linux/drivers/infiniband/hw/hfi1/uc.c

605 lines
16 KiB
C
Raw Normal View History

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "hfi.h"
#include "verbs_txreq.h"
#include "qp.h"
/* cut down ridiculously long IB macro names */
#define OP(x) IB_OPCODE_UC_##x
staging/rdma/hfi1: Adaptive PIO for short messages The change requires a new pio_busy field in the iowait structure to track the number of outstanding pios. The new counter together with the sdma counter serve as the basis for a packet by packet decision as to which egress mechanism to use. Since packets given to different egress mechanisms are not ordered, this scheme will preserve the order. The iowait drain/wait mechanisms are extended for a pio case. An additional qp wait flag is added for the PIO drain wait case. Currently the only pio wait is for buffers, so the no_bufs_available() routine name is changed to pio_wait() and a third argument is passed with one of the two pio wait flags to generalize the routine. A module parameter is added to hold a configurable threshold. For now, the module parameter is zero. A heuristic routine is added to return the func pointer of the proper egress routine to use. The heuristic is as follows: - SMI always uses pio - GSI,UD qps <= threshold use pio - UD qps > threadhold use sdma o No coordination with sdma is required because order is not required and this qp pio count is not maintained for UD - RC/UC ONLY packets <= threshold chose as follows: o If sdmas pending, use SDMA o Otherwise use pio and enable the pio tracking count at the time the pio buffer is allocated - RC/UC ONLY packets > threshold use SDMA o If pio's are pending the pio_wait with the new wait flag is called to delay for pios to drain The threshold is potentially reduced by the QP's mtu. The sc_buffer_alloc() has two additional args (a callback, a void *) which are exploited by the RC/UC cases to pass a new complete routine and a qp *. When the shadow ring completes the credit associated with a packet, the new complete routine is called. The verbs_pio_complete() will then decrement the busy count and trigger any drain waiters in qp destroy or reset. Reviewed-by: Jubin John <jubin.john@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-14 20:45:36 +00:00
/* only opcode mask for adaptive pio */
const u32 uc_only_opcode =
BIT(OP(SEND_ONLY) & 0x1f) |
BIT(OP(SEND_ONLY_WITH_IMMEDIATE & 0x1f)) |
BIT(OP(RDMA_WRITE_ONLY & 0x1f)) |
BIT(OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE & 0x1f));
/**
* hfi1_make_uc_req - construct a request packet (SEND, RDMA write)
* @qp: a pointer to the QP
*
* Assume s_lock is held.
*
* Return 1 if constructed; otherwise, return 0.
*/
int hfi1_make_uc_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_other_headers *ohdr;
struct rvt_swqe *wqe;
u32 hwords = 5;
u32 bth0 = 0;
u32 len;
u32 pmtu = qp->pmtu;
int middle = 0;
ps->s_txreq = get_txreq(ps->dev, qp);
if (IS_ERR(ps->s_txreq))
goto bail_no_tx;
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) {
if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND))
goto bail;
/* We are in the error state, flush the work request. */
smp_read_barrier_depends(); /* see post_one_send() */
if (qp->s_last == ACCESS_ONCE(qp->s_head))
goto bail;
/* If DMAs are in progress, we can't flush immediately. */
staging/rdma/hfi1: Adaptive PIO for short messages The change requires a new pio_busy field in the iowait structure to track the number of outstanding pios. The new counter together with the sdma counter serve as the basis for a packet by packet decision as to which egress mechanism to use. Since packets given to different egress mechanisms are not ordered, this scheme will preserve the order. The iowait drain/wait mechanisms are extended for a pio case. An additional qp wait flag is added for the PIO drain wait case. Currently the only pio wait is for buffers, so the no_bufs_available() routine name is changed to pio_wait() and a third argument is passed with one of the two pio wait flags to generalize the routine. A module parameter is added to hold a configurable threshold. For now, the module parameter is zero. A heuristic routine is added to return the func pointer of the proper egress routine to use. The heuristic is as follows: - SMI always uses pio - GSI,UD qps <= threshold use pio - UD qps > threadhold use sdma o No coordination with sdma is required because order is not required and this qp pio count is not maintained for UD - RC/UC ONLY packets <= threshold chose as follows: o If sdmas pending, use SDMA o Otherwise use pio and enable the pio tracking count at the time the pio buffer is allocated - RC/UC ONLY packets > threshold use SDMA o If pio's are pending the pio_wait with the new wait flag is called to delay for pios to drain The threshold is potentially reduced by the QP's mtu. The sc_buffer_alloc() has two additional args (a callback, a void *) which are exploited by the RC/UC cases to pass a new complete routine and a qp *. When the shadow ring completes the credit associated with a packet, the new complete routine is called. The verbs_pio_complete() will then decrement the busy count and trigger any drain waiters in qp destroy or reset. Reviewed-by: Jubin John <jubin.john@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-14 20:45:36 +00:00
if (iowait_sdma_pending(&priv->s_iowait)) {
qp->s_flags |= RVT_S_WAIT_DMA;
goto bail;
}
clear_ahg(qp);
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
hfi1_send_complete(qp, wqe, IB_WC_WR_FLUSH_ERR);
goto done_free_tx;
}
ohdr = &ps->s_txreq->phdr.hdr.u.oth;
if (qp->remote_ah_attr.ah_flags & IB_AH_GRH)
ohdr = &ps->s_txreq->phdr.hdr.u.l.oth;
/* Get the next send request. */
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
qp->s_wqe = NULL;
switch (qp->s_state) {
default:
if (!(ib_rvt_state_ops[qp->state] &
RVT_PROCESS_NEXT_SEND_OK))
goto bail;
/* Check if send work queue is empty. */
smp_read_barrier_depends(); /* see post_one_send() */
if (qp->s_cur == ACCESS_ONCE(qp->s_head)) {
clear_ahg(qp);
goto bail;
}
/*
* Start a new request.
*/
qp->s_psn = wqe->psn;
qp->s_sge.sge = wqe->sg_list[0];
qp->s_sge.sg_list = wqe->sg_list + 1;
qp->s_sge.num_sge = wqe->wr.num_sge;
qp->s_sge.total_len = wqe->length;
len = wqe->length;
qp->s_len = len;
switch (wqe->wr.opcode) {
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
if (len > pmtu) {
qp->s_state = OP(SEND_FIRST);
len = pmtu;
break;
}
if (wqe->wr.opcode == IB_WR_SEND) {
qp->s_state = OP(SEND_ONLY);
} else {
qp->s_state =
OP(SEND_ONLY_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
}
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
qp->s_wqe = wqe;
if (++qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM:
ohdr->u.rc.reth.vaddr =
cpu_to_be64(wqe->rdma_wr.remote_addr);
ohdr->u.rc.reth.rkey =
cpu_to_be32(wqe->rdma_wr.rkey);
ohdr->u.rc.reth.length = cpu_to_be32(len);
hwords += sizeof(struct ib_reth) / 4;
if (len > pmtu) {
qp->s_state = OP(RDMA_WRITE_FIRST);
len = pmtu;
break;
}
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
qp->s_state = OP(RDMA_WRITE_ONLY);
} else {
qp->s_state =
OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE);
/* Immediate data comes after the RETH */
ohdr->u.rc.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
}
qp->s_wqe = wqe;
if (++qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
default:
goto bail;
}
break;
case OP(SEND_FIRST):
qp->s_state = OP(SEND_MIDDLE);
/* FALLTHROUGH */
case OP(SEND_MIDDLE):
len = qp->s_len;
if (len > pmtu) {
len = pmtu;
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
break;
}
if (wqe->wr.opcode == IB_WR_SEND) {
qp->s_state = OP(SEND_LAST);
} else {
qp->s_state = OP(SEND_LAST_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
}
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
qp->s_wqe = wqe;
if (++qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
case OP(RDMA_WRITE_FIRST):
qp->s_state = OP(RDMA_WRITE_MIDDLE);
/* FALLTHROUGH */
case OP(RDMA_WRITE_MIDDLE):
len = qp->s_len;
if (len > pmtu) {
len = pmtu;
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
break;
}
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
qp->s_state = OP(RDMA_WRITE_LAST);
} else {
qp->s_state =
OP(RDMA_WRITE_LAST_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
}
qp->s_wqe = wqe;
if (++qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
}
qp->s_len -= len;
qp->s_hdrwords = hwords;
staging/rdma/hfi1: Adaptive PIO for short messages The change requires a new pio_busy field in the iowait structure to track the number of outstanding pios. The new counter together with the sdma counter serve as the basis for a packet by packet decision as to which egress mechanism to use. Since packets given to different egress mechanisms are not ordered, this scheme will preserve the order. The iowait drain/wait mechanisms are extended for a pio case. An additional qp wait flag is added for the PIO drain wait case. Currently the only pio wait is for buffers, so the no_bufs_available() routine name is changed to pio_wait() and a third argument is passed with one of the two pio wait flags to generalize the routine. A module parameter is added to hold a configurable threshold. For now, the module parameter is zero. A heuristic routine is added to return the func pointer of the proper egress routine to use. The heuristic is as follows: - SMI always uses pio - GSI,UD qps <= threshold use pio - UD qps > threadhold use sdma o No coordination with sdma is required because order is not required and this qp pio count is not maintained for UD - RC/UC ONLY packets <= threshold chose as follows: o If sdmas pending, use SDMA o Otherwise use pio and enable the pio tracking count at the time the pio buffer is allocated - RC/UC ONLY packets > threshold use SDMA o If pio's are pending the pio_wait with the new wait flag is called to delay for pios to drain The threshold is potentially reduced by the QP's mtu. The sc_buffer_alloc() has two additional args (a callback, a void *) which are exploited by the RC/UC cases to pass a new complete routine and a qp *. When the shadow ring completes the credit associated with a packet, the new complete routine is called. The verbs_pio_complete() will then decrement the busy count and trigger any drain waiters in qp destroy or reset. Reviewed-by: Jubin John <jubin.john@intel.com> Reviewed-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2016-02-14 20:45:36 +00:00
ps->s_txreq->sde = priv->s_sde;
qp->s_cur_sge = &qp->s_sge;
qp->s_cur_size = len;
hfi1_make_ruc_header(qp, ohdr, bth0 | (qp->s_state << 24),
mask_psn(qp->s_psn++), middle, ps);
/* pbc */
ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2;
return 1;
done_free_tx:
hfi1_put_txreq(ps->s_txreq);
ps->s_txreq = NULL;
return 1;
bail:
hfi1_put_txreq(ps->s_txreq);
bail_no_tx:
ps->s_txreq = NULL;
qp->s_flags &= ~RVT_S_BUSY;
qp->s_hdrwords = 0;
return 0;
}
/**
* hfi1_uc_rcv - handle an incoming UC packet
* @ibp: the port the packet came in on
* @hdr: the header of the packet
* @rcv_flags: flags relevant to rcv processing
* @data: the packet data
* @tlen: the length of the packet
* @qp: the QP for this packet.
*
* This is called from qp_rcv() to process an incoming UC packet
* for the given QP.
* Called at interrupt level.
*/
void hfi1_uc_rcv(struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
struct hfi1_ib_header *hdr = packet->hdr;
u32 rcv_flags = packet->rcv_flags;
void *data = packet->ebuf;
u32 tlen = packet->tlen;
struct rvt_qp *qp = packet->qp;
struct hfi1_other_headers *ohdr = packet->ohdr;
u32 bth0, opcode;
u32 hdrsize = packet->hlen;
u32 psn;
u32 pad;
struct ib_wc wc;
u32 pmtu = qp->pmtu;
struct ib_reth *reth;
int has_grh = rcv_flags & HFI1_HAS_GRH;
int ret;
u32 bth1;
bth0 = be32_to_cpu(ohdr->bth[0]);
if (hfi1_ruc_check_hdr(ibp, hdr, has_grh, qp, bth0))
return;
bth1 = be32_to_cpu(ohdr->bth[1]);
if (unlikely(bth1 & (HFI1_BECN_SMASK | HFI1_FECN_SMASK))) {
if (bth1 & HFI1_BECN_SMASK) {
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 rqpn, lqpn;
u16 rlid = be16_to_cpu(hdr->lrh[3]);
u8 sl, sc5;
lqpn = bth1 & RVT_QPN_MASK;
rqpn = qp->remote_qpn;
sc5 = ibp->sl_to_sc[qp->remote_ah_attr.sl];
sl = ibp->sc_to_sl[sc5];
process_becn(ppd, sl, rlid, lqpn, rqpn,
IB_CC_SVCTYPE_UC);
}
if (bth1 & HFI1_FECN_SMASK) {
struct ib_grh *grh = NULL;
u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
u16 slid = be16_to_cpu(hdr->lrh[3]);
u16 dlid = be16_to_cpu(hdr->lrh[1]);
u32 src_qp = qp->remote_qpn;
u8 sc5;
sc5 = ibp->sl_to_sc[qp->remote_ah_attr.sl];
if (has_grh)
grh = &hdr->u.l.grh;
return_cnp(ibp, qp, src_qp, pkey, dlid, slid, sc5,
grh);
}
}
psn = be32_to_cpu(ohdr->bth[2]);
opcode = (bth0 >> 24) & 0xff;
/* Compare the PSN verses the expected PSN. */
if (unlikely(cmp_psn(psn, qp->r_psn) != 0)) {
/*
* Handle a sequence error.
* Silently drop any current message.
*/
qp->r_psn = psn;
inv:
if (qp->r_state == OP(SEND_FIRST) ||
qp->r_state == OP(SEND_MIDDLE)) {
set_bit(RVT_R_REWIND_SGE, &qp->r_aflags);
qp->r_sge.num_sge = 0;
} else {
rvt_put_ss(&qp->r_sge);
}
qp->r_state = OP(SEND_LAST);
switch (opcode) {
case OP(SEND_FIRST):
case OP(SEND_ONLY):
case OP(SEND_ONLY_WITH_IMMEDIATE):
goto send_first;
case OP(RDMA_WRITE_FIRST):
case OP(RDMA_WRITE_ONLY):
case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE):
goto rdma_first;
default:
goto drop;
}
}
/* Check for opcode sequence errors. */
switch (qp->r_state) {
case OP(SEND_FIRST):
case OP(SEND_MIDDLE):
if (opcode == OP(SEND_MIDDLE) ||
opcode == OP(SEND_LAST) ||
opcode == OP(SEND_LAST_WITH_IMMEDIATE))
break;
goto inv;
case OP(RDMA_WRITE_FIRST):
case OP(RDMA_WRITE_MIDDLE):
if (opcode == OP(RDMA_WRITE_MIDDLE) ||
opcode == OP(RDMA_WRITE_LAST) ||
opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE))
break;
goto inv;
default:
if (opcode == OP(SEND_FIRST) ||
opcode == OP(SEND_ONLY) ||
opcode == OP(SEND_ONLY_WITH_IMMEDIATE) ||
opcode == OP(RDMA_WRITE_FIRST) ||
opcode == OP(RDMA_WRITE_ONLY) ||
opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE))
break;
goto inv;
}
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
qp_comm_est(qp);
/* OK, process the packet. */
switch (opcode) {
case OP(SEND_FIRST):
case OP(SEND_ONLY):
case OP(SEND_ONLY_WITH_IMMEDIATE):
send_first:
if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) {
qp->r_sge = qp->s_rdma_read_sge;
} else {
ret = hfi1_rvt_get_rwqe(qp, 0);
if (ret < 0)
goto op_err;
if (!ret)
goto drop;
/*
* qp->s_rdma_read_sge will be the owner
* of the mr references.
*/
qp->s_rdma_read_sge = qp->r_sge;
}
qp->r_rcv_len = 0;
if (opcode == OP(SEND_ONLY))
goto no_immediate_data;
else if (opcode == OP(SEND_ONLY_WITH_IMMEDIATE))
goto send_last_imm;
/* FALLTHROUGH */
case OP(SEND_MIDDLE):
/* Check for invalid length PMTU or posted rwqe len. */
if (unlikely(tlen != (hdrsize + pmtu + 4)))
goto rewind;
qp->r_rcv_len += pmtu;
if (unlikely(qp->r_rcv_len > qp->r_len))
goto rewind;
hfi1_copy_sge(&qp->r_sge, data, pmtu, 0, 0);
break;
case OP(SEND_LAST_WITH_IMMEDIATE):
send_last_imm:
wc.ex.imm_data = ohdr->u.imm_data;
wc.wc_flags = IB_WC_WITH_IMM;
goto send_last;
case OP(SEND_LAST):
no_immediate_data:
wc.ex.imm_data = 0;
wc.wc_flags = 0;
send_last:
/* Get the number of bytes the message was padded by. */
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
/* Check for invalid length. */
/* LAST len should be >= 1 */
if (unlikely(tlen < (hdrsize + pad + 4)))
goto rewind;
/* Don't count the CRC. */
tlen -= (hdrsize + pad + 4);
wc.byte_len = tlen + qp->r_rcv_len;
if (unlikely(wc.byte_len > qp->r_len))
goto rewind;
wc.opcode = IB_WC_RECV;
hfi1_copy_sge(&qp->r_sge, data, tlen, 0, 0);
rvt_put_ss(&qp->s_rdma_read_sge);
last_imm:
wc.wr_id = qp->r_wr_id;
wc.status = IB_WC_SUCCESS;
wc.qp = &qp->ibqp;
wc.src_qp = qp->remote_qpn;
wc.slid = qp->remote_ah_attr.dlid;
/*
* It seems that IB mandates the presence of an SL in a
* work completion only for the UD transport (see section
* 11.4.2 of IBTA Vol. 1).
*
* However, the way the SL is chosen below is consistent
* with the way that IB/qib works and is trying avoid
* introducing incompatibilities.
*
* See also OPA Vol. 1, section 9.7.6, and table 9-17.
*/
wc.sl = qp->remote_ah_attr.sl;
/* zero fields that are N/A */
wc.vendor_err = 0;
wc.pkey_index = 0;
wc.dlid_path_bits = 0;
wc.port_num = 0;
/* Signal completion event if the solicited bit is set. */
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
(ohdr->bth[0] &
cpu_to_be32(IB_BTH_SOLICITED)) != 0);
break;
case OP(RDMA_WRITE_FIRST):
case OP(RDMA_WRITE_ONLY):
case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE): /* consume RWQE */
rdma_first:
if (unlikely(!(qp->qp_access_flags &
IB_ACCESS_REMOTE_WRITE))) {
goto drop;
}
reth = &ohdr->u.rc.reth;
qp->r_len = be32_to_cpu(reth->length);
qp->r_rcv_len = 0;
qp->r_sge.sg_list = NULL;
if (qp->r_len != 0) {
u32 rkey = be32_to_cpu(reth->rkey);
u64 vaddr = be64_to_cpu(reth->vaddr);
int ok;
/* Check rkey */
ok = rvt_rkey_ok(qp, &qp->r_sge.sge, qp->r_len,
vaddr, rkey, IB_ACCESS_REMOTE_WRITE);
if (unlikely(!ok))
goto drop;
qp->r_sge.num_sge = 1;
} else {
qp->r_sge.num_sge = 0;
qp->r_sge.sge.mr = NULL;
qp->r_sge.sge.vaddr = NULL;
qp->r_sge.sge.length = 0;
qp->r_sge.sge.sge_length = 0;
}
if (opcode == OP(RDMA_WRITE_ONLY)) {
goto rdma_last;
} else if (opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE)) {
wc.ex.imm_data = ohdr->u.rc.imm_data;
goto rdma_last_imm;
}
/* FALLTHROUGH */
case OP(RDMA_WRITE_MIDDLE):
/* Check for invalid length PMTU or posted rwqe len. */
if (unlikely(tlen != (hdrsize + pmtu + 4)))
goto drop;
qp->r_rcv_len += pmtu;
if (unlikely(qp->r_rcv_len > qp->r_len))
goto drop;
hfi1_copy_sge(&qp->r_sge, data, pmtu, 1, 0);
break;
case OP(RDMA_WRITE_LAST_WITH_IMMEDIATE):
wc.ex.imm_data = ohdr->u.imm_data;
rdma_last_imm:
wc.wc_flags = IB_WC_WITH_IMM;
/* Get the number of bytes the message was padded by. */
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
/* Check for invalid length. */
/* LAST len should be >= 1 */
if (unlikely(tlen < (hdrsize + pad + 4)))
goto drop;
/* Don't count the CRC. */
tlen -= (hdrsize + pad + 4);
if (unlikely(tlen + qp->r_rcv_len != qp->r_len))
goto drop;
if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) {
rvt_put_ss(&qp->s_rdma_read_sge);
} else {
ret = hfi1_rvt_get_rwqe(qp, 1);
if (ret < 0)
goto op_err;
if (!ret)
goto drop;
}
wc.byte_len = qp->r_len;
wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
hfi1_copy_sge(&qp->r_sge, data, tlen, 1, 0);
rvt_put_ss(&qp->r_sge);
goto last_imm;
case OP(RDMA_WRITE_LAST):
rdma_last:
/* Get the number of bytes the message was padded by. */
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
/* Check for invalid length. */
/* LAST len should be >= 1 */
if (unlikely(tlen < (hdrsize + pad + 4)))
goto drop;
/* Don't count the CRC. */
tlen -= (hdrsize + pad + 4);
if (unlikely(tlen + qp->r_rcv_len != qp->r_len))
goto drop;
hfi1_copy_sge(&qp->r_sge, data, tlen, 1, 0);
rvt_put_ss(&qp->r_sge);
break;
default:
/* Drop packet for unknown opcodes. */
goto drop;
}
qp->r_psn++;
qp->r_state = opcode;
return;
rewind:
set_bit(RVT_R_REWIND_SGE, &qp->r_aflags);
qp->r_sge.num_sge = 0;
drop:
ibp->rvp.n_pkt_drops++;
return;
op_err:
hfi1_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
}