zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2014 Sergey Senozhatsky.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
2014-04-07 22:38:20 +00:00
|
|
|
#include <linux/err.h>
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
|
|
|
|
#include "zcomp.h"
|
|
|
|
#include "zcomp_lzo.h"
|
2014-04-07 22:38:18 +00:00
|
|
|
#ifdef CONFIG_ZRAM_LZ4_COMPRESS
|
|
|
|
#include "zcomp_lz4.h"
|
|
|
|
#endif
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
|
2014-04-07 22:38:13 +00:00
|
|
|
/*
|
|
|
|
* single zcomp_strm backend
|
|
|
|
*/
|
|
|
|
struct zcomp_strm_single {
|
|
|
|
struct mutex strm_lock;
|
|
|
|
struct zcomp_strm *zstrm;
|
|
|
|
};
|
|
|
|
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
/*
|
|
|
|
* multi zcomp_strm backend
|
|
|
|
*/
|
|
|
|
struct zcomp_strm_multi {
|
|
|
|
/* protect strm list */
|
|
|
|
spinlock_t strm_lock;
|
|
|
|
/* max possible number of zstrm streams */
|
|
|
|
int max_strm;
|
|
|
|
/* number of available zstrm streams */
|
|
|
|
int avail_strm;
|
|
|
|
/* list of available strms */
|
|
|
|
struct list_head idle_strm;
|
|
|
|
wait_queue_head_t strm_wait;
|
|
|
|
};
|
|
|
|
|
2014-04-07 22:38:17 +00:00
|
|
|
static struct zcomp_backend *backends[] = {
|
|
|
|
&zcomp_lzo,
|
2014-04-07 22:38:18 +00:00
|
|
|
#ifdef CONFIG_ZRAM_LZ4_COMPRESS
|
|
|
|
&zcomp_lz4,
|
|
|
|
#endif
|
2014-04-07 22:38:17 +00:00
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
static struct zcomp_backend *find_backend(const char *compress)
|
|
|
|
{
|
2014-04-07 22:38:17 +00:00
|
|
|
int i = 0;
|
|
|
|
while (backends[i]) {
|
|
|
|
if (sysfs_streq(compress, backends[i]->name))
|
|
|
|
break;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
return backends[i];
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void zcomp_strm_free(struct zcomp *comp, struct zcomp_strm *zstrm)
|
|
|
|
{
|
|
|
|
if (zstrm->private)
|
|
|
|
comp->backend->destroy(zstrm->private);
|
|
|
|
free_pages((unsigned long)zstrm->buffer, 1);
|
|
|
|
kfree(zstrm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* allocate new zcomp_strm structure with ->private initialized by
|
|
|
|
* backend, return NULL on error
|
|
|
|
*/
|
2016-01-14 23:22:32 +00:00
|
|
|
static struct zcomp_strm *zcomp_strm_alloc(struct zcomp *comp, gfp_t flags)
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
{
|
2016-01-14 23:22:32 +00:00
|
|
|
struct zcomp_strm *zstrm = kmalloc(sizeof(*zstrm), flags);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
if (!zstrm)
|
|
|
|
return NULL;
|
|
|
|
|
2016-01-14 23:22:32 +00:00
|
|
|
zstrm->private = comp->backend->create(flags);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
/*
|
|
|
|
* allocate 2 pages. 1 for compressed data, plus 1 extra for the
|
|
|
|
* case when compressed size is larger than the original one
|
|
|
|
*/
|
2016-01-14 23:22:32 +00:00
|
|
|
zstrm->buffer = (void *)__get_free_pages(flags | __GFP_ZERO, 1);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
if (!zstrm->private || !zstrm->buffer) {
|
|
|
|
zcomp_strm_free(comp, zstrm);
|
|
|
|
zstrm = NULL;
|
|
|
|
}
|
|
|
|
return zstrm;
|
|
|
|
}
|
|
|
|
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
/*
|
|
|
|
* get idle zcomp_strm or wait until other process release
|
|
|
|
* (zcomp_strm_release()) one for us
|
|
|
|
*/
|
|
|
|
static struct zcomp_strm *zcomp_strm_multi_find(struct zcomp *comp)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_multi *zs = comp->stream;
|
|
|
|
struct zcomp_strm *zstrm;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
spin_lock(&zs->strm_lock);
|
|
|
|
if (!list_empty(&zs->idle_strm)) {
|
|
|
|
zstrm = list_entry(zs->idle_strm.next,
|
|
|
|
struct zcomp_strm, list);
|
|
|
|
list_del(&zstrm->list);
|
|
|
|
spin_unlock(&zs->strm_lock);
|
|
|
|
return zstrm;
|
|
|
|
}
|
|
|
|
/* zstrm streams limit reached, wait for idle stream */
|
|
|
|
if (zs->avail_strm >= zs->max_strm) {
|
|
|
|
spin_unlock(&zs->strm_lock);
|
|
|
|
wait_event(zs->strm_wait, !list_empty(&zs->idle_strm));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* allocate new zstrm stream */
|
|
|
|
zs->avail_strm++;
|
|
|
|
spin_unlock(&zs->strm_lock);
|
2016-01-14 23:22:32 +00:00
|
|
|
/*
|
|
|
|
* This function can be called in swapout/fs write path
|
|
|
|
* so we can't use GFP_FS|IO. And it assumes we already
|
|
|
|
* have at least one stream in zram initialization so we
|
|
|
|
* don't do best effort to allocate more stream in here.
|
|
|
|
* A default stream will work well without further multiple
|
|
|
|
* streams. That's why we use NORETRY | NOWARN.
|
|
|
|
*/
|
|
|
|
zstrm = zcomp_strm_alloc(comp, GFP_NOIO | __GFP_NORETRY |
|
|
|
|
__GFP_NOWARN);
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
if (!zstrm) {
|
|
|
|
spin_lock(&zs->strm_lock);
|
|
|
|
zs->avail_strm--;
|
|
|
|
spin_unlock(&zs->strm_lock);
|
|
|
|
wait_event(zs->strm_wait, !list_empty(&zs->idle_strm));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return zstrm;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* add stream back to idle list and wake up waiter or free the stream */
|
|
|
|
static void zcomp_strm_multi_release(struct zcomp *comp, struct zcomp_strm *zstrm)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_multi *zs = comp->stream;
|
|
|
|
|
|
|
|
spin_lock(&zs->strm_lock);
|
|
|
|
if (zs->avail_strm <= zs->max_strm) {
|
|
|
|
list_add(&zstrm->list, &zs->idle_strm);
|
|
|
|
spin_unlock(&zs->strm_lock);
|
|
|
|
wake_up(&zs->strm_wait);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
zs->avail_strm--;
|
|
|
|
spin_unlock(&zs->strm_lock);
|
|
|
|
zcomp_strm_free(comp, zstrm);
|
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:15 +00:00
|
|
|
/* change max_strm limit */
|
2014-04-07 22:38:21 +00:00
|
|
|
static bool zcomp_strm_multi_set_max_streams(struct zcomp *comp, int num_strm)
|
2014-04-07 22:38:15 +00:00
|
|
|
{
|
|
|
|
struct zcomp_strm_multi *zs = comp->stream;
|
|
|
|
struct zcomp_strm *zstrm;
|
|
|
|
|
|
|
|
spin_lock(&zs->strm_lock);
|
|
|
|
zs->max_strm = num_strm;
|
|
|
|
/*
|
|
|
|
* if user has lowered the limit and there are idle streams,
|
|
|
|
* immediately free as much streams (and memory) as we can.
|
|
|
|
*/
|
|
|
|
while (zs->avail_strm > num_strm && !list_empty(&zs->idle_strm)) {
|
|
|
|
zstrm = list_entry(zs->idle_strm.next,
|
|
|
|
struct zcomp_strm, list);
|
|
|
|
list_del(&zstrm->list);
|
|
|
|
zcomp_strm_free(comp, zstrm);
|
|
|
|
zs->avail_strm--;
|
|
|
|
}
|
|
|
|
spin_unlock(&zs->strm_lock);
|
2014-04-07 22:38:21 +00:00
|
|
|
return true;
|
2014-04-07 22:38:15 +00:00
|
|
|
}
|
|
|
|
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
static void zcomp_strm_multi_destroy(struct zcomp *comp)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_multi *zs = comp->stream;
|
|
|
|
struct zcomp_strm *zstrm;
|
|
|
|
|
|
|
|
while (!list_empty(&zs->idle_strm)) {
|
|
|
|
zstrm = list_entry(zs->idle_strm.next,
|
|
|
|
struct zcomp_strm, list);
|
|
|
|
list_del(&zstrm->list);
|
|
|
|
zcomp_strm_free(comp, zstrm);
|
|
|
|
}
|
|
|
|
kfree(zs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int zcomp_strm_multi_create(struct zcomp *comp, int max_strm)
|
|
|
|
{
|
|
|
|
struct zcomp_strm *zstrm;
|
|
|
|
struct zcomp_strm_multi *zs;
|
|
|
|
|
|
|
|
comp->destroy = zcomp_strm_multi_destroy;
|
|
|
|
comp->strm_find = zcomp_strm_multi_find;
|
|
|
|
comp->strm_release = zcomp_strm_multi_release;
|
2014-04-07 22:38:15 +00:00
|
|
|
comp->set_max_streams = zcomp_strm_multi_set_max_streams;
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
zs = kmalloc(sizeof(struct zcomp_strm_multi), GFP_KERNEL);
|
|
|
|
if (!zs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
comp->stream = zs;
|
|
|
|
spin_lock_init(&zs->strm_lock);
|
|
|
|
INIT_LIST_HEAD(&zs->idle_strm);
|
|
|
|
init_waitqueue_head(&zs->strm_wait);
|
|
|
|
zs->max_strm = max_strm;
|
|
|
|
zs->avail_strm = 1;
|
|
|
|
|
2016-01-14 23:22:32 +00:00
|
|
|
zstrm = zcomp_strm_alloc(comp, GFP_KERNEL);
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
if (!zstrm) {
|
|
|
|
kfree(zs);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
list_add(&zstrm->list, &zs->idle_strm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:13 +00:00
|
|
|
static struct zcomp_strm *zcomp_strm_single_find(struct zcomp *comp)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_single *zs = comp->stream;
|
|
|
|
mutex_lock(&zs->strm_lock);
|
|
|
|
return zs->zstrm;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void zcomp_strm_single_release(struct zcomp *comp,
|
|
|
|
struct zcomp_strm *zstrm)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_single *zs = comp->stream;
|
|
|
|
mutex_unlock(&zs->strm_lock);
|
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:21 +00:00
|
|
|
static bool zcomp_strm_single_set_max_streams(struct zcomp *comp, int num_strm)
|
2014-04-07 22:38:15 +00:00
|
|
|
{
|
|
|
|
/* zcomp_strm_single support only max_comp_streams == 1 */
|
2014-04-07 22:38:21 +00:00
|
|
|
return false;
|
2014-04-07 22:38:15 +00:00
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:13 +00:00
|
|
|
static void zcomp_strm_single_destroy(struct zcomp *comp)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_single *zs = comp->stream;
|
|
|
|
zcomp_strm_free(comp, zs->zstrm);
|
|
|
|
kfree(zs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int zcomp_strm_single_create(struct zcomp *comp)
|
|
|
|
{
|
|
|
|
struct zcomp_strm_single *zs;
|
|
|
|
|
|
|
|
comp->destroy = zcomp_strm_single_destroy;
|
|
|
|
comp->strm_find = zcomp_strm_single_find;
|
|
|
|
comp->strm_release = zcomp_strm_single_release;
|
2014-04-07 22:38:15 +00:00
|
|
|
comp->set_max_streams = zcomp_strm_single_set_max_streams;
|
2014-04-07 22:38:13 +00:00
|
|
|
zs = kmalloc(sizeof(struct zcomp_strm_single), GFP_KERNEL);
|
|
|
|
if (!zs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
comp->stream = zs;
|
|
|
|
mutex_init(&zs->strm_lock);
|
2016-01-14 23:22:32 +00:00
|
|
|
zs->zstrm = zcomp_strm_alloc(comp, GFP_KERNEL);
|
2014-04-07 22:38:13 +00:00
|
|
|
if (!zs->zstrm) {
|
|
|
|
kfree(zs);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:17 +00:00
|
|
|
/* show available compressors */
|
|
|
|
ssize_t zcomp_available_show(const char *comp, char *buf)
|
|
|
|
{
|
|
|
|
ssize_t sz = 0;
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while (backends[i]) {
|
2015-06-25 22:00:29 +00:00
|
|
|
if (!strcmp(comp, backends[i]->name))
|
2014-04-07 22:38:22 +00:00
|
|
|
sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2,
|
|
|
|
"[%s] ", backends[i]->name);
|
2014-04-07 22:38:17 +00:00
|
|
|
else
|
2014-04-07 22:38:22 +00:00
|
|
|
sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2,
|
|
|
|
"%s ", backends[i]->name);
|
2014-04-07 22:38:17 +00:00
|
|
|
i++;
|
|
|
|
}
|
2014-04-07 22:38:22 +00:00
|
|
|
sz += scnprintf(buf + sz, PAGE_SIZE - sz, "\n");
|
2014-04-07 22:38:17 +00:00
|
|
|
return sz;
|
|
|
|
}
|
|
|
|
|
2015-06-25 22:00:32 +00:00
|
|
|
bool zcomp_available_algorithm(const char *comp)
|
|
|
|
{
|
|
|
|
return find_backend(comp) != NULL;
|
|
|
|
}
|
|
|
|
|
2014-04-07 22:38:21 +00:00
|
|
|
bool zcomp_set_max_streams(struct zcomp *comp, int num_strm)
|
2014-04-07 22:38:15 +00:00
|
|
|
{
|
|
|
|
return comp->set_max_streams(comp, num_strm);
|
|
|
|
}
|
|
|
|
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
struct zcomp_strm *zcomp_strm_find(struct zcomp *comp)
|
|
|
|
{
|
2014-04-07 22:38:13 +00:00
|
|
|
return comp->strm_find(comp);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void zcomp_strm_release(struct zcomp *comp, struct zcomp_strm *zstrm)
|
|
|
|
{
|
2014-04-07 22:38:13 +00:00
|
|
|
comp->strm_release(comp, zstrm);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int zcomp_compress(struct zcomp *comp, struct zcomp_strm *zstrm,
|
|
|
|
const unsigned char *src, size_t *dst_len)
|
|
|
|
{
|
|
|
|
return comp->backend->compress(src, zstrm->buffer, dst_len,
|
|
|
|
zstrm->private);
|
|
|
|
}
|
|
|
|
|
|
|
|
int zcomp_decompress(struct zcomp *comp, const unsigned char *src,
|
|
|
|
size_t src_len, unsigned char *dst)
|
|
|
|
{
|
|
|
|
return comp->backend->decompress(src, src_len, dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
void zcomp_destroy(struct zcomp *comp)
|
|
|
|
{
|
2014-04-07 22:38:13 +00:00
|
|
|
comp->destroy(comp);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
kfree(comp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* search available compressors for requested algorithm.
|
2014-04-07 22:38:20 +00:00
|
|
|
* allocate new zcomp and initialize it. return compressing
|
|
|
|
* backend pointer or ERR_PTR if things went bad. ERR_PTR(-EINVAL)
|
|
|
|
* if requested algorithm is not supported, ERR_PTR(-ENOMEM) in
|
2015-09-17 23:01:40 +00:00
|
|
|
* case of allocation error, or any other error potentially
|
|
|
|
* returned by functions zcomp_strm_{multi,single}_create.
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
*/
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
struct zcomp *zcomp_create(const char *compress, int max_strm)
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
{
|
|
|
|
struct zcomp *comp;
|
|
|
|
struct zcomp_backend *backend;
|
2015-09-17 23:01:40 +00:00
|
|
|
int error;
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
|
|
|
|
backend = find_backend(compress);
|
|
|
|
if (!backend)
|
2014-04-07 22:38:20 +00:00
|
|
|
return ERR_PTR(-EINVAL);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
|
|
|
|
comp = kzalloc(sizeof(struct zcomp), GFP_KERNEL);
|
|
|
|
if (!comp)
|
2014-04-07 22:38:20 +00:00
|
|
|
return ERR_PTR(-ENOMEM);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
|
|
|
|
comp->backend = backend;
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
if (max_strm > 1)
|
2015-09-17 23:01:40 +00:00
|
|
|
error = zcomp_strm_multi_create(comp, max_strm);
|
zram: add multi stream functionality
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:14 +00:00
|
|
|
else
|
2015-09-17 23:01:40 +00:00
|
|
|
error = zcomp_strm_single_create(comp);
|
|
|
|
if (error) {
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
kfree(comp);
|
2015-09-17 23:01:40 +00:00
|
|
|
return ERR_PTR(error);
|
zram: introduce compressing backend abstraction
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:38:11 +00:00
|
|
|
}
|
|
|
|
return comp;
|
|
|
|
}
|