linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h

787 lines
22 KiB
C
Raw Normal View History

/* bnx2x_init.h: Broadcom Everest network driver.
bnx2x: Separated FW from the source. >From now on FW will be downloaded from the binary file using request_firmware. There will be different files for every supported chip. Currently 57710 (e1) and 57711 (e1h). File names have the following format: bnx2x-<chip version>-<FW version>.fw. ihex versions of current FW files are submitted in the next patch. Each binary file has a header in the following format: struct bnx2x_fw_file_section { __be32 len; __be32 offset; } struct bnx2x_fw_file_hdr { struct bnx2x_fw_file_section init_ops; struct bnx2x_fw_file_section init_ops_offsets; struct bnx2x_fw_file_section init_data; struct bnx2x_fw_file_section tsem_int_table_data; struct bnx2x_fw_file_section tsem_pram_data; struct bnx2x_fw_file_section usem_int_table_data; struct bnx2x_fw_file_section usem_pram_data; struct bnx2x_fw_file_section csem_int_table_data; struct bnx2x_fw_file_section csem_pram_data; struct bnx2x_fw_file_section xsem_int_table_data; struct bnx2x_fw_file_section xsem_pram_data; struct bnx2x_fw_file_section fw_version; } Each bnx2x_fw_file_section contains the length and the offset of the appropriate section in the binary file. Values are stored in the big endian format. Data types of arrays: init_data __be32 init_ops_offsets __be16 XXsem_pram_data u8 XXsem_int_table_data u8 init_ops struct raw_op { u8 op; __be24 offset; __be32 data; } fw_version u8 >From now boundaries of a specific initialization stage are stored in init_ops_offsets array instead of being defined by separate macroes. The index in init_ops_offsets is calculated by BLOCK_OPS_IDX macro: #define BLOCK_OPS_IDX(block, stage, end) \ (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end)) Security: In addition to sanity check of array boundaries bnx2x will check a FW version. Additional checks might be added in the future. Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-27 10:27:43 +00:00
* Structures and macroes needed during the initialization.
*
* Copyright (c) 2007-2013 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Ariel Elior <ariel.elior@qlogic.com>
* Written by: Eliezer Tamir
* Modified by: Vladislav Zolotarov
*/
#ifndef BNX2X_INIT_H
#define BNX2X_INIT_H
/* Init operation types and structures */
enum {
OP_RD = 0x1, /* read a single register */
OP_WR, /* write a single register */
OP_SW, /* copy a string to the device */
OP_ZR, /* clear memory */
OP_ZP, /* unzip then copy with DMAE */
OP_WR_64, /* write 64 bit pattern */
OP_WB, /* copy a string using DMAE */
OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
/* Skip the following ops if all of the init modes don't match */
OP_IF_MODE_OR,
/* Skip the following ops if any of the init modes don't match */
OP_IF_MODE_AND,
OP_MAX
};
enum {
STAGE_START,
STAGE_END,
};
bnx2x: Separated FW from the source. >From now on FW will be downloaded from the binary file using request_firmware. There will be different files for every supported chip. Currently 57710 (e1) and 57711 (e1h). File names have the following format: bnx2x-<chip version>-<FW version>.fw. ihex versions of current FW files are submitted in the next patch. Each binary file has a header in the following format: struct bnx2x_fw_file_section { __be32 len; __be32 offset; } struct bnx2x_fw_file_hdr { struct bnx2x_fw_file_section init_ops; struct bnx2x_fw_file_section init_ops_offsets; struct bnx2x_fw_file_section init_data; struct bnx2x_fw_file_section tsem_int_table_data; struct bnx2x_fw_file_section tsem_pram_data; struct bnx2x_fw_file_section usem_int_table_data; struct bnx2x_fw_file_section usem_pram_data; struct bnx2x_fw_file_section csem_int_table_data; struct bnx2x_fw_file_section csem_pram_data; struct bnx2x_fw_file_section xsem_int_table_data; struct bnx2x_fw_file_section xsem_pram_data; struct bnx2x_fw_file_section fw_version; } Each bnx2x_fw_file_section contains the length and the offset of the appropriate section in the binary file. Values are stored in the big endian format. Data types of arrays: init_data __be32 init_ops_offsets __be16 XXsem_pram_data u8 XXsem_int_table_data u8 init_ops struct raw_op { u8 op; __be24 offset; __be32 data; } fw_version u8 >From now boundaries of a specific initialization stage are stored in init_ops_offsets array instead of being defined by separate macroes. The index in init_ops_offsets is calculated by BLOCK_OPS_IDX macro: #define BLOCK_OPS_IDX(block, stage, end) \ (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end)) Security: In addition to sanity check of array boundaries bnx2x will check a FW version. Additional checks might be added in the future. Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-27 10:27:43 +00:00
/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
/* structs for the various opcodes */
struct raw_op {
u32 op:8;
u32 offset:24;
u32 raw_data;
};
struct op_read {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_write {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_arr_write {
u32 op:8;
u32 offset:24;
#ifdef __BIG_ENDIAN
u16 data_len;
u16 data_off;
#else /* __LITTLE_ENDIAN */
u16 data_off;
u16 data_len;
#endif
};
struct op_zero {
u32 op:8;
u32 offset:24;
u32 len;
};
struct op_if_mode {
u32 op:8;
u32 cmd_offset:24;
u32 mode_bit_map;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_arr_write arr_wr;
struct op_zero zero;
struct raw_op raw;
struct op_if_mode if_mode;
};
/* Init Phases */
enum {
PHASE_COMMON,
PHASE_PORT0,
PHASE_PORT1,
PHASE_PF0,
PHASE_PF1,
PHASE_PF2,
PHASE_PF3,
PHASE_PF4,
PHASE_PF5,
PHASE_PF6,
PHASE_PF7,
NUM_OF_INIT_PHASES
};
/* Init Modes */
enum {
MODE_ASIC = 0x00000001,
MODE_FPGA = 0x00000002,
MODE_EMUL = 0x00000004,
MODE_E2 = 0x00000008,
MODE_E3 = 0x00000010,
MODE_PORT2 = 0x00000020,
MODE_PORT4 = 0x00000040,
MODE_SF = 0x00000080,
MODE_MF = 0x00000100,
MODE_MF_SD = 0x00000200,
MODE_MF_SI = 0x00000400,
MODE_MF_AFEX = 0x00000800,
MODE_E3_A0 = 0x00001000,
MODE_E3_B0 = 0x00002000,
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 08:31:57 +00:00
MODE_COS3 = 0x00004000,
MODE_COS6 = 0x00008000,
MODE_LITTLE_ENDIAN = 0x00010000,
MODE_BIG_ENDIAN = 0x00020000,
};
/* Init Blocks */
enum {
BLOCK_ATC,
BLOCK_BRB1,
BLOCK_CCM,
BLOCK_CDU,
BLOCK_CFC,
BLOCK_CSDM,
BLOCK_CSEM,
BLOCK_DBG,
BLOCK_DMAE,
BLOCK_DORQ,
BLOCK_HC,
BLOCK_IGU,
BLOCK_MISC,
BLOCK_NIG,
BLOCK_PBF,
BLOCK_PGLUE_B,
BLOCK_PRS,
BLOCK_PXP2,
BLOCK_PXP,
BLOCK_QM,
BLOCK_SRC,
BLOCK_TCM,
BLOCK_TM,
BLOCK_TSDM,
BLOCK_TSEM,
BLOCK_UCM,
BLOCK_UPB,
BLOCK_USDM,
BLOCK_USEM,
BLOCK_XCM,
BLOCK_XPB,
BLOCK_XSDM,
BLOCK_XSEM,
BLOCK_MISC_AEU,
NUM_OF_INIT_BLOCKS
};
/* QM queue numbers */
#define BNX2X_ETH_Q 0
#define BNX2X_TOE_Q 3
#define BNX2X_TOE_ACK_Q 6
#define BNX2X_ISCSI_Q 9
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 08:31:57 +00:00
#define BNX2X_ISCSI_ACK_Q 11
#define BNX2X_FCOE_Q 10
/* Vnics per mode */
#define BNX2X_PORT2_MODE_NUM_VNICS 4
#define BNX2X_PORT4_MODE_NUM_VNICS 2
/* COS offset for port1 in E3 B0 4port mode */
#define BNX2X_E3B0_PORT1_COS_OFFSET 3
/* QM Register addresses */
#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
/* extracts the QM queue number for the specified port and vnic */
#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
((((port) << 1) | (vnic)) * 16 + (q_num))
/* Maps the specified queue to the specified COS */
static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
{
/* find current COS mapping */
u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
/* check if queue->COS mapping has changed */
if (curr_cos != new_cos) {
u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
u32 reg_addr, reg_bit_map, vnic;
/* update parameters for 4port mode */
if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
if (BP_PORT(bp)) {
curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
}
}
/* change queue mapping for each VNIC */
for (vnic = 0; vnic < num_vnics; vnic++) {
u32 pf_q_num =
BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
u32 q_bit_map = 1 << (pf_q_num & 0x1f);
/* overwrite queue->VOQ mapping */
REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
/* clear queue bit from current COS bit map */
reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
/* set queue bit in new COS bit map */
reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
/* set/clear queue bit in command-queue bit map
* (E2/E3A0 only, valid COS values are 0/1)
*/
if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
q_bit_map = 1 << (2 * (pf_q_num & 0xf));
reg_bit_map = new_cos ?
(reg_bit_map | q_bit_map) :
(reg_bit_map & (~q_bit_map));
REG_WR(bp, reg_addr, reg_bit_map);
}
}
}
}
/* Configures the QM according to the specified per-traffic-type COSes */
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 08:31:57 +00:00
static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
struct priority_cos *traffic_cos)
{
bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
bnx2x: Multiple concurrent l2 traffic classes Overview: Support mapping of priorities to traffic classes and traffic classes to transmission queues ranges in the net device. The queue ranges are (count, offset) pairs relating to the txq array. This can be done via DCBX negotiation or by kernel. As a result Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC) are supported between L2 network traffic classes. Mapping: This patch uses the netdev_set_num_tc, netdev_set_prio_tc_map and netdev_set_tc_queue functions to map priorities to traffic classes and traffic classes to transmission queue ranges. This mapping is performed by bnx2x_setup_tc function which is connected to the ndo_setup_tc. This function is always called at nic load where by default it maps all priorities to tc 0, and it may also be called by the kernel or by the bnx2x upon DCBX negotiation to modify the mapping. rtnl lock: When the ndo_setup_tc is called at nic load or by kernel the rtnl lock is already taken. However, when DCBX negotiation takes place the lock is not taken. The work is therefore scheduled to be handled by the sp_rtnl task. Fastpath: The fastpath structure of the bnx2x which was previously used to hold the information of one tx queue and one rx queue was redesigned to represent multiple tx queues, one for each traffic class. The transmission queue supplied in the skb by the kernel can no longer be interpreted as a straightforward index into the fastpath structure array, but it must rather be decoded to the appropriate fastpath index and the tc within that fastpath. Slowpath: The bnx2x's queue object was redesigned to accommodate multiple transmission queues. The queue object's state machine was enhanced to allow opening multiple transmission-only connections on top of the regular tx-rx connection. Firmware: This feature relies on the tx-only queue feature introduced in the bnx2x 7.0.23 firmware and the FW likewise must have the bnx2x multi cos support. Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-07-14 08:31:57 +00:00
bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
if (mode != STATIC_COS) {
/* required only in backward compatible COS mode */
bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
}
}
/* congestion managment port init api description
* the api works as follows:
* the driver should pass the cmng_init_input struct, the port_init function
* will prepare the required internal ram structure which will be passed back
* to the driver (cmng_init) that will write it into the internal ram.
*
* IMPORTANT REMARKS:
* 1. the cmng_init struct does not represent the contiguous internal ram
* structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
* offset in order to write the port sub struct and the
* PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
* words - don't use memcpy!).
* 2. although the cmng_init struct is filled for the maximal vnic number
* possible, the driver should only write the valid vnics into the internal
* ram according to the appropriate port mode.
*/
#define BITS_TO_BYTES(x) ((x)/8)
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer
*/
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for
* the minimal credit of Min algorithm
*/
#define MIN_ABOVE_THRESH 32768
/* Fairness algorithm integration time coefficient -
* for calculating the actual Tfair
*/
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* Memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define SAFC_TIMEOUT_USEC 52
#define SDM_TICKS 4
static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/* rate shaping per-port variables
* 100 micro seconds in SDM ticks = 25
* since each tick is 4 microSeconds
*/
pdata->rs_vars.rs_periodic_timeout =
RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
/* this is the threshold below which no timer arming will occur.
* 1.25 coefficient is for the threshold to be a little bigger
* then the real time to compensate for timer in-accuracy
*/
pdata->rs_vars.rs_threshold =
(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
/* rate shaping per-vnic variables */
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* global vnic counter */
vdata->vnic_max_rate[vnic].vn_counter.rate =
input_data->vnic_max_rate[vnic];
/* maximal Mbps for this vnic
* the quota in each timer period - number of bytes
* transmitted in this period
*/
vdata->vnic_max_rate[vnic].vn_counter.quota =
RS_PERIODIC_TIMEOUT_USEC *
(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
}
}
static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/* this is the resolution of the fairness timer */
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
/* fairness per-port variables
* for 10G it is 1000usec. for 1G it is 10000usec.
*/
tFair = T_FAIR_COEF / input_data->port_rate;
/* this is the threshold below which we won't arm the timer anymore */
pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
* to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
*/
pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
/* since each tick is 4 microSeconds */
pdata->fair_vars.fairness_timeout =
fair_periodic_timeout_usec / SDM_TICKS;
/* calculate sum of weights */
vnicWeightSum = 0;
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
vnicWeightSum += input_data->vnic_min_rate[vnic];
/* global vnic counter */
if (vnicWeightSum > 0) {
/* fairness per-vnic variables */
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* this is the credit for each period of the fairness
* algorithm - number of bytes in T_FAIR (this vnic
* share of the port rate)
*/
vdata->vnic_min_rate[vnic].vn_credit_delta =
(u32)input_data->vnic_min_rate[vnic] * 100 *
(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
if (vdata->vnic_min_rate[vnic].vn_credit_delta <
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH) {
vdata->vnic_min_rate[vnic].vn_credit_delta =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic, cos;
u32 cosWeightSum = 0;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
for (cos = 0; cos < MAX_COS_NUMBER; cos++)
cosWeightSum += input_data->cos_min_rate[cos];
if (cosWeightSum > 0) {
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* Since cos and vnic shouldn't work together the rate
* to divide between the coses is the port rate.
*/
u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
/* this is the credit for each period of
* the fairness algorithm - number of bytes
* in T_FAIR (this cos share of the vnic rate)
*/
ccd[cos] =
(u32)input_data->cos_min_rate[cos] * 100 *
(T_FAIR_COEF / (8 * 100 * cosWeightSum));
if (ccd[cos] < pdata->fair_vars.fair_threshold
+ MIN_ABOVE_THRESH) {
ccd[cos] =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
}
static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
/* in microSeconds */
ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
}
/* Congestion management port init */
static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
u32 r_param;
memset(ram_data, 0, sizeof(struct cmng_init));
ram_data->port.flags = input_data->flags;
/* number of bytes transmitted in a rate of 10Gbps
* in one usec = 1.25KB.
*/
r_param = BITS_TO_BYTES(input_data->port_rate);
bnx2x_init_max(input_data, r_param, ram_data);
bnx2x_init_min(input_data, r_param, ram_data);
bnx2x_init_fw_wrr(input_data, r_param, ram_data);
bnx2x_init_safc(input_data, ram_data);
}
/* Returns the index of start or end of a specific block stage in ops array */
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
#define INITOP_SET 0 /* set the HW directly */
#define INITOP_CLEAR 1 /* clear the HW directly */
#define INITOP_INIT 2 /* set the init-value array */
/****************************************************************************
* ILT management
****************************************************************************/
struct ilt_line {
dma_addr_t page_mapping;
void *page;
u32 size;
};
struct ilt_client_info {
u32 page_size;
u16 start;
u16 end;
u16 client_num;
u16 flags;
#define ILT_CLIENT_SKIP_INIT 0x1
#define ILT_CLIENT_SKIP_MEM 0x2
};
struct bnx2x_ilt {
u32 start_line;
struct ilt_line *lines;
struct ilt_client_info clients[4];
#define ILT_CLIENT_CDU 0
#define ILT_CLIENT_QM 1
#define ILT_CLIENT_SRC 2
#define ILT_CLIENT_TM 3
};
/****************************************************************************
* SRC configuration
****************************************************************************/
struct src_ent {
u8 opaque[56];
u64 next;
};
/****************************************************************************
* Parity configuration
****************************************************************************/
#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK, \
block##_REG_##block##_PRTY_STS_CLR, \
en_mask, {m1, m1h, m2, m3}, #block \
}
#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_0, \
block##_REG_##block##_PRTY_STS_CLR_0, \
en_mask, {m1, m1h, m2, m3}, #block"_0" \
}
#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_1, \
block##_REG_##block##_PRTY_STS_CLR_1, \
en_mask, {m1, m1h, m2, m3}, #block"_1" \
}
static const struct {
u32 mask_addr;
u32 sts_clr_addr;
u32 en_mask; /* Mask to enable parity attentions */
struct {
u32 e1; /* 57710 */
u32 e1h; /* 57711 */
u32 e2; /* 57712 */
u32 e3; /* 578xx */
} reg_mask; /* Register mask (all valid bits) */
char name[8]; /* Block's longest name is 7 characters long
* (name + suffix)
*/
} bnx2x_blocks_parity_data[] = {
/* bit 19 masked */
/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
/* bit 5,18,20-31 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
/* bit 5 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
* want to handle "system kill" flow at the moment.
*/
BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
0x7ffffff),
BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
{0xf, 0xf, 0xf, 0xf}, "UPB"},
{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
{0xf, 0xf, 0xf, 0xf}, "XPB"},
BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
};
/* [28] MCP Latched rom_parity
* [29] MCP Latched ump_rx_parity
* [30] MCP Latched ump_tx_parity
* [31] MCP Latched scpad_parity
*/
#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
/* Below registers control the MCP parity attention output. When
* MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
* enabled, when cleared - disabled.
*/
static const struct {
u32 addr;
u32 bits;
} mcp_attn_ctl_regs[] = {
{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
};
static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
{
int i;
u32 reg_val;
for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
if (enable)
reg_val |= mcp_attn_ctl_regs[i].bits;
else
reg_val &= ~mcp_attn_ctl_regs[i].bits;
REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
}
}
static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
{
if (CHIP_IS_E1(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e1;
else if (CHIP_IS_E1H(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
else if (CHIP_IS_E2(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e2;
else /* CHIP_IS_E3 */
return bnx2x_blocks_parity_data[idx].reg_mask.e3;
}
static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
if (dis_mask) {
REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
dis_mask);
DP(NETIF_MSG_HW, "Setting parity mask "
"for %s to\t\t0x%x\n",
bnx2x_blocks_parity_data[i].name, dis_mask);
}
}
/* Disable MCP parity attentions */
bnx2x_set_mcp_parity(bp, false);
}
/* Clear the parity error status registers. */
static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
{
int i;
u32 reg_val, mcp_aeu_bits =
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
/* Clear SEM_FAST parities */
REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
if (reg_mask) {
reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
sts_clr_addr);
if (reg_val & reg_mask)
DP(NETIF_MSG_HW,
"Parity errors in %s: 0x%x\n",
bnx2x_blocks_parity_data[i].name,
reg_val & reg_mask);
}
}
/* Check if there were parity attentions in MCP */
reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
if (reg_val & mcp_aeu_bits)
DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
reg_val & mcp_aeu_bits);
/* Clear parity attentions in MCP:
* [7] clears Latched rom_parity
* [8] clears Latched ump_rx_parity
* [9] clears Latched ump_tx_parity
* [10] clears Latched scpad_parity (both ports)
*/
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
}
static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
if (reg_mask)
REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
bnx2x_blocks_parity_data[i].en_mask & reg_mask);
}
/* Enable MCP parity attentions */
bnx2x_set_mcp_parity(bp, true);
}
#endif /* BNX2X_INIT_H */