00
|
|
|
channel->channel);
|
2009-11-29 15:15:41 +00:00
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
|
|
|
|
efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Unpin event queue */
|
|
|
|
efx_fini_special_buffer(efx, &channel->eventq);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free buffers backing event queue */
|
|
|
|
void efx_nic_remove_eventq(struct efx_channel *channel)
|
|
|
|
{
|
|
|
|
efx_free_special_buffer(channel->efx, &channel->eventq);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-02-28 23:37:35 +00:00
|
|
|
void efx_nic_event_test_start(struct efx_channel *channel)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2012-02-28 23:40:21 +00:00
|
|
|
channel->event_test_cpu = -1;
|
2012-02-28 23:37:35 +00:00
|
|
|
smp_wmb();
|
2012-02-07 23:39:18 +00:00
|
|
|
efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
|
2010-06-01 11:19:39 +00:00
|
|
|
}
|
|
|
|
|
2012-02-07 23:49:52 +00:00
|
|
|
void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
|
2010-06-01 11:19:39 +00:00
|
|
|
{
|
2012-02-07 23:49:52 +00:00
|
|
|
efx_magic_event(efx_rx_queue_channel(rx_queue),
|
|
|
|
EFX_CHANNEL_MAGIC_FILL(rx_queue));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* Hardware interrupts
|
|
|
|
* The hardware interrupt handler does very little work; all the event
|
|
|
|
* queue processing is carried out by per-channel tasklets.
|
|
|
|
*
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
/* Enable/disable/generate interrupts */
|
|
|
|
static inline void efx_nic_interrupts(struct efx_nic *efx,
|
|
|
|
bool enabled, bool force)
|
|
|
|
{
|
|
|
|
efx_oword_t int_en_reg_ker;
|
2009-11-29 15:15:41 +00:00
|
|
|
|
|
|
|
EFX_POPULATE_OWORD_3(int_en_reg_ker,
|
2012-01-05 20:14:10 +00:00
|
|
|
FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
|
2009-11-29 15:14:45 +00:00
|
|
|
FRF_AZ_KER_INT_KER, force,
|
|
|
|
FRF_AZ_DRV_INT_EN_KER, enabled);
|
|
|
|
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_enable_interrupts(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
|
|
|
|
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
|
|
|
|
|
|
|
|
efx_nic_interrupts(efx, true, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_disable_interrupts(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
/* Disable interrupts */
|
|
|
|
efx_nic_interrupts(efx, false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate a test interrupt
|
|
|
|
* Interrupt must already have been enabled, otherwise nasty things
|
|
|
|
* may happen.
|
|
|
|
*/
|
2012-02-28 23:37:35 +00:00
|
|
|
void efx_nic_irq_test_start(struct efx_nic *efx)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2012-02-28 23:37:35 +00:00
|
|
|
efx->last_irq_cpu = -1;
|
|
|
|
smp_wmb();
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_nic_interrupts(efx, true, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Process a fatal interrupt
|
|
|
|
* Disable bus mastering ASAP and schedule a reset
|
|
|
|
*/
|
|
|
|
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
|
|
efx_oword_t fatal_intr;
|
|
|
|
int error, mem_perr;
|
|
|
|
|
|
|
|
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
|
|
|
|
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
|
|
|
|
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
|
|
|
|
EFX_OWORD_VAL(fatal_intr),
|
|
|
|
error ? "disabling bus mastering" : "no recognised error");
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* If this is a memory parity error dump which blocks are offending */
|
2010-04-28 09:28:52 +00:00
|
|
|
mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
|
|
|
|
EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
|
2009-11-29 15:14:45 +00:00
|
|
|
if (mem_perr) {
|
|
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AZ_MEM_STAT);
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
|
|
"SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
|
|
|
|
EFX_OWORD_VAL(reg));
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable both devices */
|
|
|
|
pci_clear_master(efx->pci_dev);
|
|
|
|
if (efx_nic_is_dual_func(efx))
|
|
|
|
pci_clear_master(nic_data->pci_dev2);
|
|
|
|
efx_nic_disable_interrupts(efx);
|
|
|
|
|
|
|
|
/* Count errors and reset or disable the NIC accordingly */
|
|
|
|
if (efx->int_error_count == 0 ||
|
|
|
|
time_after(jiffies, efx->int_error_expire)) {
|
|
|
|
efx->int_error_count = 0;
|
|
|
|
efx->int_error_expire =
|
|
|
|
jiffies + EFX_INT_ERROR_EXPIRE * HZ;
|
|
|
|
}
|
|
|
|
if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
|
|
"SYSTEM ERROR - reset scheduled\n");
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
|
|
|
|
} else {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
|
|
"SYSTEM ERROR - max number of errors seen."
|
|
|
|
"NIC will be disabled\n");
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
|
|
}
|
2010-04-28 09:27:36 +00:00
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle a legacy interrupt
|
|
|
|
* Acknowledges the interrupt and schedule event queue processing.
|
|
|
|
*/
|
|
|
|
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
struct efx_nic *efx = dev_id;
|
|
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
|
|
irqreturn_t result = IRQ_NONE;
|
|
|
|
struct efx_channel *channel;
|
|
|
|
efx_dword_t reg;
|
|
|
|
u32 queues;
|
|
|
|
int syserr;
|
|
|
|
|
2010-12-07 19:24:45 +00:00
|
|
|
/* Could this be ours? If interrupts are disabled then the
|
|
|
|
* channel state may not be valid.
|
|
|
|
*/
|
|
|
|
if (!efx->legacy_irq_enabled)
|
|
|
|
return result;
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Read the ISR which also ACKs the interrupts */
|
|
|
|
efx_readd(efx, ®, FR_BZ_INT_ISR0);
|
|
|
|
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
|
|
|
|
|
2013-03-21 16:41:43 +00:00
|
|
|
/* Legacy interrupts are disabled too late by the EEH kernel
|
|
|
|
* code. Disable them earlier.
|
|
|
|
* If an EEH error occurred, the read will have returned all ones.
|
|
|
|
*/
|
|
|
|
if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
|
|
|
|
!efx->eeh_disabled_legacy_irq) {
|
|
|
|
disable_irq_nosync(efx->legacy_irq);
|
|
|
|
efx->eeh_disabled_legacy_irq = true;
|
|
|
|
}
|
|
|
|
|
2012-01-05 20:14:10 +00:00
|
|
|
/* Handle non-event-queue sources */
|
|
|
|
if (queues & (1U << efx->irq_level)) {
|
2010-04-28 09:27:36 +00:00
|
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
|
|
|
|
if (unlikely(syserr))
|
|
|
|
return efx_nic_fatal_interrupt(efx);
|
2012-01-05 20:14:10 +00:00
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
2010-04-28 09:27:36 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2009-11-29 15:15:41 +00:00
|
|
|
if (queues != 0) {
|
|
|
|
if (EFX_WORKAROUND_15783(efx))
|
|
|
|
efx->irq_zero_count = 0;
|
|
|
|
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
if (queues & 1)
|
2012-01-05 20:14:10 +00:00
|
|
|
efx_schedule_channel_irq(channel);
|
2009-11-29 15:15:41 +00:00
|
|
|
queues >>= 1;
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
2009-11-29 15:15:41 +00:00
|
|
|
result = IRQ_HANDLED;
|
|
|
|
|
2010-04-28 09:28:27 +00:00
|
|
|
} else if (EFX_WORKAROUND_15783(efx)) {
|
2009-11-29 15:15:41 +00:00
|
|
|
efx_qword_t *event;
|
|
|
|
|
2010-04-28 09:28:27 +00:00
|
|
|
/* We can't return IRQ_HANDLED more than once on seeing ISR=0
|
|
|
|
* because this might be a shared interrupt. */
|
|
|
|
if (efx->irq_zero_count++ == 0)
|
|
|
|
result = IRQ_HANDLED;
|
|
|
|
|
|
|
|
/* Ensure we schedule or rearm all event queues */
|
2009-11-29 15:15:41 +00:00
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
event = efx_event(channel, channel->eventq_read_ptr);
|
|
|
|
if (efx_event_present(event))
|
2012-01-05 20:14:10 +00:00
|
|
|
efx_schedule_channel_irq(channel);
|
2010-04-28 09:28:27 +00:00
|
|
|
else
|
|
|
|
efx_nic_eventq_read_ack(channel);
|
2009-11-29 15:15:41 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
2012-01-05 20:14:10 +00:00
|
|
|
if (result == IRQ_HANDLED)
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
|
|
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
|
|
|
|
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle an MSI interrupt
|
|
|
|
*
|
|
|
|
* Handle an MSI hardware interrupt. This routine schedules event
|
|
|
|
* queue processing. No interrupt acknowledgement cycle is necessary.
|
|
|
|
* Also, we never need to check that the interrupt is for us, since
|
|
|
|
* MSI interrupts cannot be shared.
|
|
|
|
*/
|
|
|
|
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
|
|
|
|
{
|
2010-09-10 06:42:33 +00:00
|
|
|
struct efx_channel *channel = *(struct efx_channel **)dev_id;
|
2009-11-29 15:14:45 +00:00
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
|
|
int syserr;
|
|
|
|
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
|
|
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
2009-11-29 15:14:45 +00:00
|
|
|
|
2012-01-05 20:14:10 +00:00
|
|
|
/* Handle non-event-queue sources */
|
|
|
|
if (channel->channel == efx->irq_level) {
|
2010-04-28 09:27:36 +00:00
|
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
|
|
|
|
if (unlikely(syserr))
|
|
|
|
return efx_nic_fatal_interrupt(efx);
|
2012-01-05 20:14:10 +00:00
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
2010-04-28 09:27:36 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Schedule processing of the channel */
|
2012-01-05 20:14:10 +00:00
|
|
|
efx_schedule_channel_irq(channel);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Setup RSS indirection table.
|
|
|
|
* This maps from the hash value of the packet to RXQ
|
|
|
|
*/
|
2010-06-30 05:06:28 +00:00
|
|
|
void efx_nic_push_rx_indir_table(struct efx_nic *efx)
|
2009-11-29 15:14:45 +00:00
|
|
|
{
|
2010-06-30 05:06:28 +00:00
|
|
|
size_t i = 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_dword_t dword;
|
|
|
|
|
|
|
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
|
|
|
|
return;
|
|
|
|
|
2010-06-30 05:06:28 +00:00
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
|
|
|
|
FR_BZ_RX_INDIRECTION_TBL_ROWS);
|
|
|
|
|
|
|
|
for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
|
2010-06-30 05:06:28 +00:00
|
|
|
efx->rx_indir_table[i]);
|
sfc: Remove confusing MMIO functions
efx_writed_table() uses a step of 16 bytes but efx_readd_table() uses
a step of 4 bytes. Why are they different?
Firstly, register access is asymmetric:
- The EVQ_RPTR table and RX_INDIRECTION_TBL can (or must?) be written
as dwords even though they have a step size of 16 bytes, unlike
most other CSRs.
- In general, a read of any width is valid for registers, so long as
it does not cross register boundaries. There is also no latching
behaviour in the BIU, contrary to rumour.
We write to the EVQ_RPTR table with efx_writed_table() but never read
it back as it's write-only. We write to the RX_INDIRECTION_TBL with
efx_writed_table(), but only read it back for the register dump, where
we use efx_reado_table() as for any other table with step size of 16.
We read MC_TREG_SMEM with efx_readd_table() for the register dump, but
normally read and write it with efx_readd() and efx_writed() using
offsets calculated in bytes.
Since these functions are trivial and have few callers, it's clearer
to open-code them at the call sites. While we're at it, update the
comments on the BIU behaviour again.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-09-18 00:56:50 +00:00
|
|
|
efx_writed(efx, &dword,
|
|
|
|
FR_BZ_RX_INDIRECTION_TBL +
|
|
|
|
FR_BZ_RX_INDIRECTION_TBL_STEP * i);
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Hook interrupt handler(s)
|
|
|
|
* Try MSI and then legacy interrupts.
|
|
|
|
*/
|
|
|
|
int efx_nic_init_interrupt(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
struct efx_channel *channel;
|
2013-05-22 17:03:35 +00:00
|
|
|
unsigned int n_irqs;
|
2009-11-29 15:14:45 +00:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (!EFX_INT_MODE_USE_MSI(efx)) {
|
|
|
|
irq_handler_t handler;
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
|
|
|
handler = efx_legacy_interrupt;
|
|
|
|
else
|
|
|
|
handler = falcon_legacy_interrupt_a1;
|
|
|
|
|
|
|
|
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
|
|
|
|
efx->name, efx);
|
|
|
|
if (rc) {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, drv, efx->net_dev,
|
|
|
|
"failed to hook legacy IRQ %d\n",
|
|
|
|
efx->pci_dev->irq);
|
2009-11-29 15:14:45 +00:00
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-05-22 17:03:35 +00:00
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
|
|
|
|
efx->net_dev->rx_cpu_rmap =
|
|
|
|
alloc_irq_cpu_rmap(efx->n_rx_channels);
|
|
|
|
if (!efx->net_dev->rx_cpu_rmap) {
|
|
|
|
rc = -ENOMEM;
|
|
|
|
goto fail1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Hook MSI or MSI-X interrupt */
|
2013-05-22 17:03:35 +00:00
|
|
|
n_irqs = 0;
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
rc = request_irq(channel->irq, efx_msi_interrupt,
|
|
|
|
IRQF_PROBE_SHARED, /* Not shared */
|
2010-09-10 06:42:33 +00:00
|
|
|
efx->channel_name[channel->channel],
|
|
|
|
&efx->channel[channel->channel]);
|
2009-11-29 15:14:45 +00:00
|
|
|
if (rc) {
|
2010-06-23 11:30:07 +00:00
|
|
|
netif_err(efx, drv, efx->net_dev,
|
|
|
|
"failed to hook IRQ %d\n", channel->irq);
|
2009-11-29 15:14:45 +00:00
|
|
|
goto fail2;
|
|
|
|
}
|
2013-05-22 17:03:35 +00:00
|
|
|
++n_irqs;
|
|
|
|
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
|
|
|
|
channel->channel < efx->n_rx_channels) {
|
|
|
|
rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
|
|
|
|
channel->irq);
|
|
|
|
if (rc)
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
#endif
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail2:
|
2013-05-22 17:03:35 +00:00
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
|
|
free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
|
|
|
|
efx->net_dev->rx_cpu_rmap = NULL;
|
|
|
|
#endif
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
|
|
if (n_irqs-- == 0)
|
|
|
|
break;
|
2010-09-10 06:42:33 +00:00
|
|
|
free_irq(channel->irq, &efx->channel[channel->channel]);
|
2013-05-22 17:03:35 +00:00
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
fail1:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_fini_interrupt(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
struct efx_channel *channel;
|
|
|
|
efx_oword_t reg;
|
|
|
|
|
2013-05-22 17:03:35 +00:00
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
|
|
free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
|
|
|
|
efx->net_dev->rx_cpu_rmap = NULL;
|
|
|
|
#endif
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Disable MSI/MSI-X interrupts */
|
2013-05-22 17:03:35 +00:00
|
|
|
efx_for_each_channel(channel, efx)
|
|
|
|
free_irq(channel->irq, &efx->channel[channel->channel]);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* ACK legacy interrupt */
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
|
|
|
efx_reado(efx, ®, FR_BZ_INT_ISR0);
|
|
|
|
else
|
|
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
|
|
|
|
/* Disable legacy interrupt */
|
|
|
|
if (efx->legacy_irq)
|
|
|
|
free_irq(efx->legacy_irq, efx);
|
|
|
|
}
|
|
|
|
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
/* Looks at available SRAM resources and works out how many queues we
|
|
|
|
* can support, and where things like descriptor caches should live.
|
|
|
|
*
|
|
|
|
* SRAM is split up as follows:
|
|
|
|
* 0 buftbl entries for channels
|
|
|
|
* efx->vf_buftbl_base buftbl entries for SR-IOV
|
|
|
|
* efx->rx_dc_base RX descriptor caches
|
|
|
|
* efx->tx_dc_base TX descriptor caches
|
|
|
|
*/
|
2012-02-15 01:58:49 +00:00
|
|
|
void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
|
|
|
|
{
|
|
|
|
unsigned vi_count, buftbl_min;
|
|
|
|
|
|
|
|
/* Account for the buffer table entries backing the datapath channels
|
|
|
|
* and the descriptor caches for those channels.
|
|
|
|
*/
|
|
|
|
buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
|
|
|
|
efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
|
|
|
|
efx->n_channels * EFX_MAX_EVQ_SIZE)
|
|
|
|
* sizeof(efx_qword_t) / EFX_BUF_SIZE);
|
|
|
|
vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
|
|
|
|
|
sfc: Add SR-IOV back-end support for SFC9000 family
On the SFC9000 family, each port has 1024 Virtual Interfaces (VIs),
each with an RX queue, a TX queue, an event queue and a mailbox
register. These may be assigned to up to 127 SR-IOV virtual functions
per port, with up to 64 VIs per VF.
We allocate an extra channel (IRQ and event queue only) to receive
requests from VF drivers.
There is a per-port limit of 4 concurrent RX queue flushes, and queue
flushes may be initiated by the MC in response to a Function Level
Reset (FLR) of a VF. Therefore, when SR-IOV is in use, we submit all
flush requests via the MC.
The RSS indirection table is shared with VFs, so the number of RX
queues used in the PF is limited to the number of VIs per VF.
This is almost entirely the work of Steve Hodgson, formerly
shodgson@solarflare.com.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-02-14 00:48:07 +00:00
|
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
|
|
if (efx_sriov_wanted(efx)) {
|
|
|
|
unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
|
|
|
|
|
|
|
|
efx->vf_buftbl_base = buftbl_min;
|
|
|
|
|
|
|
|
vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
|
|
|
|
vi_count = max(vi_count, EFX_VI_BASE);
|
|
|
|
buftbl_free = (sram_lim_qw - buftbl_min -
|
|
|
|
vi_count * vi_dc_entries);
|
|
|
|
|
|
|
|
entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
|
|
|
|
efx_vf_size(efx));
|
|
|
|
vf_limit = min(buftbl_free / entries_per_vf,
|
|
|
|
(1024U - EFX_VI_BASE) >> efx->vi_scale);
|
|
|
|
|
|
|
|
if (efx->vf_count > vf_limit) {
|
|
|
|
netif_err(efx, probe, efx->net_dev,
|
|
|
|
"Reducing VF count from from %d to %d\n",
|
|
|
|
efx->vf_count, vf_limit);
|
|
|
|
efx->vf_count = vf_limit;
|
|
|
|
}
|
|
|
|
vi_count += efx->vf_count * efx_vf_size(efx);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-02-15 01:58:49 +00:00
|
|
|
efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
|
|
|
|
efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
|
|
|
|
}
|
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
u32 efx_nic_fpga_ver(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
efx_oword_t altera_build;
|
|
|
|
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
|
|
|
|
return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_init_common(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
efx_oword_t temp;
|
|
|
|
|
|
|
|
/* Set positions of descriptor caches in SRAM. */
|
2012-02-15 01:58:49 +00:00
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
|
2012-02-15 01:58:49 +00:00
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
|
2009-11-29 15:14:45 +00:00
|
|
|
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
|
|
|
|
|
|
|
|
/* Set TX descriptor cache size. */
|
|
|
|
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
|
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
|
|
|
|
|
|
|
|
/* Set RX descriptor cache size. Set low watermark to size-8, as
|
|
|
|
* this allows most efficient prefetching.
|
|
|
|
*/
|
|
|
|
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
|
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
|
|
|
|
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
|
|
|
|
|
|
|
|
/* Program INT_KER address */
|
|
|
|
EFX_POPULATE_OWORD_2(temp,
|
|
|
|
FRF_AZ_NORM_INT_VEC_DIS_KER,
|
|
|
|
EFX_INT_MODE_USE_MSI(efx),
|
|
|
|
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
|
|
|
|
|
2010-04-28 09:27:36 +00:00
|
|
|
if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
|
|
|
|
/* Use an interrupt level unused by event queues */
|
2012-01-05 20:14:10 +00:00
|
|
|
efx->irq_level = 0x1f;
|
2010-04-28 09:27:36 +00:00
|
|
|
else
|
|
|
|
/* Use a valid MSI-X vector */
|
2012-01-05 20:14:10 +00:00
|
|
|
efx->irq_level = 0;
|
2010-04-28 09:27:36 +00:00
|
|
|
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Enable all the genuinely fatal interrupts. (They are still
|
|
|
|
* masked by the overall interrupt mask, controlled by
|
|
|
|
* falcon_interrupts()).
|
|
|
|
*
|
|
|
|
* Note: All other fatal interrupts are enabled
|
|
|
|
*/
|
|
|
|
EFX_POPULATE_OWORD_3(temp,
|
|
|
|
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
|
|
|
|
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
|
|
|
|
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
|
2010-04-28 09:25:22 +00:00
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_INVERT_OWORD(temp);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
|
|
|
|
|
2010-06-30 05:06:28 +00:00
|
|
|
efx_nic_push_rx_indir_table(efx);
|
2009-11-29 15:14:45 +00:00
|
|
|
|
|
|
|
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
|
|
|
|
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
|
|
|
|
*/
|
|
|
|
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
|
sfc: Use TX push whenever adding descriptors to an empty queue
Whenever we add DMA descriptors to a TX ring and update the ring
pointer, the TX DMA engine must first read the new DMA descriptors and
then start reading packet data. However, all released Solarflare 10G
controllers have a 'TX push' feature that allows us to reduce latency
by writing the first new DMA descriptor along with the pointer update.
This is only useful when the queue is empty. The hardware should
ignore the pushed descriptor if the queue is not empty, but this check
is buggy, so we must do it in software.
In order to tell whether a TX queue is empty, we need to compare the
previous transmission count (write_count) and completion count
(read_count). However, if we do that every time we update the ring
pointer then read_count may ping-pong between the caches of two CPUs
running the transmission and completion paths for the queue.
Therefore, we split the check for an empty queue between the
completion path and the transmission path:
- Add an empty_read_count field representing a point at which the
completion path saw the TX queue as empty.
- Add an old_write_count field for use on the completion path.
- On the completion path, whenever read_count reaches or passes
old_write_count the TX queue may be empty. We then read
write_count, set empty_read_count if read_count == write_count,
and update old_write_count.
- On the transmission path, we read empty_read_count. If it's set, we
compare it with the value of write_count before the current set of
descriptors was added. If they match, the queue really is empty and
we can use TX push.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-15 23:53:11 +00:00
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
|
2009-11-29 15:14:45 +00:00
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
|
|
|
|
/* Enable SW_EV to inherit in char driver - assume harmless here */
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
|
|
|
|
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
|
2009-12-23 13:49:13 +00:00
|
|
|
/* Disable hardware watchdog which can misfire */
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
|
2009-11-29 15:14:45 +00:00
|
|
|
/* Squash TX of packets of 16 bytes or less */
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
|
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
|
|
|
|
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
|
2011-01-10 21:18:20 +00:00
|
|
|
|
|
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
|
|
|
EFX_POPULATE_OWORD_4(temp,
|
|
|
|
/* Default values */
|
|
|
|
FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
|
|
|
|
FRF_BZ_TX_PACE_SB_AF, 0xb,
|
|
|
|
FRF_BZ_TX_PACE_FB_BASE, 0,
|
|
|
|
/* Allow large pace values in the
|
|
|
|
* fast bin. */
|
|
|
|
FRF_BZ_TX_PACE_BIN_TH,
|
|
|
|
FFE_BZ_TX_PACE_RESERVED);
|
|
|
|
efx_writeo(efx, &temp, FR_BZ_TX_PACE);
|
|
|
|
}
|
2009-11-29 15:14:45 +00:00
|
|
|
}
|
2010-06-21 03:06:53 +00:00
|
|
|
|
|
|
|
/* Register dump */
|
|
|
|
|
|
|
|
#define REGISTER_REVISION_A 1
|
|
|
|
#define REGISTER_REVISION_B 2
|
|
|
|
#define REGISTER_REVISION_C 3
|
|
|
|
#define REGISTER_REVISION_Z 3 /* latest revision */
|
|
|
|
|
|
|
|
struct efx_nic_reg {
|
|
|
|
u32 offset:24;
|
|
|
|
u32 min_revision:2, max_revision:2;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define REGISTER(name, min_rev, max_rev) { \
|
|
|
|
FR_ ## min_rev ## max_rev ## _ ## name, \
|
|
|
|
REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
|
|
|
|
}
|
|
|
|
#define REGISTER_AA(name) REGISTER(name, A, A)
|
|
|
|
#define REGISTER_AB(name) REGISTER(name, A, B)
|
|
|
|
#define REGISTER_AZ(name) REGISTER(name, A, Z)
|
|
|
|
#define REGISTER_BB(name) REGISTER(name, B, B)
|
|
|
|
#define REGISTER_BZ(name) REGISTER(name, B, Z)
|
|
|
|
#define REGISTER_CZ(name) REGISTER(name, C, Z)
|
|
|
|
|
|
|
|
static const struct efx_nic_reg efx_nic_regs[] = {
|
|
|
|
REGISTER_AZ(ADR_REGION),
|
|
|
|
REGISTER_AZ(INT_EN_KER),
|
|
|
|
REGISTER_BZ(INT_EN_CHAR),
|
|
|
|
REGISTER_AZ(INT_ADR_KER),
|
|
|
|
REGISTER_BZ(INT_ADR_CHAR),
|
|
|
|
/* INT_ACK_KER is WO */
|
|
|
|
/* INT_ISR0 is RC */
|
|
|
|
REGISTER_AZ(HW_INIT),
|
|
|
|
REGISTER_CZ(USR_EV_CFG),
|
|
|
|
REGISTER_AB(EE_SPI_HCMD),
|
|
|
|
REGISTER_AB(EE_SPI_HADR),
|
|
|
|
REGISTER_AB(EE_SPI_HDATA),
|
|
|
|
REGISTER_AB(EE_BASE_PAGE),
|
|
|
|
REGISTER_AB(EE_VPD_CFG0),
|
|
|
|
/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
|
|
|
|
/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
|
|
|
|
/* PCIE_CORE_INDIRECT is indirect */
|
|
|
|
REGISTER_AB(NIC_STAT),
|
|
|
|
REGISTER_AB(GPIO_CTL),
|
|
|
|
REGISTER_AB(GLB_CTL),
|
|
|
|
/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
|
|
|
|
REGISTER_BZ(DP_CTRL),
|
|
|
|
REGISTER_AZ(MEM_STAT),
|
|
|
|
REGISTER_AZ(CS_DEBUG),
|
|
|
|
REGISTER_AZ(ALTERA_BUILD),
|
|
|
|
REGISTER_AZ(CSR_SPARE),
|
|
|
|
REGISTER_AB(PCIE_SD_CTL0123),
|
|
|
|
REGISTER_AB(PCIE_SD_CTL45),
|
|
|
|
REGISTER_AB(PCIE_PCS_CTL_STAT),
|
|
|
|
/* DEBUG_DATA_OUT is not used */
|
|
|
|
/* DRV_EV is WO */
|
|
|
|
REGISTER_AZ(EVQ_CTL),
|
|
|
|
REGISTER_AZ(EVQ_CNT1),
|
|
|
|
REGISTER_AZ(EVQ_CNT2),
|
|
|
|
REGISTER_AZ(BUF_TBL_CFG),
|
|
|
|
REGISTER_AZ(SRM_RX_DC_CFG),
|
|
|
|
REGISTER_AZ(SRM_TX_DC_CFG),
|
|
|
|
REGISTER_AZ(SRM_CFG),
|
|
|
|
/* BUF_TBL_UPD is WO */
|
|
|
|
REGISTER_AZ(SRM_UPD_EVQ),
|
|
|
|
REGISTER_AZ(SRAM_PARITY),
|
|
|
|
REGISTER_AZ(RX_CFG),
|
|
|
|
REGISTER_BZ(RX_FILTER_CTL),
|
|
|
|
/* RX_FLUSH_DESCQ is WO */
|
|
|
|
REGISTER_AZ(RX_DC_CFG),
|
|
|
|
REGISTER_AZ(RX_DC_PF_WM),
|
|
|
|
REGISTER_BZ(RX_RSS_TKEY),
|
|
|
|
/* RX_NODESC_DROP is RC */
|
|
|
|
REGISTER_AA(RX_SELF_RST),
|
|
|
|
/* RX_DEBUG, RX_PUSH_DROP are not used */
|
|
|
|
REGISTER_CZ(RX_RSS_IPV6_REG1),
|
|
|
|
REGISTER_CZ(RX_RSS_IPV6_REG2),
|
|
|
|
REGISTER_CZ(RX_RSS_IPV6_REG3),
|
|
|
|
/* TX_FLUSH_DESCQ is WO */
|
|
|
|
REGISTER_AZ(TX_DC_CFG),
|
|
|
|
REGISTER_AA(TX_CHKSM_CFG),
|
|
|
|
REGISTER_AZ(TX_CFG),
|
|
|
|
/* TX_PUSH_DROP is not used */
|
|
|
|
REGISTER_AZ(TX_RESERVED),
|
|
|
|
REGISTER_BZ(TX_PACE),
|
|
|
|
/* TX_PACE_DROP_QID is RC */
|
|
|
|
REGISTER_BB(TX_VLAN),
|
|
|
|
REGISTER_BZ(TX_IPFIL_PORTEN),
|
|
|
|
REGISTER_AB(MD_TXD),
|
|
|
|
REGISTER_AB(MD_RXD),
|
|
|
|
REGISTER_AB(MD_CS),
|
|
|
|
REGISTER_AB(MD_PHY_ADR),
|
|
|
|
REGISTER_AB(MD_ID),
|
|
|
|
/* MD_STAT is RC */
|
|
|
|
REGISTER_AB(MAC_STAT_DMA),
|
|
|
|
REGISTER_AB(MAC_CTRL),
|
|
|
|
REGISTER_BB(GEN_MODE),
|
|
|
|
REGISTER_AB(MAC_MC_HASH_REG0),
|
|
|
|
REGISTER_AB(MAC_MC_HASH_REG1),
|
|
|
|
REGISTER_AB(GM_CFG1),
|
|
|
|
REGISTER_AB(GM_CFG2),
|
|
|
|
/* GM_IPG and GM_HD are not used */
|
|
|
|
REGISTER_AB(GM_MAX_FLEN),
|
|
|
|
/* GM_TEST is not used */
|
|
|
|
REGISTER_AB(GM_ADR1),
|
|
|
|
REGISTER_AB(GM_ADR2),
|
|
|
|
REGISTER_AB(GMF_CFG0),
|
|
|
|
REGISTER_AB(GMF_CFG1),
|
|
|
|
REGISTER_AB(GMF_CFG2),
|
|
|
|
REGISTER_AB(GMF_CFG3),
|
|
|
|
REGISTER_AB(GMF_CFG4),
|
|
|
|
REGISTER_AB(GMF_CFG5),
|
|
|
|
REGISTER_BB(TX_SRC_MAC_CTL),
|
|
|
|
REGISTER_AB(XM_ADR_LO),
|
|
|
|
REGISTER_AB(XM_ADR_HI),
|
|
|
|
REGISTER_AB(XM_GLB_CFG),
|
|
|
|
REGISTER_AB(XM_TX_CFG),
|
|
|
|
REGISTER_AB(XM_RX_CFG),
|
|
|
|
REGISTER_AB(XM_MGT_INT_MASK),
|
|
|
|
REGISTER_AB(XM_FC),
|
|
|
|
REGISTER_AB(XM_PAUSE_TIME),
|
|
|
|
REGISTER_AB(XM_TX_PARAM),
|
|
|
|
REGISTER_AB(XM_RX_PARAM),
|
|
|
|
/* XM_MGT_INT_MSK (note no 'A') is RC */
|
|
|
|
REGISTER_AB(XX_PWR_RST),
|
|
|
|
REGISTER_AB(XX_SD_CTL),
|
|
|
|
REGISTER_AB(XX_TXDRV_CTL),
|
|
|
|
/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
|
|
|
|
/* XX_CORE_STAT is partly RC */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct efx_nic_reg_table {
|
|
|
|
u32 offset:24;
|
|
|
|
u32 min_revision:2, max_revision:2;
|
|
|
|
u32 step:6, rows:21;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
|
|
|
|
offset, \
|
|
|
|
REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
|
|
|
|
step, rows \
|
|
|
|
}
|
2012-01-05 17:19:45 +00:00
|
|
|
#define REGISTER_TABLE(name, min_rev, max_rev) \
|
2010-06-21 03:06:53 +00:00
|
|
|
REGISTER_TABLE_DIMENSIONS( \
|
|
|
|
name, FR_ ## min_rev ## max_rev ## _ ## name, \
|
|
|
|
min_rev, max_rev, \
|
|
|
|
FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
|
|
|
|
FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
|
|
|
|
#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
|
|
|
|
#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
|
|
|
|
#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
|
|
|
|
#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
|
|
|
|
#define REGISTER_TABLE_BB_CZ(name) \
|
|
|
|
REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
|
|
|
|
FR_BZ_ ## name ## _STEP, \
|
|
|
|
FR_BB_ ## name ## _ROWS), \
|
|
|
|
REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
|
|
|
|
FR_BZ_ ## name ## _STEP, \
|
|
|
|
FR_CZ_ ## name ## _ROWS)
|
|
|
|
#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
|
|
|
|
|
|
|
|
static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
|
|
|
|
/* DRIVER is not used */
|
|
|
|
/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
|
|
|
|
REGISTER_TABLE_BB(TX_IPFIL_TBL),
|
|
|
|
REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
|
|
|
|
REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
|
|
|
|
REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
|
|
|
|
REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
|
|
|
|
REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
|
|
|
|
REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
|
|
|
|
REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
|
2010-09-20 08:43:53 +00:00
|
|
|
/* We can't reasonably read all of the buffer table (up to 8MB!).
|
2010-06-21 03:06:53 +00:00
|
|
|
* However this driver will only use a few entries. Reading
|
|
|
|
* 1K entries allows for some expansion of queue count and
|
|
|
|
* size before we need to change the version. */
|
|
|
|
REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
|
|
|
|
A, A, 8, 1024),
|
|
|
|
REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
|
|
|
|
B, Z, 8, 1024),
|
|
|
|
REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
|
|
|
|
REGISTER_TABLE_BB_CZ(TIMER_TBL),
|
|
|
|
REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
|
|
|
|
REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
|
|
|
|
/* TX_FILTER_TBL0 is huge and not used by this driver */
|
|
|
|
REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
|
|
|
|
REGISTER_TABLE_CZ(MC_TREG_SMEM),
|
|
|
|
/* MSIX_PBA_TABLE is not mapped */
|
|
|
|
/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
|
2010-09-20 08:43:53 +00:00
|
|
|
REGISTER_TABLE_BZ(RX_FILTER_TBL0),
|
2010-06-21 03:06:53 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
size_t efx_nic_get_regs_len(struct efx_nic *efx)
|
|
|
|
{
|
|
|
|
const struct efx_nic_reg *reg;
|
|
|
|
const struct efx_nic_reg_table *table;
|
|
|
|
size_t len = 0;
|
|
|
|
|
|
|
|
for (reg = efx_nic_regs;
|
|
|
|
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
|
|
|
|
reg++)
|
|
|
|
if (efx->type->revision >= reg->min_revision &&
|
|
|
|
efx->type->revision <= reg->max_revision)
|
|
|
|
len += sizeof(efx_oword_t);
|
|
|
|
|
|
|
|
for (table = efx_nic_reg_tables;
|
|
|
|
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
|
|
|
|
table++)
|
|
|
|
if (efx->type->revision >= table->min_revision &&
|
|
|
|
efx->type->revision <= table->max_revision)
|
|
|
|
len += table->rows * min_t(size_t, table->step, 16);
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
void efx_nic_get_regs(struct efx_nic *efx, void *buf)
|
|
|
|
{
|
|
|
|
const struct efx_nic_reg *reg;
|
|
|
|
const struct efx_nic_reg_table *table;
|
|
|
|
|
|
|
|
for (reg = efx_nic_regs;
|
|
|
|
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
|
|
|
|
reg++) {
|
|
|
|
if (efx->type->revision >= reg->min_revision &&
|
|
|
|
efx->type->revision <= reg->max_revision) {
|
|
|
|
efx_reado(efx, (efx_oword_t *)buf, reg->offset);
|
|
|
|
buf += sizeof(efx_oword_t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (table = efx_nic_reg_tables;
|
|
|
|
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
|
|
|
|
table++) {
|
|
|
|
size_t size, i;
|
|
|
|
|
|
|
|
if (!(efx->type->revision >= table->min_revision &&
|
|
|
|
efx->type->revision <= table->max_revision))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
size = min_t(size_t, table->step, 16);
|
|
|
|
|
|
|
|
for (i = 0; i < table->rows; i++) {
|
|
|
|
switch (table->step) {
|
sfc: Remove confusing MMIO functions
efx_writed_table() uses a step of 16 bytes but efx_readd_table() uses
a step of 4 bytes. Why are they different?
Firstly, register access is asymmetric:
- The EVQ_RPTR table and RX_INDIRECTION_TBL can (or must?) be written
as dwords even though they have a step size of 16 bytes, unlike
most other CSRs.
- In general, a read of any width is valid for registers, so long as
it does not cross register boundaries. There is also no latching
behaviour in the BIU, contrary to rumour.
We write to the EVQ_RPTR table with efx_writed_table() but never read
it back as it's write-only. We write to the RX_INDIRECTION_TBL with
efx_writed_table(), but only read it back for the register dump, where
we use efx_reado_table() as for any other table with step size of 16.
We read MC_TREG_SMEM with efx_readd_table() for the register dump, but
normally read and write it with efx_readd() and efx_writed() using
offsets calculated in bytes.
Since these functions are trivial and have few callers, it's clearer
to open-code them at the call sites. While we're at it, update the
comments on the BIU behaviour again.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-09-18 00:56:50 +00:00
|
|
|
case 4: /* 32-bit SRAM */
|
|
|
|
efx_readd(efx, buf, table->offset + 4 * i);
|
2010-06-21 03:06:53 +00:00
|
|
|
break;
|
|
|
|
case 8: /* 64-bit SRAM */
|
|
|
|
efx_sram_readq(efx,
|
|
|
|
efx->membase + table->offset,
|
|
|
|
buf, i);
|
|
|
|
break;
|
sfc: Remove confusing MMIO functions
efx_writed_table() uses a step of 16 bytes but efx_readd_table() uses
a step of 4 bytes. Why are they different?
Firstly, register access is asymmetric:
- The EVQ_RPTR table and RX_INDIRECTION_TBL can (or must?) be written
as dwords even though they have a step size of 16 bytes, unlike
most other CSRs.
- In general, a read of any width is valid for registers, so long as
it does not cross register boundaries. There is also no latching
behaviour in the BIU, contrary to rumour.
We write to the EVQ_RPTR table with efx_writed_table() but never read
it back as it's write-only. We write to the RX_INDIRECTION_TBL with
efx_writed_table(), but only read it back for the register dump, where
we use efx_reado_table() as for any other table with step size of 16.
We read MC_TREG_SMEM with efx_readd_table() for the register dump, but
normally read and write it with efx_readd() and efx_writed() using
offsets calculated in bytes.
Since these functions are trivial and have few callers, it's clearer
to open-code them at the call sites. While we're at it, update the
comments on the BIU behaviour again.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2012-09-18 00:56:50 +00:00
|
|
|
case 16: /* 128-bit-readable register */
|
2010-06-21 03:06:53 +00:00
|
|
|
efx_reado_table(efx, buf, table->offset, i);
|
|
|
|
break;
|
|
|
|
case 32: /* 128-bit register, interleaved */
|
|
|
|
efx_reado_table(efx, buf, table->offset, 2 * i);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
WARN_ON(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
buf += size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|