linux/sound/soc/intel/haswell/sst-haswell-pcm.c

1393 lines
38 KiB
C
Raw Normal View History

/*
* Intel SST Haswell/Broadwell PCM Support
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/dmaengine_pcm.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/compress_driver.h>
#include "../haswell/sst-haswell-ipc.h"
#include "../common/sst-dsp-priv.h"
#include "../common/sst-dsp.h"
#define HSW_PCM_COUNT 6
#define HSW_VOLUME_MAX 0x7FFFFFFF /* 0dB */
#define SST_OLD_POSITION(d, r, o) ((d) + \
frames_to_bytes(r, o))
#define SST_SAMPLES(r, x) (bytes_to_samples(r, \
frames_to_bytes(r, (x))))
/* simple volume table */
static const u32 volume_map[] = {
HSW_VOLUME_MAX >> 30,
HSW_VOLUME_MAX >> 29,
HSW_VOLUME_MAX >> 28,
HSW_VOLUME_MAX >> 27,
HSW_VOLUME_MAX >> 26,
HSW_VOLUME_MAX >> 25,
HSW_VOLUME_MAX >> 24,
HSW_VOLUME_MAX >> 23,
HSW_VOLUME_MAX >> 22,
HSW_VOLUME_MAX >> 21,
HSW_VOLUME_MAX >> 20,
HSW_VOLUME_MAX >> 19,
HSW_VOLUME_MAX >> 18,
HSW_VOLUME_MAX >> 17,
HSW_VOLUME_MAX >> 16,
HSW_VOLUME_MAX >> 15,
HSW_VOLUME_MAX >> 14,
HSW_VOLUME_MAX >> 13,
HSW_VOLUME_MAX >> 12,
HSW_VOLUME_MAX >> 11,
HSW_VOLUME_MAX >> 10,
HSW_VOLUME_MAX >> 9,
HSW_VOLUME_MAX >> 8,
HSW_VOLUME_MAX >> 7,
HSW_VOLUME_MAX >> 6,
HSW_VOLUME_MAX >> 5,
HSW_VOLUME_MAX >> 4,
HSW_VOLUME_MAX >> 3,
HSW_VOLUME_MAX >> 2,
HSW_VOLUME_MAX >> 1,
HSW_VOLUME_MAX >> 0,
};
#define HSW_PCM_PERIODS_MAX 64
#define HSW_PCM_PERIODS_MIN 2
#define HSW_PCM_DAI_ID_SYSTEM 0
#define HSW_PCM_DAI_ID_OFFLOAD0 1
#define HSW_PCM_DAI_ID_OFFLOAD1 2
#define HSW_PCM_DAI_ID_LOOPBACK 3
static const struct snd_pcm_hardware hsw_pcm_hardware = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP |
SNDRV_PCM_INFO_DRAIN_TRIGGER,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.period_bytes_min = PAGE_SIZE,
.period_bytes_max = (HSW_PCM_PERIODS_MAX / HSW_PCM_PERIODS_MIN) * PAGE_SIZE,
.periods_min = HSW_PCM_PERIODS_MIN,
.periods_max = HSW_PCM_PERIODS_MAX,
.buffer_bytes_max = HSW_PCM_PERIODS_MAX * PAGE_SIZE,
};
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
struct hsw_pcm_module_map {
int dai_id;
int stream;
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
enum sst_hsw_module_id mod_id;
};
/* private data for each PCM DSP stream */
struct hsw_pcm_data {
int dai_id;
struct sst_hsw_stream *stream;
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
struct sst_module_runtime *runtime;
struct sst_module_runtime_context context;
struct snd_pcm *hsw_pcm;
u32 volume[2];
struct snd_pcm_substream *substream;
struct snd_compr_stream *cstream;
unsigned int wpos;
struct mutex mutex;
bool allocated;
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
int persistent_offset;
};
enum hsw_pm_state {
HSW_PM_STATE_D0 = 0,
HSW_PM_STATE_RTD3 = 1,
HSW_PM_STATE_D3 = 2,
};
/* private data for the driver */
struct hsw_priv_data {
/* runtime DSP */
struct sst_hsw *hsw;
struct device *dev;
enum hsw_pm_state pm_state;
struct snd_soc_card *soc_card;
struct sst_module_runtime *runtime_waves; /* sound effect module */
/* page tables */
struct snd_dma_buffer dmab[HSW_PCM_COUNT][2];
/* DAI data */
struct hsw_pcm_data pcm[HSW_PCM_COUNT][2];
};
/* static mappings between PCMs and modules - may be dynamic in future */
static struct hsw_pcm_module_map mod_map[] = {
{HSW_PCM_DAI_ID_SYSTEM, 0, SST_HSW_MODULE_PCM_SYSTEM},
{HSW_PCM_DAI_ID_OFFLOAD0, 0, SST_HSW_MODULE_PCM},
{HSW_PCM_DAI_ID_OFFLOAD1, 0, SST_HSW_MODULE_PCM},
{HSW_PCM_DAI_ID_LOOPBACK, 1, SST_HSW_MODULE_PCM_REFERENCE},
{HSW_PCM_DAI_ID_SYSTEM, 1, SST_HSW_MODULE_PCM_CAPTURE},
};
static u32 hsw_notify_pointer(struct sst_hsw_stream *stream, void *data);
static inline u32 hsw_mixer_to_ipc(unsigned int value)
{
if (value >= ARRAY_SIZE(volume_map))
return volume_map[0];
else
return volume_map[value];
}
static inline unsigned int hsw_ipc_to_mixer(u32 value)
{
int i;
for (i = 0; i < ARRAY_SIZE(volume_map); i++) {
if (volume_map[i] >= value)
return i;
}
return i - 1;
}
static int hsw_stream_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
int dai, stream;
dai = mod_map[mc->reg].dai_id;
stream = mod_map[mc->reg].stream;
pcm_data = &pdata->pcm[dai][stream];
mutex_lock(&pcm_data->mutex);
pm_runtime_get_sync(pdata->dev);
if (!pcm_data->stream) {
pcm_data->volume[0] =
hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
pcm_data->volume[1] =
hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return 0;
}
if (ucontrol->value.integer.value[0] ==
ucontrol->value.integer.value[1]) {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
/* apply volume value to all channels */
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, SST_HSW_CHANNELS_ALL, volume);
} else {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, 0, volume);
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, 1, volume);
}
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_stream_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
int dai, stream;
dai = mod_map[mc->reg].dai_id;
stream = mod_map[mc->reg].stream;
pcm_data = &pdata->pcm[dai][stream];
mutex_lock(&pcm_data->mutex);
pm_runtime_get_sync(pdata->dev);
if (!pcm_data->stream) {
ucontrol->value.integer.value[0] =
hsw_ipc_to_mixer(pcm_data->volume[0]);
ucontrol->value.integer.value[1] =
hsw_ipc_to_mixer(pcm_data->volume[1]);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return 0;
}
sst_hsw_stream_get_volume(hsw, pcm_data->stream, 0, 0, &volume);
ucontrol->value.integer.value[0] = hsw_ipc_to_mixer(volume);
sst_hsw_stream_get_volume(hsw, pcm_data->stream, 0, 1, &volume);
ucontrol->value.integer.value[1] = hsw_ipc_to_mixer(volume);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
pm_runtime_get_sync(pdata->dev);
if (ucontrol->value.integer.value[0] ==
ucontrol->value.integer.value[1]) {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_mixer_set_volume(hsw, 0, SST_HSW_CHANNELS_ALL, volume);
} else {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_mixer_set_volume(hsw, 0, 0, volume);
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
sst_hsw_mixer_set_volume(hsw, 0, 1, volume);
}
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
static int hsw_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
unsigned int volume = 0;
pm_runtime_get_sync(pdata->dev);
sst_hsw_mixer_get_volume(hsw, 0, 0, &volume);
ucontrol->value.integer.value[0] = hsw_ipc_to_mixer(volume);
sst_hsw_mixer_get_volume(hsw, 0, 1, &volume);
ucontrol->value.integer.value[1] = hsw_ipc_to_mixer(volume);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
static int hsw_waves_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
enum sst_hsw_module_id id = SST_HSW_MODULE_WAVES;
ucontrol->value.integer.value[0] =
(sst_hsw_is_module_active(hsw, id) ||
sst_hsw_is_module_enabled_rtd3(hsw, id));
return 0;
}
static int hsw_waves_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
int ret = 0;
enum sst_hsw_module_id id = SST_HSW_MODULE_WAVES;
bool switch_on = (bool)ucontrol->value.integer.value[0];
/* if module is in RAM on the DSP, apply user settings to module through
* ipc. If module is not in RAM on the DSP, store user setting for
* track */
if (sst_hsw_is_module_loaded(hsw, id)) {
if (switch_on == sst_hsw_is_module_active(hsw, id))
return 0;
if (switch_on)
ret = sst_hsw_module_enable(hsw, id, 0);
else
ret = sst_hsw_module_disable(hsw, id, 0);
} else {
if (switch_on == sst_hsw_is_module_enabled_rtd3(hsw, id))
return 0;
if (switch_on)
sst_hsw_set_module_enabled_rtd3(hsw, id);
else
sst_hsw_set_module_disabled_rtd3(hsw, id);
}
return ret;
}
static int hsw_waves_param_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
/* return a matching line from param buffer */
return sst_hsw_load_param_line(hsw, ucontrol->value.bytes.data);
}
static int hsw_waves_param_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_soc_kcontrol_platform(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
int ret;
enum sst_hsw_module_id id = SST_HSW_MODULE_WAVES;
int param_id = ucontrol->value.bytes.data[0];
int param_size = WAVES_PARAM_COUNT;
/* clear param buffer and reset buffer index */
if (param_id == 0xFF) {
sst_hsw_reset_param_buf(hsw);
return 0;
}
/* store params into buffer */
ret = sst_hsw_store_param_line(hsw, ucontrol->value.bytes.data);
if (ret < 0)
return ret;
if (sst_hsw_is_module_active(hsw, id))
ret = sst_hsw_module_set_param(hsw, id, 0, param_id,
param_size, ucontrol->value.bytes.data);
return ret;
}
/* TLV used by both global and stream volumes */
static const DECLARE_TLV_DB_SCALE(hsw_vol_tlv, -9000, 300, 1);
/* System Pin has no volume control */
static const struct snd_kcontrol_new hsw_volume_controls[] = {
/* Global DSP volume */
SOC_DOUBLE_EXT_TLV("Master Playback Volume", 0, 0, 8,
ARRAY_SIZE(volume_map) - 1, 0,
hsw_volume_get, hsw_volume_put, hsw_vol_tlv),
/* Offload 0 volume */
SOC_DOUBLE_EXT_TLV("Media0 Playback Volume", 1, 0, 8,
ARRAY_SIZE(volume_map) - 1, 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* Offload 1 volume */
SOC_DOUBLE_EXT_TLV("Media1 Playback Volume", 2, 0, 8,
ARRAY_SIZE(volume_map) - 1, 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* Mic Capture volume */
SOC_DOUBLE_EXT_TLV("Mic Capture Volume", 4, 0, 8,
ARRAY_SIZE(volume_map) - 1, 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* enable/disable module waves */
SOC_SINGLE_BOOL_EXT("Waves Switch", 0,
hsw_waves_switch_get, hsw_waves_switch_put),
/* set parameters to module waves */
SND_SOC_BYTES_EXT("Waves Set Param", WAVES_PARAM_COUNT,
hsw_waves_param_get, hsw_waves_param_put),
};
/* Create DMA buffer page table for DSP */
static int create_adsp_page_table(struct snd_pcm_substream *substream,
struct hsw_priv_data *pdata, struct snd_soc_pcm_runtime *rtd,
unsigned char *dma_area, size_t size, int pcm)
{
struct snd_dma_buffer *dmab = snd_pcm_get_dma_buf(substream);
int i, pages, stream = substream->stream;
pages = snd_sgbuf_aligned_pages(size);
dev_dbg(rtd->dev, "generating page table for %p size 0x%zu pages %d\n",
dma_area, size, pages);
for (i = 0; i < pages; i++) {
u32 idx = (((i << 2) + i)) >> 1;
u32 pfn = snd_sgbuf_get_addr(dmab, i * PAGE_SIZE) >> PAGE_SHIFT;
u32 *pg_table;
dev_dbg(rtd->dev, "pfn i %i idx %d pfn %x\n", i, idx, pfn);
pg_table = (u32 *)(pdata->dmab[pcm][stream].area + idx);
if (i & 1)
*pg_table |= (pfn << 4);
else
*pg_table |= pfn;
}
return 0;
}
/* this may get called several times by oss emulation */
static int hsw_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
struct sst_module *module_data;
struct sst_dsp *dsp;
struct snd_dma_buffer *dmab;
enum sst_hsw_stream_type stream_type;
enum sst_hsw_stream_path_id path_id;
u32 rate, bits, map, pages, module_id;
u8 channels;
int ret, dai;
dai = mod_map[rtd->cpu_dai->id].dai_id;
pcm_data = &pdata->pcm[dai][substream->stream];
/* check if we are being called a subsequent time */
if (pcm_data->allocated) {
ret = sst_hsw_stream_reset(hsw, pcm_data->stream);
if (ret < 0)
dev_dbg(rtd->dev, "error: reset stream failed %d\n",
ret);
ret = sst_hsw_stream_free(hsw, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "error: free stream failed %d\n",
ret);
return ret;
}
pcm_data->allocated = false;
pcm_data->stream = sst_hsw_stream_new(hsw, rtd->cpu_dai->id,
hsw_notify_pointer, pcm_data);
if (pcm_data->stream == NULL) {
dev_err(rtd->dev, "error: failed to create stream\n");
return -EINVAL;
}
}
/* stream direction */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
path_id = SST_HSW_STREAM_PATH_SSP0_OUT;
else
path_id = SST_HSW_STREAM_PATH_SSP0_IN;
/* DSP stream type depends on DAI ID */
switch (rtd->cpu_dai->id) {
case 0:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
stream_type = SST_HSW_STREAM_TYPE_SYSTEM;
module_id = SST_HSW_MODULE_PCM_SYSTEM;
}
else {
stream_type = SST_HSW_STREAM_TYPE_CAPTURE;
module_id = SST_HSW_MODULE_PCM_CAPTURE;
}
break;
case 1:
case 2:
stream_type = SST_HSW_STREAM_TYPE_RENDER;
module_id = SST_HSW_MODULE_PCM;
break;
case 3:
/* path ID needs to be OUT for loopback */
stream_type = SST_HSW_STREAM_TYPE_LOOPBACK;
path_id = SST_HSW_STREAM_PATH_SSP0_OUT;
module_id = SST_HSW_MODULE_PCM_REFERENCE;
break;
default:
dev_err(rtd->dev, "error: invalid DAI ID %d\n",
rtd->cpu_dai->id);
return -EINVAL;
};
ret = sst_hsw_stream_format(hsw, pcm_data->stream,
path_id, stream_type, SST_HSW_STREAM_FORMAT_PCM_FORMAT);
if (ret < 0) {
dev_err(rtd->dev, "error: failed to set format %d\n", ret);
return ret;
}
rate = params_rate(params);
ret = sst_hsw_stream_set_rate(hsw, pcm_data->stream, rate);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set rate %d\n", rate);
return ret;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
bits = SST_HSW_DEPTH_16BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 16);
break;
case SNDRV_PCM_FORMAT_S24_LE:
bits = SST_HSW_DEPTH_32BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 24);
break;
case SNDRV_PCM_FORMAT_S8:
bits = SST_HSW_DEPTH_8BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 8);
break;
case SNDRV_PCM_FORMAT_S32_LE:
bits = SST_HSW_DEPTH_32BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 32);
break;
default:
dev_err(rtd->dev, "error: invalid format %d\n",
params_format(params));
return -EINVAL;
}
ret = sst_hsw_stream_set_bits(hsw, pcm_data->stream, bits);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set bits %d\n", bits);
return ret;
}
channels = params_channels(params);
map = create_channel_map(SST_HSW_CHANNEL_CONFIG_STEREO);
sst_hsw_stream_set_map_config(hsw, pcm_data->stream,
map, SST_HSW_CHANNEL_CONFIG_STEREO);
ret = sst_hsw_stream_set_channels(hsw, pcm_data->stream, channels);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set channels %d\n",
channels);
return ret;
}
ret = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
if (ret < 0) {
dev_err(rtd->dev, "error: could not allocate %d bytes for PCM %d\n",
params_buffer_bytes(params), ret);
return ret;
}
dmab = snd_pcm_get_dma_buf(substream);
ret = create_adsp_page_table(substream, pdata, rtd, runtime->dma_area,
runtime->dma_bytes, rtd->cpu_dai->id);
if (ret < 0)
return ret;
sst_hsw_stream_set_style(hsw, pcm_data->stream,
SST_HSW_INTERLEAVING_PER_CHANNEL);
if (runtime->dma_bytes % PAGE_SIZE)
pages = (runtime->dma_bytes / PAGE_SIZE) + 1;
else
pages = runtime->dma_bytes / PAGE_SIZE;
ret = sst_hsw_stream_buffer(hsw, pcm_data->stream,
pdata->dmab[rtd->cpu_dai->id][substream->stream].addr,
pages, runtime->dma_bytes, 0,
snd_sgbuf_get_addr(dmab, 0) >> PAGE_SHIFT);
if (ret < 0) {
dev_err(rtd->dev, "error: failed to set DMA buffer %d\n", ret);
return ret;
}
dsp = sst_hsw_get_dsp(hsw);
module_data = sst_module_get_from_id(dsp, module_id);
if (module_data == NULL) {
dev_err(rtd->dev, "error: failed to get module config\n");
return -EINVAL;
}
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
sst_hsw_stream_set_module_info(hsw, pcm_data->stream,
pcm_data->runtime);
ret = sst_hsw_stream_commit(hsw, pcm_data->stream);
if (ret < 0) {
dev_err(rtd->dev, "error: failed to commit stream %d\n", ret);
return ret;
}
if (!pcm_data->allocated) {
/* Set previous saved volume */
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0,
0, pcm_data->volume[0]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0,
1, pcm_data->volume[1]);
pcm_data->allocated = true;
}
ret = sst_hsw_stream_pause(hsw, pcm_data->stream, 1);
if (ret < 0)
dev_err(rtd->dev, "error: failed to pause %d\n", ret);
return 0;
}
static int hsw_pcm_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int hsw_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw_stream *sst_stream;
struct sst_hsw *hsw = pdata->hsw;
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t pos;
int dai;
dai = mod_map[rtd->cpu_dai->id].dai_id;
pcm_data = &pdata->pcm[dai][substream->stream];
sst_stream = pcm_data->stream;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
sst_hsw_stream_set_silence_start(hsw, sst_stream, false);
sst_hsw_stream_resume(hsw, pcm_data->stream, 0);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
sst_hsw_stream_set_silence_start(hsw, sst_stream, false);
sst_hsw_stream_pause(hsw, pcm_data->stream, 0);
break;
case SNDRV_PCM_TRIGGER_DRAIN:
pos = runtime->control->appl_ptr % runtime->buffer_size;
sst_hsw_stream_set_old_position(hsw, pcm_data->stream, pos);
sst_hsw_stream_set_silence_start(hsw, sst_stream, true);
break;
default:
break;
}
return 0;
}
static u32 hsw_notify_pointer(struct sst_hsw_stream *stream, void *data)
{
struct hsw_pcm_data *pcm_data = data;
struct snd_pcm_substream *substream = pcm_data->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_hsw *hsw = pdata->hsw;
u32 pos;
snd_pcm_uframes_t position = bytes_to_frames(runtime,
sst_hsw_get_dsp_position(hsw, pcm_data->stream));
unsigned char *dma_area = runtime->dma_area;
snd_pcm_uframes_t dma_frames =
bytes_to_frames(runtime, runtime->dma_bytes);
snd_pcm_uframes_t old_position;
ssize_t samples;
pos = frames_to_bytes(runtime,
(runtime->control->appl_ptr % runtime->buffer_size));
dev_vdbg(rtd->dev, "PCM: App pointer %d bytes\n", pos);
/* SST fw don't know where to stop dma
* So, SST driver need to clean the data which has been consumed
*/
if (dma_area == NULL || dma_frames <= 0
|| (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|| !sst_hsw_stream_get_silence_start(hsw, stream)) {
snd_pcm_period_elapsed(substream);
return pos;
}
old_position = sst_hsw_stream_get_old_position(hsw, stream);
if (position > old_position) {
if (position < dma_frames) {
samples = SST_SAMPLES(runtime, position - old_position);
snd_pcm_format_set_silence(runtime->format,
SST_OLD_POSITION(dma_area,
runtime, old_position),
samples);
} else
dev_err(rtd->dev, "PCM: position is wrong\n");
} else {
if (old_position < dma_frames) {
samples = SST_SAMPLES(runtime,
dma_frames - old_position);
snd_pcm_format_set_silence(runtime->format,
SST_OLD_POSITION(dma_area,
runtime, old_position),
samples);
} else
dev_err(rtd->dev, "PCM: dma_bytes is wrong\n");
if (position < dma_frames) {
samples = SST_SAMPLES(runtime, position);
snd_pcm_format_set_silence(runtime->format,
dma_area, samples);
} else
dev_err(rtd->dev, "PCM: position is wrong\n");
}
sst_hsw_stream_set_old_position(hsw, stream, position);
/* let alsa know we have play a period */
snd_pcm_period_elapsed(substream);
return pos;
}
static snd_pcm_uframes_t hsw_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
snd_pcm_uframes_t offset;
uint64_t ppos;
u32 position;
int dai;
dai = mod_map[rtd->cpu_dai->id].dai_id;
pcm_data = &pdata->pcm[dai][substream->stream];
position = sst_hsw_get_dsp_position(hsw, pcm_data->stream);
offset = bytes_to_frames(runtime, position);
ppos = sst_hsw_get_dsp_presentation_position(hsw, pcm_data->stream);
dev_vdbg(rtd->dev, "PCM: DMA pointer %du bytes, pos %llu\n",
position, ppos);
return offset;
}
static int hsw_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
int dai;
dai = mod_map[rtd->cpu_dai->id].dai_id;
pcm_data = &pdata->pcm[dai][substream->stream];
mutex_lock(&pcm_data->mutex);
pm_runtime_get_sync(pdata->dev);
snd_soc_pcm_set_drvdata(rtd, pcm_data);
pcm_data->substream = substream;
snd_soc_set_runtime_hwparams(substream, &hsw_pcm_hardware);
pcm_data->stream = sst_hsw_stream_new(hsw, rtd->cpu_dai->id,
hsw_notify_pointer, pcm_data);
if (pcm_data->stream == NULL) {
dev_err(rtd->dev, "error: failed to create stream\n");
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return -EINVAL;
}
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
int ret, dai;
dai = mod_map[rtd->cpu_dai->id].dai_id;
pcm_data = &pdata->pcm[dai][substream->stream];
mutex_lock(&pcm_data->mutex);
ret = sst_hsw_stream_reset(hsw, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "error: reset stream failed %d\n", ret);
goto out;
}
ret = sst_hsw_stream_free(hsw, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "error: free stream failed %d\n", ret);
goto out;
}
pcm_data->allocated = 0;
pcm_data->stream = NULL;
out:
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
mutex_unlock(&pcm_data->mutex);
return ret;
}
static struct snd_pcm_ops hsw_pcm_ops = {
.open = hsw_pcm_open,
.close = hsw_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = hsw_pcm_hw_params,
.hw_free = hsw_pcm_hw_free,
.trigger = hsw_pcm_trigger,
.pointer = hsw_pcm_pointer,
.page = snd_pcm_sgbuf_ops_page,
};
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
static int hsw_pcm_create_modules(struct hsw_priv_data *pdata)
{
struct sst_hsw *hsw = pdata->hsw;
struct hsw_pcm_data *pcm_data;
int i;
for (i = 0; i < ARRAY_SIZE(mod_map); i++) {
pcm_data = &pdata->pcm[mod_map[i].dai_id][mod_map[i].stream];
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
/* create new runtime module, use same offset if recreated */
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
pcm_data->runtime = sst_hsw_runtime_module_create(hsw,
mod_map[i].mod_id, pcm_data->persistent_offset);
if (pcm_data->runtime == NULL)
goto err;
pcm_data->persistent_offset =
pcm_data->runtime->persistent_offset;
}
/* create runtime blocks for module waves */
if (sst_hsw_is_module_loaded(hsw, SST_HSW_MODULE_WAVES)) {
pdata->runtime_waves = sst_hsw_runtime_module_create(hsw,
SST_HSW_MODULE_WAVES, 0);
if (pdata->runtime_waves == NULL)
goto err;
}
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
return 0;
err:
for (--i; i >= 0; i--) {
pcm_data = &pdata->pcm[mod_map[i].dai_id][mod_map[i].stream];
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
sst_hsw_runtime_module_free(pcm_data->runtime);
}
return -ENODEV;
}
static int hsw_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_pcm *pcm = rtd->pcm;
struct snd_soc_platform *platform = rtd->platform;
struct sst_pdata *pdata = dev_get_platdata(platform->dev);
struct hsw_priv_data *priv_data = dev_get_drvdata(platform->dev);
struct device *dev = pdata->dma_dev;
int ret = 0;
if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream ||
pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
ret = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV_SG,
dev,
hsw_pcm_hardware.buffer_bytes_max,
hsw_pcm_hardware.buffer_bytes_max);
if (ret) {
dev_err(rtd->dev, "dma buffer allocation failed %d\n",
ret);
return ret;
}
}
if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream)
priv_data->pcm[rtd->cpu_dai->id][SNDRV_PCM_STREAM_PLAYBACK].hsw_pcm = pcm;
if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream)
priv_data->pcm[rtd->cpu_dai->id][SNDRV_PCM_STREAM_CAPTURE].hsw_pcm = pcm;
return ret;
}
#define HSW_FORMATS \
(SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
static struct snd_soc_dai_driver hsw_dais[] = {
{
.name = "System Pin",
.id = HSW_PCM_DAI_ID_SYSTEM,
.playback = {
.stream_name = "System Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE,
},
.capture = {
.stream_name = "Analog Capture",
.channels_min = 2,
.channels_max = 4,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
/* PCM */
.name = "Offload0 Pin",
.id = HSW_PCM_DAI_ID_OFFLOAD0,
.playback = {
.stream_name = "Offload0 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
{
/* PCM */
.name = "Offload1 Pin",
.id = HSW_PCM_DAI_ID_OFFLOAD1,
.playback = {
.stream_name = "Offload1 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
{
.name = "Loopback Pin",
.id = HSW_PCM_DAI_ID_LOOPBACK,
.capture = {
.stream_name = "Loopback Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE,
},
},
};
static const struct snd_soc_dapm_widget widgets[] = {
/* Backend DAIs */
SND_SOC_DAPM_AIF_IN("SSP0 CODEC IN", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("SSP0 CODEC OUT", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SSP1 BT IN", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("SSP1 BT OUT", NULL, 0, SND_SOC_NOPM, 0, 0),
/* Global Playback Mixer */
SND_SOC_DAPM_MIXER("Playback VMixer", SND_SOC_NOPM, 0, 0, NULL, 0),
};
static const struct snd_soc_dapm_route graph[] = {
/* Playback Mixer */
{"Playback VMixer", NULL, "System Playback"},
{"Playback VMixer", NULL, "Offload0 Playback"},
{"Playback VMixer", NULL, "Offload1 Playback"},
{"SSP0 CODEC OUT", NULL, "Playback VMixer"},
{"Analog Capture", NULL, "SSP0 CODEC IN"},
};
static int hsw_pcm_probe(struct snd_soc_platform *platform)
{
struct hsw_priv_data *priv_data = snd_soc_platform_get_drvdata(platform);
struct sst_pdata *pdata = dev_get_platdata(platform->dev);
struct device *dma_dev, *dev;
int i, ret = 0;
if (!pdata)
return -ENODEV;
dev = platform->dev;
dma_dev = pdata->dma_dev;
priv_data->hsw = pdata->dsp;
priv_data->dev = platform->dev;
priv_data->pm_state = HSW_PM_STATE_D0;
priv_data->soc_card = platform->component.card;
/* allocate DSP buffer page tables */
for (i = 0; i < ARRAY_SIZE(hsw_dais); i++) {
/* playback */
if (hsw_dais[i].playback.channels_min) {
mutex_init(&priv_data->pcm[i][SNDRV_PCM_STREAM_PLAYBACK].mutex);
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dma_dev,
PAGE_SIZE, &priv_data->dmab[i][0]);
if (ret < 0)
goto err;
}
/* capture */
if (hsw_dais[i].capture.channels_min) {
mutex_init(&priv_data->pcm[i][SNDRV_PCM_STREAM_CAPTURE].mutex);
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dma_dev,
PAGE_SIZE, &priv_data->dmab[i][1]);
if (ret < 0)
goto err;
}
}
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
/* allocate runtime modules */
ret = hsw_pcm_create_modules(priv_data);
if (ret < 0)
goto err;
ASoC: Intel: Make ADSP memory block allocation more generic Current block allocation is tied to block type and requestor type. Make the allocation more generic by removing the struct module parameter and adding a generic block allocator structure. Also pass in the list that the blocks have to be added too in order to remove dependence on block requestor type. ASoC: Intel: update scratch allocator to use generic block allocator Update the scratch allocator to use the generic block allocator and calculate total scratch buffer size. ASoC: Intel: Add call to calculate offsets internally within the DSP. A call to calculate internal DSP memory addresses used to allocate persistent and scartch buffers. ASoC: Intel: Add runtime module support. Add support for runtime module objects that can be created for every FW module that is parsed from the FW file. This gives a 1:N mapping between the FW module from file and the runtime instantiations of that module. We also need to make sure we remove every module and runtime module when we unload the FW. ASoC: Intel: Add DMA firmware loading support Add support for DMA to load firmware modules to the DSP memory blocks. Two DMA engines are supported, DesignWare and Intel MID. ASoC: Intel: Add runtime module lookup API call Add an API to allow quick lookup of runtime modules based on ID. ASoC: Intel: Provide streams with dynamic module information Remove the hard coded module paramaters and provide each module with dynamically generated buffer information for scratch and persistent buffers. Signed-off-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2014-10-28 17:37:12 +00:00
/* enable runtime PM with auto suspend */
pm_runtime_set_autosuspend_delay(platform->dev,
SST_RUNTIME_SUSPEND_DELAY);
pm_runtime_use_autosuspend(platform->dev);
pm_runtime_enable(platform->dev);
pm_runtime_idle(platform->dev);
return 0;
err:
for (--i; i >= 0; i--) {
if (hsw_dais[i].playback.channels_min)
snd_dma_free_pages(&priv_data->dmab[i][0]);
if (hsw_dais[i].capture.channels_min)
snd_dma_free_pages(&priv_data->dmab[i][1]);
}
return ret;
}
static int hsw_pcm_remove(struct snd_soc_platform *platform)
{
struct hsw_priv_data *priv_data =
snd_soc_platform_get_drvdata(platform);
int i;
/* execute a suspend call to unload all FW resources */
if (!pm_runtime_status_suspended(platform->dev))
pm_runtime_put_sync_suspend(platform->dev);
pm_runtime_disable(platform->dev);
for (i = 0; i < ARRAY_SIZE(hsw_dais); i++) {
if (hsw_dais[i].playback.channels_min)
snd_dma_free_pages(&priv_data->dmab[i][0]);
if (hsw_dais[i].capture.channels_min)
snd_dma_free_pages(&priv_data->dmab[i][1]);
}
return 0;
}
static struct snd_soc_platform_driver hsw_soc_platform = {
.probe = hsw_pcm_probe,
.remove = hsw_pcm_remove,
.ops = &hsw_pcm_ops,
.pcm_new = hsw_pcm_new,
};
static const struct snd_soc_component_driver hsw_dai_component = {
.name = "haswell-dai",
.controls = hsw_volume_controls,
.num_controls = ARRAY_SIZE(hsw_volume_controls),
.dapm_widgets = widgets,
.num_dapm_widgets = ARRAY_SIZE(widgets),
.dapm_routes = graph,
.num_dapm_routes = ARRAY_SIZE(graph),
};
static int hsw_pcm_dev_probe(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
struct hsw_priv_data *priv_data;
int ret;
if (!sst_pdata)
return -EINVAL;
priv_data = devm_kzalloc(&pdev->dev, sizeof(*priv_data), GFP_KERNEL);
if (!priv_data)
return -ENOMEM;
ret = sst_hsw_dsp_init(&pdev->dev, sst_pdata);
if (ret < 0)
return -ENODEV;
priv_data->hsw = sst_pdata->dsp;
platform_set_drvdata(pdev, priv_data);
ret = snd_soc_register_platform(&pdev->dev, &hsw_soc_platform);
if (ret < 0)
goto err_plat;
ret = snd_soc_register_component(&pdev->dev, &hsw_dai_component,
hsw_dais, ARRAY_SIZE(hsw_dais));
if (ret < 0)
goto err_comp;
return 0;
err_comp:
snd_soc_unregister_platform(&pdev->dev);
err_plat:
sst_hsw_dsp_free(&pdev->dev, sst_pdata);
return 0;
}
static int hsw_pcm_dev_remove(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
snd_soc_unregister_platform(&pdev->dev);
snd_soc_unregister_component(&pdev->dev);
sst_hsw_dsp_free(&pdev->dev, sst_pdata);
return 0;
}
#ifdef CONFIG_PM
static int hsw_pcm_runtime_idle(struct device *dev)
{
return 0;
}
static int hsw_pcm_runtime_suspend(struct device *dev)
{
struct hsw_priv_data *pdata = dev_get_drvdata(dev);
struct sst_hsw *hsw = pdata->hsw;
int ret;
if (pdata->pm_state >= HSW_PM_STATE_RTD3)
return 0;
/* fw modules will be unloaded on RTD3, set flag to track */
if (sst_hsw_is_module_active(hsw, SST_HSW_MODULE_WAVES)) {
ret = sst_hsw_module_disable(hsw, SST_HSW_MODULE_WAVES, 0);
if (ret < 0)
return ret;
sst_hsw_set_module_enabled_rtd3(hsw, SST_HSW_MODULE_WAVES);
}
sst_hsw_dsp_runtime_suspend(hsw);
sst_hsw_dsp_runtime_sleep(hsw);
pdata->pm_state = HSW_PM_STATE_RTD3;
return 0;
}
static int hsw_pcm_runtime_resume(struct device *dev)
{
struct hsw_priv_data *pdata = dev_get_drvdata(dev);
struct sst_hsw *hsw = pdata->hsw;
int ret;
if (pdata->pm_state != HSW_PM_STATE_RTD3)
return 0;
ret = sst_hsw_dsp_load(hsw);
if (ret < 0) {
dev_err(dev, "failed to reload %d\n", ret);
return ret;
}
ret = hsw_pcm_create_modules(pdata);
if (ret < 0) {
dev_err(dev, "failed to create modules %d\n", ret);
return ret;
}
ret = sst_hsw_dsp_runtime_resume(hsw);
if (ret < 0)
return ret;
else if (ret == 1) /* no action required */
return 0;
/* check flag when resume */
if (sst_hsw_is_module_enabled_rtd3(hsw, SST_HSW_MODULE_WAVES)) {
ret = sst_hsw_module_enable(hsw, SST_HSW_MODULE_WAVES, 0);
if (ret < 0)
return ret;
/* put parameters from buffer to dsp */
ret = sst_hsw_launch_param_buf(hsw);
if (ret < 0)
return ret;
/* unset flag */
sst_hsw_set_module_disabled_rtd3(hsw, SST_HSW_MODULE_WAVES);
}
pdata->pm_state = HSW_PM_STATE_D0;
return ret;
}
#else
#define hsw_pcm_runtime_idle NULL
#define hsw_pcm_runtime_suspend NULL
#define hsw_pcm_runtime_resume NULL
#endif
#ifdef CONFIG_PM
static void hsw_pcm_complete(struct device *dev)
{
struct hsw_priv_data *pdata = dev_get_drvdata(dev);
struct sst_hsw *hsw = pdata->hsw;
struct hsw_pcm_data *pcm_data;
int i, err;
if (pdata->pm_state != HSW_PM_STATE_D3)
return;
err = sst_hsw_dsp_load(hsw);
if (err < 0) {
dev_err(dev, "failed to reload %d\n", err);
return;
}
err = hsw_pcm_create_modules(pdata);
if (err < 0) {
dev_err(dev, "failed to create modules %d\n", err);
return;
}
for (i = 0; i < ARRAY_SIZE(mod_map); i++) {
pcm_data = &pdata->pcm[mod_map[i].dai_id][mod_map[i].stream];
if (!pcm_data->substream)
continue;
err = sst_module_runtime_restore(pcm_data->runtime,
&pcm_data->context);
if (err < 0)
dev_err(dev, "failed to restore context for PCM %d\n", i);
}
snd_soc_resume(pdata->soc_card->dev);
err = sst_hsw_dsp_runtime_resume(hsw);
if (err < 0)
return;
else if (err == 1) /* no action required */
return;
pdata->pm_state = HSW_PM_STATE_D0;
return;
}
static int hsw_pcm_prepare(struct device *dev)
{
struct hsw_priv_data *pdata = dev_get_drvdata(dev);
struct sst_hsw *hsw = pdata->hsw;
struct hsw_pcm_data *pcm_data;
int i, err;
if (pdata->pm_state == HSW_PM_STATE_D3)
return 0;
else if (pdata->pm_state == HSW_PM_STATE_D0) {
/* suspend all active streams */
for (i = 0; i < ARRAY_SIZE(mod_map); i++) {
pcm_data = &pdata->pcm[mod_map[i].dai_id][mod_map[i].stream];
if (!pcm_data->substream)
continue;
dev_dbg(dev, "suspending pcm %d\n", i);
snd_pcm_suspend_all(pcm_data->hsw_pcm);
/* We need to wait until the DSP FW stops the streams */
msleep(2);
}
/* preserve persistent memory */
for (i = 0; i < ARRAY_SIZE(mod_map); i++) {
pcm_data = &pdata->pcm[mod_map[i].dai_id][mod_map[i].stream];
if (!pcm_data->substream)
continue;
dev_dbg(dev, "saving context pcm %d\n", i);
err = sst_module_runtime_save(pcm_data->runtime,
&pcm_data->context);
if (err < 0)
dev_err(dev, "failed to save context for PCM %d\n", i);
}
/* enter D3 state and stall */
sst_hsw_dsp_runtime_suspend(hsw);
/* put the DSP to sleep */
sst_hsw_dsp_runtime_sleep(hsw);
}
snd_soc_suspend(pdata->soc_card->dev);
snd_soc_poweroff(pdata->soc_card->dev);
pdata->pm_state = HSW_PM_STATE_D3;
return 0;
}
#else
#define hsw_pcm_prepare NULL
#define hsw_pcm_complete NULL
#endif
static const struct dev_pm_ops hsw_pcm_pm = {
.runtime_idle = hsw_pcm_runtime_idle,
.runtime_suspend = hsw_pcm_runtime_suspend,
.runtime_resume = hsw_pcm_runtime_resume,
.prepare = hsw_pcm_prepare,
.complete = hsw_pcm_complete,
};
static struct platform_driver hsw_pcm_driver = {
.driver = {
.name = "haswell-pcm-audio",
.pm = &hsw_pcm_pm,
},
.probe = hsw_pcm_dev_probe,
.remove = hsw_pcm_dev_remove,
};
module_platform_driver(hsw_pcm_driver);
MODULE_AUTHOR("Liam Girdwood, Xingchao Wang");
MODULE_DESCRIPTION("Haswell/Lynxpoint + Broadwell/Wildcatpoint PCM");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:haswell-pcm-audio");