linux/arch/powerpc/kvm/book3s.c

1260 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define DEBUG_EXT */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr);
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ NULL }
};
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
memcpy(get_paca()->kvm_slb, to_book3s(vcpu)->slb_shadow, sizeof(get_paca()->kvm_slb));
memcpy(&get_paca()->shadow_vcpu, &to_book3s(vcpu)->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
get_paca()->kvm_slb_max = to_book3s(vcpu)->slb_shadow_max;
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
memcpy(to_book3s(vcpu)->slb_shadow, get_paca()->kvm_slb, sizeof(get_paca()->kvm_slb));
memcpy(&to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_book3s(vcpu)->slb_shadow_max = get_paca()->kvm_slb_max;
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
}
#if defined(EXIT_DEBUG)
static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu)
{
u64 jd = mftb() - vcpu->arch.dec_jiffies;
return vcpu->arch.dec - jd;
}
#endif
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
vcpu->arch.shadow_msr = vcpu->arch.msr;
/* Guest MSR values */
vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE |
MSR_BE | MSR_DE;
/* Process MSR values */
vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR |
MSR_EE;
/* External providers the guest reserved */
vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext);
/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV;
#endif
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = vcpu->arch.msr;
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
vcpu->arch.msr = msr;
kvmppc_recalc_shadow_msr(vcpu);
if (msr & (MSR_WE|MSR_POW)) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
vcpu->stat.halt_wakeup++;
}
}
if (((vcpu->arch.msr & (MSR_IR|MSR_DR)) != (old_msr & (MSR_IR|MSR_DR))) ||
(vcpu->arch.msr & MSR_PR) != (old_msr & MSR_PR)) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, vcpu->arch.pc);
}
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
vcpu->arch.srr0 = vcpu->arch.pc;
vcpu->arch.srr1 = vcpu->arch.msr | flags;
vcpu->arch.pc = to_book3s(vcpu)->hior + vec;
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
{
to_book3s(vcpu)->prog_flags = flags;
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_INTERRUPT_DECREMENTER >> 7, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
{
int deliver = 1;
int vec = 0;
ulong flags = 0ULL;
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
flags = to_book3s(vcpu)->prog_flags;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, flags);
return deliver;
}
void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority <= (sizeof(unsigned int) * 8)) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
(priority != BOOK3S_IRQPRIO_DECREMENTER)) {
/* DEC interrupts get cleared by mtdec */
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
} else {
kvmppc_mmu_book3s_32_init(vcpu);
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
}
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
bool touched = false;
hva_t hpage;
u32 *page;
int i;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
return;
hpage |= pte->raddr & ~PAGE_MASK;
hpage &= ~0xFFFULL;
page = vmalloc(HW_PAGE_SIZE);
if (copy_from_user(page, (void __user *)hpage, HW_PAGE_SIZE))
goto out;
for (i=0; i < HW_PAGE_SIZE / 4; i++)
if ((page[i] & 0xff0007ff) == INS_DCBZ) {
page[i] &= 0xfffffff7; // reserved instruction, so we trap
touched = true;
}
if (touched)
copy_to_user((void __user *)hpage, page, HW_PAGE_SIZE);
out:
vfree(page);
}
static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
struct kvmppc_pte *pte)
{
int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & 0xffffffff;
pte->vpage = eaddr >> 12;
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte->vpage |= VSID_REAL;
case MSR_DR:
pte->vpage |= VSID_REAL_DR;
case MSR_IR:
pte->vpage |= VSID_REAL_IR;
}
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
}
return r;
}
static hva_t kvmppc_bad_hva(void)
{
return PAGE_OFFSET;
}
static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool read)
{
hva_t hpage;
if (read && !pte->may_read)
goto err;
if (!read && !pte->may_write)
goto err;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
goto err;
return hpage | (pte->raddr & ~PAGE_MASK);
err:
return kvmppc_bad_hva();
}
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = *eaddr;
vcpu->stat.st++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
goto nopte;
*eaddr = pte.raddr;
hva = kvmppc_pte_to_hva(vcpu, &pte, false);
if (kvm_is_error_hva(hva))
goto mmio;
if (copy_to_user((void __user *)hva, ptr, size)) {
printk(KERN_INFO "kvmppc_st at 0x%lx failed\n", hva);
goto mmio;
}
return EMULATE_DONE;
nopte:
return -ENOENT;
mmio:
return EMULATE_DO_MMIO;
}
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = *eaddr;
vcpu->stat.ld++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
goto nopte;
*eaddr = pte.raddr;
hva = kvmppc_pte_to_hva(vcpu, &pte, true);
if (kvm_is_error_hva(hva))
goto mmio;
if (copy_from_user(ptr, (void __user *)hva, size)) {
printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva);
goto mmio;
}
return EMULATE_DONE;
nopte:
return -ENOENT;
mmio:
return EMULATE_DO_MMIO;
}
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return kvm_is_visible_gfn(vcpu->kvm, gfn);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
if ( vec == BOOK3S_INTERRUPT_DATA_STORAGE ) {
relocated = (vcpu->arch.msr & MSR_DR);
} else {
relocated = (vcpu->arch.msr & MSR_IR);
}
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & 0xffffffff;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= VSID_REAL;
case MSR_DR:
pte.vpage |= VSID_REAL_DR;
case MSR_IR:
pte.vpage |= VSID_REAL_IR;
}
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr;
vcpu->arch.msr |= (vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT;
vcpu->arch.msr |= (vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
vcpu->arch.dear = vcpu->arch.fault_dear;
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
}
return r;
}
static inline int get_fpr_index(int i)
{
#ifdef CONFIG_VSX
i *= 2;
#endif
return i;
}
/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
u64 *vcpu_vsx = vcpu->arch.vsr;
u64 *thread_fpr = (u64*)t->fpr;
int i;
if (!(vcpu->arch.guest_owned_ext & msr))
return;
#ifdef DEBUG_EXT
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif
switch (msr) {
case MSR_FP:
giveup_fpu(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
vcpu->arch.fpscr = t->fpscr.val;
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
giveup_altivec(current);
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
vcpu->arch.vscr = t->vscr;
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
__giveup_vsx(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext &= ~msr;
current->thread.regs->msr &= ~msr;
kvmppc_recalc_shadow_msr(vcpu);
}
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
ulong srr0 = vcpu->arch.pc;
int ret;
/* Need to do paired single emulation? */
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
return EMULATE_DONE;
/* Read out the instruction */
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &vcpu->arch.last_inst, false);
if (ret == -ENOENT) {
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
} else if(ret == EMULATE_DONE) {
/* Need to emulate */
return EMULATE_FAIL;
}
return EMULATE_AGAIN;
}
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
u64 *vcpu_vsx = vcpu->arch.vsr;
u64 *thread_fpr = (u64*)t->fpr;
int i;
/* When we have paired singles, we emulate in software */
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
return RESUME_GUEST;
if (!(vcpu->arch.msr & msr)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
return RESUME_GUEST;
}
#ifdef DEBUG_EXT
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif
current->thread.regs->msr |= msr;
switch (msr) {
case MSR_FP:
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
t->fpscr.val = vcpu->arch.fpscr;
t->fpexc_mode = 0;
kvmppc_load_up_fpu();
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
t->vscr = vcpu->arch.vscr;
t->vrsave = -1;
kvmppc_load_up_altivec();
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
kvmppc_load_up_vsx();
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext |= msr;
kvmppc_recalc_shadow_msr(vcpu);
return RESUME_GUEST;
}
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
#ifdef EXIT_DEBUG
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n",
exit_nr, vcpu->arch.pc, vcpu->arch.fault_dear,
kvmppc_get_dec(vcpu), vcpu->arch.msr);
#elif defined (EXIT_DEBUG_SIMPLE)
if ((exit_nr != 0x900) && (exit_nr != 0x500))
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n",
exit_nr, vcpu->arch.pc, vcpu->arch.fault_dear,
vcpu->arch.msr);
#endif
kvm_resched(vcpu);
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
vcpu->stat.pf_instruc++;
/* only care about PTEG not found errors, but leave NX alone */
if (vcpu->arch.shadow_srr1 & 0x40000000) {
r = kvmppc_handle_pagefault(run, vcpu, vcpu->arch.pc, exit_nr);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.pc, ~0xFFFULL);
} else {
vcpu->arch.msr |= vcpu->arch.shadow_srr1 & 0x58000000;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.pc, ~0xFFFULL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_STORAGE:
vcpu->stat.pf_storage++;
/* The only case we need to handle is missing shadow PTEs */
if (vcpu->arch.fault_dsisr & DSISR_NOHPTE) {
r = kvmppc_handle_pagefault(run, vcpu, vcpu->arch.fault_dear, exit_nr);
} else {
vcpu->arch.dear = vcpu->arch.fault_dear;
to_book3s(vcpu)->dsisr = vcpu->arch.fault_dsisr;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFULL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, vcpu->arch.fault_dear) < 0) {
vcpu->arch.dear = vcpu->arch.fault_dear;
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, vcpu->arch.pc) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
enum emulation_result er;
ulong flags;
program_interrupt:
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
if (vcpu->arch.msr & MSR_PR) {
#ifdef EXIT_DEBUG
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", vcpu->arch.pc, vcpu->arch.last_inst);
#endif
if ((vcpu->arch.last_inst & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.pc, vcpu->arch.last_inst);
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
#ifdef EXIT_DEBUG
printk(KERN_INFO "Syscall Nr %d\n", (int)kvmppc_get_gpr(vcpu, 0));
#endif
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
{
int ext_msr = 0;
switch (exit_nr) {
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
}
switch (kvmppc_check_ext(vcpu, exit_nr)) {
case EMULATE_DONE:
/* everything ok - let's enable the ext */
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
break;
case EMULATE_FAIL:
/* we need to emulate this instruction */
goto program_interrupt;
break;
default:
/* nothing to worry about - go again */
break;
}
break;
}
case BOOK3S_INTERRUPT_MACHINE_CHECK:
case BOOK3S_INTERRUPT_TRACE:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
exit_nr, vcpu->arch.pc, vcpu->arch.shadow_srr1);
r = RESUME_HOST;
BUG();
break;
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
if (signal_pending(current)) {
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM: Going back to host\n");
#endif
vcpu->stat.signal_exits++;
run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
} else {
/* In case an interrupt came in that was triggered
* from userspace (like DEC), we need to check what
* to inject now! */
kvmppc_core_deliver_interrupts(vcpu);
}
}
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, vcpu->arch.pc, r);
#endif
return r;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = vcpu->arch.pc;
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = vcpu->arch.ctr;
regs->lr = vcpu->arch.lr;
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.msr;
regs->srr0 = vcpu->arch.srr0;
regs->srr1 = vcpu->arch.srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.sprg0;
regs->sprg1 = vcpu->arch.sprg1;
regs->sprg2 = vcpu->arch.sprg2;
regs->sprg3 = vcpu->arch.sprg3;
regs->sprg5 = vcpu->arch.sprg4;
regs->sprg6 = vcpu->arch.sprg5;
regs->sprg7 = vcpu->arch.sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu->arch.pc = regs->pc;
kvmppc_set_cr(vcpu, regs->cr);
vcpu->arch.ctr = regs->ctr;
vcpu->arch.lr = regs->lr;
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.srr0 = regs->srr0;
vcpu->arch.srr1 = regs->srr1;
vcpu->arch.sprg0 = regs->sprg0;
vcpu->arch.sprg1 = regs->sprg1;
vcpu->arch.sprg2 = regs->sprg2;
vcpu->arch.sprg3 = regs->sprg3;
vcpu->arch.sprg5 = regs->sprg4;
vcpu->arch.sprg6 = regs->sprg5;
vcpu->arch.sprg7 = regs->sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu3s->slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv;
}
} else {
for (i = 0; i < 16; i++) {
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
}
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
int kvmppc_core_check_processor_compat(void)
{
return 0;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err;
vcpu_book3s = (struct kvmppc_vcpu_book3s *)__get_free_pages( GFP_KERNEL | __GFP_ZERO,
get_order(sizeof(struct kvmppc_vcpu_book3s)));
if (!vcpu_book3s) {
err = -ENOMEM;
goto out;
}
vcpu = &vcpu_book3s->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
vcpu->arch.host_retip = kvm_return_point;
vcpu->arch.host_msr = mfmsr();
/* default to book3s_64 (970fx) */
vcpu->arch.pvr = 0x3C0301;
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
vcpu_book3s->slb_nr = 64;
/* remember where some real-mode handlers are */
vcpu->arch.trampoline_lowmem = kvmppc_trampoline_lowmem;
vcpu->arch.trampoline_enter = kvmppc_trampoline_enter;
vcpu->arch.highmem_handler = (ulong)kvmppc_handler_highmem;
vcpu->arch.rmcall = *(ulong*)kvmppc_rmcall;
vcpu->arch.shadow_msr = MSR_USER64;
err = __init_new_context();
if (err < 0)
goto free_vcpu;
vcpu_book3s->context_id = err;
vcpu_book3s->vsid_max = ((vcpu_book3s->context_id + 1) << USER_ESID_BITS) - 1;
vcpu_book3s->vsid_first = vcpu_book3s->context_id << USER_ESID_BITS;
vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
return vcpu;
free_vcpu:
free_pages((long)vcpu_book3s, get_order(sizeof(struct kvmppc_vcpu_book3s)));
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
__destroy_context(vcpu_book3s->context_id);
kvm_vcpu_uninit(vcpu);
free_pages((long)vcpu_book3s, get_order(sizeof(struct kvmppc_vcpu_book3s)));
}
extern int __kvmppc_vcpu_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
struct thread_struct ext_bkp;
bool save_vec = current->thread.used_vr;
bool save_vsx = current->thread.used_vsr;
ulong ext_msr;
/* No need to go into the guest when all we do is going out */
if (signal_pending(current)) {
kvm_run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
/* Save FPU state in stack */
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
memcpy(ext_bkp.fpr, current->thread.fpr, sizeof(current->thread.fpr));
ext_bkp.fpscr = current->thread.fpscr;
ext_bkp.fpexc_mode = current->thread.fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Save Altivec state in stack */
if (save_vec) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
memcpy(ext_bkp.vr, current->thread.vr, sizeof(ext_bkp.vr));
ext_bkp.vscr = current->thread.vscr;
ext_bkp.vrsave = current->thread.vrsave;
}
ext_bkp.used_vr = current->thread.used_vr;
#endif
#ifdef CONFIG_VSX
/* Save VSX state in stack */
if (save_vsx && (current->thread.regs->msr & MSR_VSX))
__giveup_vsx(current);
ext_bkp.used_vsr = current->thread.used_vsr;
#endif
/* Remember the MSR with disabled extensions */
ext_msr = current->thread.regs->msr;
/* XXX we get called with irq disabled - change that! */
local_irq_enable();
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
ret = __kvmppc_vcpu_entry(kvm_run, vcpu);
local_irq_disable();
current->thread.regs->msr = ext_msr;
/* Make sure we save the guest FPU/Altivec/VSX state */
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
/* Restore FPU state from stack */
memcpy(current->thread.fpr, ext_bkp.fpr, sizeof(ext_bkp.fpr));
current->thread.fpscr = ext_bkp.fpscr;
current->thread.fpexc_mode = ext_bkp.fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Restore Altivec state from stack */
if (save_vec && current->thread.used_vr) {
memcpy(current->thread.vr, ext_bkp.vr, sizeof(ext_bkp.vr));
current->thread.vscr = ext_bkp.vscr;
current->thread.vrsave= ext_bkp.vrsave;
}
current->thread.used_vr = ext_bkp.used_vr;
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = ext_bkp.used_vsr;
#endif
return ret;
}
static int kvmppc_book3s_init(void)
{
return kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), THIS_MODULE);
}
static void kvmppc_book3s_exit(void)
{
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);