linux/drivers/net/wireless/ath/ath9k/main.c

2037 lines
51 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/nl80211.h>
#include "ath9k.h"
#include "btcoex.h"
static void ath_cache_conf_rate(struct ath_softc *sc,
struct ieee80211_conf *conf)
{
switch (conf->channel->band) {
case IEEE80211_BAND_2GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_mode = ATH9K_MODE_11NG_HT20;
else if (conf_is_ht40_minus(conf))
sc->cur_rate_mode = ATH9K_MODE_11NG_HT40MINUS;
else if (conf_is_ht40_plus(conf))
sc->cur_rate_mode = ATH9K_MODE_11NG_HT40PLUS;
else
sc->cur_rate_mode = ATH9K_MODE_11G;
break;
case IEEE80211_BAND_5GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_mode = ATH9K_MODE_11NA_HT20;
else if (conf_is_ht40_minus(conf))
sc->cur_rate_mode = ATH9K_MODE_11NA_HT40MINUS;
else if (conf_is_ht40_plus(conf))
sc->cur_rate_mode = ATH9K_MODE_11NA_HT40PLUS;
else
sc->cur_rate_mode = ATH9K_MODE_11A;
break;
default:
BUG_ON(1);
break;
}
}
static void ath_update_txpow(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
u32 txpow;
if (sc->curtxpow != sc->config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
/* read back in case value is clamped */
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
sc->curtxpow = txpow;
}
}
static u8 parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
struct ieee80211_hw *hw)
{
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath9k_channel *channel;
u8 chan_idx;
chan_idx = curchan->hw_value;
channel = &sc->sc_ah->channels[chan_idx];
ath9k_update_ichannel(sc, hw, channel);
return channel;
}
bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(&sc->sc_pm_lock, flags);
ret = ath9k_hw_setpower(sc->sc_ah, mode);
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
return ret;
}
void ath9k_ps_wakeup(struct ath_softc *sc)
{
unsigned long flags;
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (++sc->ps_usecount != 1)
goto unlock;
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
unlock:
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
}
void ath9k_ps_restore(struct ath_softc *sc)
{
unsigned long flags;
spin_lock_irqsave(&sc->sc_pm_lock, flags);
if (--sc->ps_usecount != 0)
goto unlock;
if (sc->ps_enabled &&
!(sc->ps_flags & (PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA |
PS_WAIT_FOR_TX_ACK)))
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
unlock:
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
}
/*
* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff.
*/
int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
struct ath9k_channel *hchan)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_conf *conf = &common->hw->conf;
bool fastcc = true, stopped;
struct ieee80211_channel *channel = hw->conf.channel;
int r;
if (sc->sc_flags & SC_OP_INVALID)
return -EIO;
ath9k_ps_wakeup(sc);
/*
* This is only performed if the channel settings have
* actually changed.
*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false);
stopped = ath_stoprecv(sc);
/* XXX: do not flush receive queue here. We don't want
* to flush data frames already in queue because of
* changing channel. */
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
fastcc = false;
ath_print(common, ATH_DBG_CONFIG,
"(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
sc->sc_ah->curchan->channel,
channel->center_freq, conf_is_ht40(conf));
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, hchan, fastcc);
if (r) {
ath_print(common, ATH_DBG_FATAL,
"Unable to reset channel (%u Mhz) "
"reset status %d\n",
channel->center_freq, r);
spin_unlock_bh(&sc->sc_resetlock);
goto ps_restore;
}
spin_unlock_bh(&sc->sc_resetlock);
sc->sc_flags &= ~SC_OP_FULL_RESET;
if (ath_startrecv(sc) != 0) {
ath_print(common, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
r = -EIO;
goto ps_restore;
}
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
ath9k_hw_set_interrupts(ah, sc->imask);
ps_restore:
ath9k_ps_restore(sc);
return r;
}
/*
* This routine performs the periodic noise floor calibration function
* that is used to adjust and optimize the chip performance. This
* takes environmental changes (location, temperature) into account.
* When the task is complete, it reschedules itself depending on the
* appropriate interval that was calculated.
*/
void ath_ani_calibrate(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
bool longcal = false;
bool shortcal = false;
bool aniflag = false;
unsigned int timestamp = jiffies_to_msecs(jiffies);
u32 cal_interval, short_cal_interval;
short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
/* Only calibrate if awake */
if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
goto set_timer;
ath9k_ps_wakeup(sc);
/* Long calibration runs independently of short calibration. */
if ((timestamp - common->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
longcal = true;
ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
common->ani.longcal_timer = timestamp;
}
/* Short calibration applies only while caldone is false */
if (!common->ani.caldone) {
if ((timestamp - common->ani.shortcal_timer) >= short_cal_interval) {
shortcal = true;
ath_print(common, ATH_DBG_ANI,
"shortcal @%lu\n", jiffies);
common->ani.shortcal_timer = timestamp;
common->ani.resetcal_timer = timestamp;
}
} else {
if ((timestamp - common->ani.resetcal_timer) >=
ATH_RESTART_CALINTERVAL) {
common->ani.caldone = ath9k_hw_reset_calvalid(ah);
if (common->ani.caldone)
common->ani.resetcal_timer = timestamp;
}
}
/* Verify whether we must check ANI */
if ((timestamp - common->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
aniflag = true;
common->ani.checkani_timer = timestamp;
}
/* Skip all processing if there's nothing to do. */
if (longcal || shortcal || aniflag) {
/* Call ANI routine if necessary */
if (aniflag)
ath9k_hw_ani_monitor(ah, ah->curchan);
/* Perform calibration if necessary */
if (longcal || shortcal) {
common->ani.caldone =
ath9k_hw_calibrate(ah,
ah->curchan,
common->rx_chainmask,
longcal);
if (longcal)
common->ani.noise_floor = ath9k_hw_getchan_noise(ah,
ah->curchan);
ath_print(common, ATH_DBG_ANI,
" calibrate chan %u/%x nf: %d\n",
ah->curchan->channel,
ah->curchan->channelFlags,
common->ani.noise_floor);
}
}
ath9k_ps_restore(sc);
set_timer:
/*
* Set timer interval based on previous results.
* The interval must be the shortest necessary to satisfy ANI,
* short calibration and long calibration.
*/
cal_interval = ATH_LONG_CALINTERVAL;
if (sc->sc_ah->config.enable_ani)
cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
if (!common->ani.caldone)
cal_interval = min(cal_interval, (u32)short_cal_interval);
mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
}
static void ath_start_ani(struct ath_common *common)
{
unsigned long timestamp = jiffies_to_msecs(jiffies);
common->ani.longcal_timer = timestamp;
common->ani.shortcal_timer = timestamp;
common->ani.checkani_timer = timestamp;
mod_timer(&common->ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
}
/*
* Update tx/rx chainmask. For legacy association,
* hard code chainmask to 1x1, for 11n association, use
* the chainmask configuration, for bt coexistence, use
* the chainmask configuration even in legacy mode.
*/
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
(ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
common->tx_chainmask = ah->caps.tx_chainmask;
common->rx_chainmask = ah->caps.rx_chainmask;
} else {
common->tx_chainmask = 1;
common->rx_chainmask = 1;
}
ath_print(common, ATH_DBG_CONFIG,
"tx chmask: %d, rx chmask: %d\n",
common->tx_chainmask,
common->rx_chainmask);
}
static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR) {
ath_tx_node_init(sc, an);
an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
sta->ht_cap.ampdu_factor);
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
ath9k: Manipulate and report the correct RSSI RSSI reported by the RX descriptor requires little manipulation. Manipulate and report the correct RSSI to the stack. This will fix the improper signal levels reported by iwconfig iw dev wlanX station dump. Also the Link Quality reported seems to be varying (falls to zero also sometimes) when iperf is run from STA to AP. Also use the default noise floor for now as the one reported during the caliberation seems to be wrong. The Signal and Link Quality before this patch (taken while TX is in progress from STA to AP) 09:59:13.285428037 Link Quality=29/70 Signal level=-81 dBm 09:59:13.410660084 Link Quality=20/70 Signal level=-90 dBm 09:59:13.586864392 Link Quality=21/70 Signal level=-89 dBm 09:59:13.710296281 Link Quality=21/70 Signal level=-89 dBm 09:59:13.821683064 Link Quality=25/70 Signal level=-85 dBm 09:59:13.933402989 Link Quality=24/70 Signal level=-86 dBm 09:59:14.045839276 Link Quality=26/70 Signal level=-84 dBm 09:59:14.193926673 Link Quality=23/70 Signal level=-87 dBm 09:59:14.306230262 Link Quality=31/70 Signal level=-79 dBm 09:59:14.419459667 Link Quality=26/70 Signal level=-84 dBm 09:59:14.530711167 Link Quality=37/70 Signal level=-73 dBm 09:59:14.642593962 Link Quality=29/70 Signal level=-81 dBm 09:59:14.754361169 Link Quality=21/70 Signal level=-89 dBm 09:59:14.866217355 Link Quality=21/70 Signal level=-89 dBm 09:59:14.976963623 Link Quality=28/70 Signal level=-82 dBm 09:59:15.089149809 Link Quality=26/70 Signal level=-84 dBm 09:59:15.205039887 Link Quality=27/70 Signal level=-83 dBm 09:59:15.316368003 Link Quality=23/70 Signal level=-87 dBm 09:59:15.427684036 Link Quality=36/70 Signal level=-74 dBm 09:59:15.539756380 Link Quality=21/70 Signal level=-89 dBm 09:59:15.650549093 Link Quality=22/70 Signal level=-88 dBm 09:59:15.761171672 Link Quality=32/70 Signal level=-78 dBm 09:59:15.872793750 Link Quality=23/70 Signal level=-87 dBm 09:59:15.984421694 Link Quality=22/70 Signal level=-88 dBm 09:59:16.097315093 Link Quality=21/70 Signal level=-89 dBm The link quality and signal level after this patch (take while TX is in progress from STA to AP) 17:21:25.627848091 Link Quality=65/70 Signal level=-45 dBm 17:21:25.762805607 Link Quality=65/70 Signal level=-45 dBm 17:21:25.875521888 Link Quality=66/70 Signal level=-44 dBm 17:21:25.987468448 Link Quality=66/70 Signal level=-44 dBm 17:21:26.100628151 Link Quality=66/70 Signal level=-44 dBm 17:21:26.213129671 Link Quality=66/70 Signal level=-44 dBm 17:21:26.324923070 Link Quality=65/70 Signal level=-45 dBm 17:21:26.436831357 Link Quality=65/70 Signal level=-45 dBm 17:21:26.610356973 Link Quality=65/70 Signal level=-45 dBm 17:21:26.723340047 Link Quality=65/70 Signal level=-45 dBm 17:21:26.835715293 Link Quality=64/70 Signal level=-46 dBm 17:21:26.949542748 Link Quality=64/70 Signal level=-46 dBm 17:21:27.062261613 Link Quality=65/70 Signal level=-45 dBm 17:21:27.174511563 Link Quality=64/70 Signal level=-46 dBm 17:21:27.287616232 Link Quality=64/70 Signal level=-46 dBm 17:21:27.400598119 Link Quality=64/70 Signal level=-46 dBm 17:21:27.511381404 Link Quality=64/70 Signal level=-46 dBm 17:21:27.624530421 Link Quality=65/70 Signal level=-45 dBm 17:21:27.737807109 Link Quality=64/70 Signal level=-46 dBm 17:21:27.850861352 Link Quality=65/70 Signal level=-45 dBm 17:21:27.963369436 Link Quality=64/70 Signal level=-46 dBm 17:21:28.076582289 Link Quality=64/70 Signal level=-46 dBm Signed-off-by: Senthil Balasubramanian <senthilkumar@atheros.com> Signed-off-by: Vasanthakumar Thiagarajan <vasanth@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-07-15 00:17:07 +00:00
an->last_rssi = ATH_RSSI_DUMMY_MARKER;
}
}
static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR)
ath_tx_node_cleanup(sc, an);
}
void ath9k_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
u32 status = sc->intrstatus;
ath9k_ps_wakeup(sc);
if (status & ATH9K_INT_FATAL) {
ath_reset(sc, false);
ath9k_ps_restore(sc);
return;
}
if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
spin_lock_bh(&sc->rx.rxflushlock);
ath_rx_tasklet(sc, 0);
spin_unlock_bh(&sc->rx.rxflushlock);
}
if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc);
if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
/*
* TSF sync does not look correct; remain awake to sync with
* the next Beacon.
*/
ath_print(common, ATH_DBG_PS,
"TSFOOR - Sync with next Beacon\n");
sc->ps_flags |= PS_WAIT_FOR_BEACON | PS_BEACON_SYNC;
}
if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
if (status & ATH9K_INT_GENTIMER)
ath_gen_timer_isr(sc->sc_ah);
/* re-enable hardware interrupt */
ath9k_hw_set_interrupts(ah, sc->imask);
ath9k_ps_restore(sc);
}
irqreturn_t ath_isr(int irq, void *dev)
{
#define SCHED_INTR ( \
ATH9K_INT_FATAL | \
ATH9K_INT_RXORN | \
ATH9K_INT_RXEOL | \
ATH9K_INT_RX | \
ATH9K_INT_TX | \
ATH9K_INT_BMISS | \
ATH9K_INT_CST | \
ATH9K_INT_TSFOOR | \
ATH9K_INT_GENTIMER)
struct ath_softc *sc = dev;
struct ath_hw *ah = sc->sc_ah;
enum ath9k_int status;
bool sched = false;
/*
* The hardware is not ready/present, don't
* touch anything. Note this can happen early
* on if the IRQ is shared.
*/
if (sc->sc_flags & SC_OP_INVALID)
return IRQ_NONE;
/* shared irq, not for us */
if (!ath9k_hw_intrpend(ah))
return IRQ_NONE;
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
status &= sc->imask; /* discard unasked-for bits */
/*
* If there are no status bits set, then this interrupt was not
* for me (should have been caught above).
*/
if (!status)
return IRQ_NONE;
/* Cache the status */
sc->intrstatus = status;
if (status & SCHED_INTR)
sched = true;
/*
* If a FATAL or RXORN interrupt is received, we have to reset the
* chip immediately.
*/
if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
goto chip_reset;
if (status & ATH9K_INT_SWBA)
tasklet_schedule(&sc->bcon_tasklet);
if (status & ATH9K_INT_TXURN)
ath9k_hw_updatetxtriglevel(ah, true);
if (status & ATH9K_INT_MIB) {
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to
* fire.
*/
ath9k_hw_set_interrupts(ah, 0);
/*
* Let the hal handle the event. We assume
* it will clear whatever condition caused
* the interrupt.
*/
ath9k_hw_procmibevent(ah);
ath9k_hw_set_interrupts(ah, sc->imask);
}
if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
if (status & ATH9K_INT_TIM_TIMER) {
/* Clear RxAbort bit so that we can
* receive frames */
ath9k_setpower(sc, ATH9K_PM_AWAKE);
ath9k_hw_setrxabort(sc->sc_ah, 0);
sc->ps_flags |= PS_WAIT_FOR_BEACON;
}
chip_reset:
ath_debug_stat_interrupt(sc, status);
if (sched) {
/* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq);
}
return IRQ_HANDLED;
#undef SCHED_INTR
}
static u32 ath_get_extchanmode(struct ath_softc *sc,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type)
{
u32 chanmode = 0;
switch (chan->band) {
case IEEE80211_BAND_2GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_G_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_G_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_G_HT40MINUS;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_A_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_A_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_A_HT40MINUS;
break;
}
break;
default:
break;
}
return chanmode;
}
static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
struct ath9k_keyval *hk, const u8 *addr,
bool authenticator)
{
struct ath_hw *ah = common->ah;
const u8 *key_rxmic;
const u8 *key_txmic;
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
if (addr == NULL) {
/*
* Group key installation - only two key cache entries are used
* regardless of splitmic capability since group key is only
* used either for TX or RX.
*/
if (authenticator) {
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
} else {
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
}
return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
}
if (!common->splitmic) {
/* TX and RX keys share the same key cache entry. */
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
}
/* Separate key cache entries for TX and RX */
/* TX key goes at first index, RX key at +32. */
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) {
/* TX MIC entry failed. No need to proceed further */
ath_print(common, ATH_DBG_FATAL,
"Setting TX MIC Key Failed\n");
return 0;
}
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
/* XXX delete tx key on failure? */
return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr);
}
static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
{
int i;
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
if (test_bit(i, common->keymap) ||
test_bit(i + 64, common->keymap))
continue; /* At least one part of TKIP key allocated */
if (common->splitmic &&
(test_bit(i + 32, common->keymap) ||
test_bit(i + 64 + 32, common->keymap)))
continue; /* At least one part of TKIP key allocated */
/* Found a free slot for a TKIP key */
return i;
}
return -1;
}
static int ath_reserve_key_cache_slot(struct ath_common *common)
{
int i;
/* First, try to find slots that would not be available for TKIP. */
if (common->splitmic) {
for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
if (!test_bit(i, common->keymap) &&
(test_bit(i + 32, common->keymap) ||
test_bit(i + 64, common->keymap) ||
test_bit(i + 64 + 32, common->keymap)))
return i;
if (!test_bit(i + 32, common->keymap) &&
(test_bit(i, common->keymap) ||
test_bit(i + 64, common->keymap) ||
test_bit(i + 64 + 32, common->keymap)))
return i + 32;
if (!test_bit(i + 64, common->keymap) &&
(test_bit(i , common->keymap) ||
test_bit(i + 32, common->keymap) ||
test_bit(i + 64 + 32, common->keymap)))
return i + 64;
if (!test_bit(i + 64 + 32, common->keymap) &&
(test_bit(i, common->keymap) ||
test_bit(i + 32, common->keymap) ||
test_bit(i + 64, common->keymap)))
return i + 64 + 32;
}
} else {
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
if (!test_bit(i, common->keymap) &&
test_bit(i + 64, common->keymap))
return i;
if (test_bit(i, common->keymap) &&
!test_bit(i + 64, common->keymap))
return i + 64;
}
}
/* No partially used TKIP slots, pick any available slot */
for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
/* Do not allow slots that could be needed for TKIP group keys
* to be used. This limitation could be removed if we know that
* TKIP will not be used. */
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
continue;
if (common->splitmic) {
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
continue;
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
continue;
}
if (!test_bit(i, common->keymap))
return i; /* Found a free slot for a key */
}
/* No free slot found */
return -1;
}
static int ath_key_config(struct ath_common *common,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath_hw *ah = common->ah;
struct ath9k_keyval hk;
const u8 *mac = NULL;
int ret = 0;
int idx;
memset(&hk, 0, sizeof(hk));
switch (key->alg) {
case ALG_WEP:
hk.kv_type = ATH9K_CIPHER_WEP;
break;
case ALG_TKIP:
hk.kv_type = ATH9K_CIPHER_TKIP;
break;
case ALG_CCMP:
hk.kv_type = ATH9K_CIPHER_AES_CCM;
break;
default:
return -EOPNOTSUPP;
}
hk.kv_len = key->keylen;
memcpy(hk.kv_val, key->key, key->keylen);
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
/* For now, use the default keys for broadcast keys. This may
* need to change with virtual interfaces. */
idx = key->keyidx;
} else if (key->keyidx) {
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
if (vif->type != NL80211_IFTYPE_AP) {
/* Only keyidx 0 should be used with unicast key, but
* allow this for client mode for now. */
idx = key->keyidx;
} else
return -EIO;
} else {
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
if (key->alg == ALG_TKIP)
idx = ath_reserve_key_cache_slot_tkip(common);
else
idx = ath_reserve_key_cache_slot(common);
if (idx < 0)
return -ENOSPC; /* no free key cache entries */
}
if (key->alg == ALG_TKIP)
ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
vif->type == NL80211_IFTYPE_AP);
else
ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac);
if (!ret)
return -EIO;
set_bit(idx, common->keymap);
if (key->alg == ALG_TKIP) {
set_bit(idx + 64, common->keymap);
if (common->splitmic) {
set_bit(idx + 32, common->keymap);
set_bit(idx + 64 + 32, common->keymap);
}
}
return idx;
}
static void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
{
struct ath_hw *ah = common->ah;
ath9k_hw_keyreset(ah, key->hw_key_idx);
if (key->hw_key_idx < IEEE80211_WEP_NKID)
return;
clear_bit(key->hw_key_idx, common->keymap);
if (key->alg != ALG_TKIP)
return;
clear_bit(key->hw_key_idx + 64, common->keymap);
if (common->splitmic) {
clear_bit(key->hw_key_idx + 32, common->keymap);
clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
}
}
static void ath9k_bss_assoc_info(struct ath_softc *sc,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
if (bss_conf->assoc) {
ath_print(common, ATH_DBG_CONFIG,
"Bss Info ASSOC %d, bssid: %pM\n",
bss_conf->aid, common->curbssid);
/* New association, store aid */
common->curaid = bss_conf->aid;
ath9k_hw_write_associd(ah);
/*
* Request a re-configuration of Beacon related timers
* on the receipt of the first Beacon frame (i.e.,
* after time sync with the AP).
*/
sc->ps_flags |= PS_BEACON_SYNC;
/* Configure the beacon */
ath_beacon_config(sc, vif);
/* Reset rssi stats */
sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
ath_start_ani(common);
} else {
ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
common->curaid = 0;
/* Stop ANI */
del_timer_sync(&common->ani.timer);
}
}
void ath_radio_enable(struct ath_softc *sc, struct ieee80211_hw *hw)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_channel *channel = hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
ath9k_hw_configpcipowersave(ah, 0, 0);
if (!ah->curchan)
ah->curchan = ath_get_curchannel(sc, sc->hw);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
ath_print(common, ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) ",
"reset status %d\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath_update_txpow(sc);
if (ath_startrecv(sc) != 0) {
ath_print(common, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
return;
}
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, NULL); /* restart beacons */
/* Re-Enable interrupts */
ath9k_hw_set_interrupts(ah, sc->imask);
/* Enable LED */
ath9k_hw_cfg_output(ah, ah->led_pin,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
ath9k_hw_set_gpio(ah, ah->led_pin, 0);
ieee80211_wake_queues(hw);
ath9k_ps_restore(sc);
}
void ath_radio_disable(struct ath_softc *sc, struct ieee80211_hw *hw)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_channel *channel = hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
ieee80211_stop_queues(hw);
/* Disable LED */
ath9k_hw_set_gpio(ah, ah->led_pin, 1);
ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
/* Disable interrupts */
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
ath_flushrecv(sc); /* flush recv queue */
if (!ah->curchan)
ah->curchan = ath_get_curchannel(sc, hw);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) "
"reset status %d\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath9k_hw_phy_disable(ah);
ath9k_hw_configpcipowersave(ah, 1, 1);
ath9k_ps_restore(sc);
ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
}
int ath_reset(struct ath_softc *sc, bool retry_tx)
{
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_hw *hw = sc->hw;
int r;
/* Stop ANI */
del_timer_sync(&common->ani.timer);
ieee80211_stop_queues(hw);
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, retry_tx);
ath_stoprecv(sc);
ath_flushrecv(sc);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
if (r)
ath_print(common, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %d\n", r);
spin_unlock_bh(&sc->sc_resetlock);
if (ath_startrecv(sc) != 0)
ath_print(common, ATH_DBG_FATAL,
"Unable to start recv logic\n");
/*
* We may be doing a reset in response to a request
* that changes the channel so update any state that
* might change as a result.
*/
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, NULL); /* restart beacons */
ath9k_hw_set_interrupts(ah, sc->imask);
if (retry_tx) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->tx.txq[i].axq_lock);
ath_txq_schedule(sc, &sc->tx.txq[i]);
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
}
}
}
ieee80211_wake_queues(hw);
/* Start ANI */
ath_start_ani(common);
return r;
}
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case 0:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
break;
case 1:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
break;
case 2:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
case 3:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
break;
default:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
}
return qnum;
}
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case ATH9K_WME_AC_VO:
qnum = 0;
break;
case ATH9K_WME_AC_VI:
qnum = 1;
break;
case ATH9K_WME_AC_BE:
qnum = 2;
break;
case ATH9K_WME_AC_BK:
qnum = 3;
break;
default:
qnum = -1;
break;
}
return qnum;
}
/* XXX: Remove me once we don't depend on ath9k_channel for all
* this redundant data */
void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
struct ath9k_channel *ichan)
{
struct ieee80211_channel *chan = hw->conf.channel;
struct ieee80211_conf *conf = &hw->conf;
ichan->channel = chan->center_freq;
ichan->chan = chan;
if (chan->band == IEEE80211_BAND_2GHZ) {
ichan->chanmode = CHANNEL_G;
ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
} else {
ichan->chanmode = CHANNEL_A;
ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
}
if (conf_is_ht(conf))
ichan->chanmode = ath_get_extchanmode(sc, chan,
conf->channel_type);
}
/**********************/
/* mac80211 callbacks */
/**********************/
static int ath9k_start(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath9k_channel *init_channel;
int r;
ath_print(common, ATH_DBG_CONFIG,
"Starting driver with initial channel: %d MHz\n",
curchan->center_freq);
mutex_lock(&sc->mutex);
if (ath9k_wiphy_started(sc)) {
if (sc->chan_idx == curchan->hw_value) {
/*
* Already on the operational channel, the new wiphy
* can be marked active.
*/
aphy->state = ATH_WIPHY_ACTIVE;
ieee80211_wake_queues(hw);
} else {
/*
* Another wiphy is on another channel, start the new
* wiphy in paused state.
*/
aphy->state = ATH_WIPHY_PAUSED;
ieee80211_stop_queues(hw);
}
mutex_unlock(&sc->mutex);
return 0;
}
aphy->state = ATH_WIPHY_ACTIVE;
/* setup initial channel */
sc->chan_idx = curchan->hw_value;
init_channel = ath_get_curchannel(sc, hw);
/* Reset SERDES registers */
ath9k_hw_configpcipowersave(ah, 0, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, init_channel, false);
if (r) {
ath_print(common, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %d "
"(freq %u MHz)\n", r,
curchan->center_freq);
spin_unlock_bh(&sc->sc_resetlock);
goto mutex_unlock;
}
spin_unlock_bh(&sc->sc_resetlock);
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Setup the hardware after reset:
* The receive engine is set going.
* Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
ath_print(common, ATH_DBG_FATAL,
"Unable to start recv logic\n");
r = -EIO;
goto mutex_unlock;
}
/* Setup our intr mask. */
sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
sc->imask |= ATH9K_INT_GTT;
if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
sc->imask |= ATH9K_INT_CST;
ath_cache_conf_rate(sc, &hw->conf);
sc->sc_flags &= ~SC_OP_INVALID;
/* Disable BMISS interrupt when we're not associated */
sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(ah, sc->imask);
ieee80211_wake_queues(hw);
ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
!ah->btcoex_hw.enabled) {
ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
AR_STOMP_LOW_WLAN_WGHT);
ath9k_hw_btcoex_enable(ah);
if (common->bus_ops->bt_coex_prep)
common->bus_ops->bt_coex_prep(common);
if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
ath9k_btcoex_timer_resume(sc);
}
mutex_unlock:
mutex_unlock(&sc->mutex);
return r;
}
static int ath9k_tx(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_tx_control txctl;
int padpos, padsize;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
ath_print(common, ATH_DBG_XMIT,
"ath9k: %s: TX in unexpected wiphy state "
"%d\n", wiphy_name(hw->wiphy), aphy->state);
goto exit;
}
if (sc->ps_enabled) {
/*
* mac80211 does not set PM field for normal data frames, so we
* need to update that based on the current PS mode.
*/
if (ieee80211_is_data(hdr->frame_control) &&
!ieee80211_is_nullfunc(hdr->frame_control) &&
!ieee80211_has_pm(hdr->frame_control)) {
ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
"while in PS mode\n");
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
}
}
if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
/*
* We are using PS-Poll and mac80211 can request TX while in
* power save mode. Need to wake up hardware for the TX to be
* completed and if needed, also for RX of buffered frames.
*/
ath9k_ps_wakeup(sc);
ath9k_hw_setrxabort(sc->sc_ah, 0);
if (ieee80211_is_pspoll(hdr->frame_control)) {
ath_print(common, ATH_DBG_PS,
"Sending PS-Poll to pick a buffered frame\n");
sc->ps_flags |= PS_WAIT_FOR_PSPOLL_DATA;
} else {
ath_print(common, ATH_DBG_PS,
"Wake up to complete TX\n");
sc->ps_flags |= PS_WAIT_FOR_TX_ACK;
}
/*
* The actual restore operation will happen only after
* the sc_flags bit is cleared. We are just dropping
* the ps_usecount here.
*/
ath9k_ps_restore(sc);
}
memset(&txctl, 0, sizeof(struct ath_tx_control));
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->tx.seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
}
/* Add the padding after the header if this is not already done */
padpos = ath9k_cmn_padpos(hdr->frame_control);
padsize = padpos & 3;
if (padsize && skb->len>padpos) {
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, padpos);
}
/* Check if a tx queue is available */
txctl.txq = ath_test_get_txq(sc, skb);
if (!txctl.txq)
goto exit;
ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
if (ath_tx_start(hw, skb, &txctl) != 0) {
ath_print(common, ATH_DBG_XMIT, "TX failed\n");
goto exit;
}
return 0;
exit:
dev_kfree_skb_any(skb);
return 0;
}
static void ath9k_stop(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
mutex_lock(&sc->mutex);
aphy->state = ATH_WIPHY_INACTIVE;
cancel_delayed_work_sync(&sc->ath_led_blink_work);
cancel_delayed_work_sync(&sc->tx_complete_work);
if (!sc->num_sec_wiphy) {
cancel_delayed_work_sync(&sc->wiphy_work);
cancel_work_sync(&sc->chan_work);
}
if (sc->sc_flags & SC_OP_INVALID) {
ath_print(common, ATH_DBG_ANY, "Device not present\n");
mutex_unlock(&sc->mutex);
return;
}
if (ath9k_wiphy_started(sc)) {
mutex_unlock(&sc->mutex);
return; /* another wiphy still in use */
}
/* Ensure HW is awake when we try to shut it down. */
ath9k_ps_wakeup(sc);
if (ah->btcoex_hw.enabled) {
ath9k_hw_btcoex_disable(ah);
if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
ath9k_btcoex_timer_pause(sc);
}
/* make sure h/w will not generate any interrupt
* before setting the invalid flag. */
ath9k_hw_set_interrupts(ah, 0);
if (!(sc->sc_flags & SC_OP_INVALID)) {
ath_drain_all_txq(sc, false);
ath_stoprecv(sc);
ath9k_hw_phy_disable(ah);
} else
sc->rx.rxlink = NULL;
/* disable HAL and put h/w to sleep */
ath9k_hw_disable(ah);
ath9k_hw_configpcipowersave(ah, 1, 1);
ath9k_ps_restore(sc);
/* Finally, put the chip in FULL SLEEP mode */
ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
sc->sc_flags |= SC_OP_INVALID;
mutex_unlock(&sc->mutex);
ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
}
static int ath9k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_vif *avp = (void *)vif->drv_priv;
enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
int ret = 0;
mutex_lock(&sc->mutex);
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
sc->nvifs > 0) {
ret = -ENOBUFS;
goto out;
}
switch (vif->type) {
case NL80211_IFTYPE_STATION:
ic_opmode = NL80211_IFTYPE_STATION;
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
if (sc->nbcnvifs >= ATH_BCBUF) {
ret = -ENOBUFS;
goto out;
}
ic_opmode = vif->type;
break;
default:
ath_print(common, ATH_DBG_FATAL,
"Interface type %d not yet supported\n", vif->type);
ret = -EOPNOTSUPP;
goto out;
}
ath_print(common, ATH_DBG_CONFIG,
"Attach a VIF of type: %d\n", ic_opmode);
/* Set the VIF opmode */
avp->av_opmode = ic_opmode;
avp->av_bslot = -1;
sc->nvifs++;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
ath9k_set_bssid_mask(hw);
if (sc->nvifs > 1)
goto out; /* skip global settings for secondary vif */
if (ic_opmode == NL80211_IFTYPE_AP) {
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
sc->sc_flags |= SC_OP_TSF_RESET;
}
/* Set the device opmode */
sc->sc_ah->opmode = ic_opmode;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if ((vif->type == NL80211_IFTYPE_STATION) ||
(vif->type == NL80211_IFTYPE_ADHOC) ||
(vif->type == NL80211_IFTYPE_MESH_POINT)) {
sc->imask |= ATH9K_INT_MIB;
sc->imask |= ATH9K_INT_TSFOOR;
}
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
if (vif->type == NL80211_IFTYPE_AP ||
vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_MONITOR)
ath_start_ani(common);
out:
mutex_unlock(&sc->mutex);
return ret;
}
static void ath9k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath_vif *avp = (void *)vif->drv_priv;
int i;
ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
mutex_lock(&sc->mutex);
/* Stop ANI */
del_timer_sync(&common->ani.timer);
/* Reclaim beacon resources */
if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
(sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
(sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
ath9k_ps_wakeup(sc);
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
ath_beacon_return(sc, avp);
ath9k_ps_restore(sc);
}
sc->sc_flags &= ~SC_OP_BEACONS;
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
if (sc->beacon.bslot[i] == vif) {
printk(KERN_DEBUG "%s: vif had allocated beacon "
"slot\n", __func__);
sc->beacon.bslot[i] = NULL;
sc->beacon.bslot_aphy[i] = NULL;
}
}
sc->nvifs--;
mutex_unlock(&sc->mutex);
}
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ieee80211_conf *conf = &hw->conf;
struct ath_hw *ah = sc->sc_ah;
bool disable_radio;
mutex_lock(&sc->mutex);
/*
* Leave this as the first check because we need to turn on the
* radio if it was disabled before prior to processing the rest
* of the changes. Likewise we must only disable the radio towards
* the end.
*/
if (changed & IEEE80211_CONF_CHANGE_IDLE) {
bool enable_radio;
bool all_wiphys_idle;
bool idle = !!(conf->flags & IEEE80211_CONF_IDLE);
spin_lock_bh(&sc->wiphy_lock);
all_wiphys_idle = ath9k_all_wiphys_idle(sc);
ath9k_set_wiphy_idle(aphy, idle);
if (!idle && all_wiphys_idle)
enable_radio = true;
/*
* After we unlock here its possible another wiphy
* can be re-renabled so to account for that we will
* only disable the radio toward the end of this routine
* if by then all wiphys are still idle.
*/
spin_unlock_bh(&sc->wiphy_lock);
if (enable_radio) {
ath_radio_enable(sc, hw);
ath_print(common, ATH_DBG_CONFIG,
"not-idle: enabling radio\n");
}
}
/*
* We just prepare to enable PS. We have to wait until our AP has
* ACK'd our null data frame to disable RX otherwise we'll ignore
* those ACKs and end up retransmitting the same null data frames.
* IEEE80211_CONF_CHANGE_PS is only passed by mac80211 for STA mode.
*/
if (changed & IEEE80211_CONF_CHANGE_PS) {
if (conf->flags & IEEE80211_CONF_PS) {
sc->ps_flags |= PS_ENABLED;
if (!(ah->caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
sc->imask |= ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
}
/*
* At this point we know hardware has received an ACK
* of a previously sent null data frame.
*/
if ((sc->ps_flags & PS_NULLFUNC_COMPLETED)) {
sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
sc->ps_enabled = true;
ath9k_hw_setrxabort(sc->sc_ah, 1);
}
} else {
sc->ps_enabled = false;
sc->ps_flags &= ~(PS_ENABLED |
PS_NULLFUNC_COMPLETED);
ath9k_setpower(sc, ATH9K_PM_AWAKE);
if (!(ah->caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
ath9k_hw_setrxabort(sc->sc_ah, 0);
sc->ps_flags &= ~(PS_WAIT_FOR_BEACON |
PS_WAIT_FOR_CAB |
PS_WAIT_FOR_PSPOLL_DATA |
PS_WAIT_FOR_TX_ACK);
if (sc->imask & ATH9K_INT_TIM_TIMER) {
sc->imask &= ~ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
}
}
}
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
if (conf->flags & IEEE80211_CONF_MONITOR) {
ath_print(common, ATH_DBG_CONFIG,
"HW opmode set to Monitor mode\n");
sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
}
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
struct ieee80211_channel *curchan = hw->conf.channel;
int pos = curchan->hw_value;
aphy->chan_idx = pos;
aphy->chan_is_ht = conf_is_ht(conf);
if (aphy->state == ATH_WIPHY_SCAN ||
aphy->state == ATH_WIPHY_ACTIVE)
ath9k_wiphy_pause_all_forced(sc, aphy);
else {
/*
* Do not change operational channel based on a paused
* wiphy changes.
*/
goto skip_chan_change;
}
ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
curchan->center_freq);
/* XXX: remove me eventualy */
ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
ath_update_chainmask(sc, conf_is_ht(conf));
if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
ath_print(common, ATH_DBG_FATAL,
"Unable to set channel\n");
mutex_unlock(&sc->mutex);
return -EINVAL;
}
}
skip_chan_change:
if (changed & IEEE80211_CONF_CHANGE_POWER)
sc->config.txpowlimit = 2 * conf->power_level;
spin_lock_bh(&sc->wiphy_lock);
disable_radio = ath9k_all_wiphys_idle(sc);
spin_unlock_bh(&sc->wiphy_lock);
if (disable_radio) {
ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
ath_radio_disable(sc, hw);
}
mutex_unlock(&sc->mutex);
return 0;
}
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_PSPOLL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_FCSFAIL)
/* FIXME: sc->sc_full_reset ? */
static void ath9k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
u32 rfilt;
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
sc->rx.rxfilter = *total_flags;
ath9k_ps_wakeup(sc);
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
ath9k_ps_restore(sc);
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
"Set HW RX filter: 0x%x\n", rfilt);
}
static void ath9k_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
switch (cmd) {
case STA_NOTIFY_ADD:
ath_node_attach(sc, sta);
break;
case STA_NOTIFY_REMOVE:
ath_node_detach(sc, sta);
break;
default:
break;
}
}
static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
struct ath9k_tx_queue_info qi;
int ret = 0, qnum;
if (queue >= WME_NUM_AC)
return 0;
mutex_lock(&sc->mutex);
memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
qi.tqi_aifs = params->aifs;
qi.tqi_cwmin = params->cw_min;
qi.tqi_cwmax = params->cw_max;
qi.tqi_burstTime = params->txop;
qnum = ath_get_hal_qnum(queue, sc);
ath_print(common, ATH_DBG_CONFIG,
"Configure tx [queue/halq] [%d/%d], "
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
queue, qnum, params->aifs, params->cw_min,
params->cw_max, params->txop);
ret = ath_txq_update(sc, qnum, &qi);
if (ret)
ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
if (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)
if ((qnum == sc->tx.hwq_map[ATH9K_WME_AC_BE]) && !ret)
ath_beaconq_config(sc);
mutex_unlock(&sc->mutex);
return ret;
}
static int ath9k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
int ret = 0;
if (modparam_nohwcrypt)
return -ENOSPC;
mutex_lock(&sc->mutex);
ath9k_ps_wakeup(sc);
ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
switch (cmd) {
case SET_KEY:
ret = ath_key_config(common, vif, sta, key);
if (ret >= 0) {
key->hw_key_idx = ret;
/* push IV and Michael MIC generation to stack */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
if (key->alg == ALG_TKIP)
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
ret = 0;
}
break;
case DISABLE_KEY:
ath_key_delete(common, key);
break;
default:
ret = -EINVAL;
}
ath9k_ps_restore(sc);
mutex_unlock(&sc->mutex);
return ret;
}
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_hw *ah = sc->sc_ah;
struct ath_common *common = ath9k_hw_common(ah);
struct ath_vif *avp = (void *)vif->drv_priv;
int slottime;
int error;
mutex_lock(&sc->mutex);
if (changed & BSS_CHANGED_BSSID) {
/* Set BSSID */
memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
common->curaid = 0;
ath9k_hw_write_associd(ah);
/* Set aggregation protection mode parameters */
sc->config.ath_aggr_prot = 0;
/* Only legacy IBSS for now */
if (vif->type == NL80211_IFTYPE_ADHOC)
ath_update_chainmask(sc, 0);
ath_print(common, ATH_DBG_CONFIG,
"BSSID: %pM aid: 0x%x\n",
common->curbssid, common->curaid);
/* need to reconfigure the beacon */
sc->sc_flags &= ~SC_OP_BEACONS ;
}
/* Enable transmission of beacons (AP, IBSS, MESH) */
if ((changed & BSS_CHANGED_BEACON) ||
((changed & BSS_CHANGED_BEACON_ENABLED) && bss_conf->enable_beacon)) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
error = ath_beacon_alloc(aphy, vif);
if (!error)
ath_beacon_config(sc, vif);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
if (bss_conf->use_short_slot)
slottime = 9;
else
slottime = 20;
if (vif->type == NL80211_IFTYPE_AP) {
/*
* Defer update, so that connected stations can adjust
* their settings at the same time.
* See beacon.c for more details
*/
sc->beacon.slottime = slottime;
sc->beacon.updateslot = UPDATE;
} else {
ah->slottime = slottime;
ath9k_hw_init_global_settings(ah);
}
}
/* Disable transmission of beacons */
if ((changed & BSS_CHANGED_BEACON_ENABLED) && !bss_conf->enable_beacon)
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
if (changed & BSS_CHANGED_BEACON_INT) {
sc->beacon_interval = bss_conf->beacon_int;
/*
* In case of AP mode, the HW TSF has to be reset
* when the beacon interval changes.
*/
if (vif->type == NL80211_IFTYPE_AP) {
sc->sc_flags |= SC_OP_TSF_RESET;
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
error = ath_beacon_alloc(aphy, vif);
if (!error)
ath_beacon_config(sc, vif);
} else {
ath_beacon_config(sc, vif);
}
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
else
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot &&
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
else
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
}
if (changed & BSS_CHANGED_ASSOC) {
ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
bss_conf->assoc);
ath9k_bss_assoc_info(sc, vif, bss_conf);
}
mutex_unlock(&sc->mutex);
}
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{
u64 tsf;
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
tsf = ath9k_hw_gettsf64(sc->sc_ah);
mutex_unlock(&sc->mutex);
return tsf;
}
static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
ath9k_hw_settsf64(sc->sc_ah, tsf);
mutex_unlock(&sc->mutex);
}
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
mutex_lock(&sc->mutex);
ath9k_ps_wakeup(sc);
ath9k_hw_reset_tsf(sc->sc_ah);
ath9k_ps_restore(sc);
mutex_unlock(&sc->mutex);
}
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
int ret = 0;
switch (action) {
case IEEE80211_AMPDU_RX_START:
if (!(sc->sc_flags & SC_OP_RXAGGR))
ret = -ENOTSUPP;
break;
case IEEE80211_AMPDU_RX_STOP:
break;
case IEEE80211_AMPDU_TX_START:
ath9k_ps_wakeup(sc);
ath_tx_aggr_start(sc, sta, tid, ssn);
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
ath9k_ps_restore(sc);
break;
case IEEE80211_AMPDU_TX_STOP:
ath9k_ps_wakeup(sc);
ath_tx_aggr_stop(sc, sta, tid);
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
ath9k_ps_restore(sc);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
ath9k_ps_wakeup(sc);
ath_tx_aggr_resume(sc, sta, tid);
ath9k_ps_restore(sc);
break;
default:
ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
"Unknown AMPDU action\n");
}
return ret;
}
static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
mutex_lock(&sc->mutex);
if (ath9k_wiphy_scanning(sc)) {
printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
"same time\n");
/*
* Do not allow the concurrent scanning state for now. This
* could be improved with scanning control moved into ath9k.
*/
mutex_unlock(&sc->mutex);
return;
}
aphy->state = ATH_WIPHY_SCAN;
ath9k_wiphy_pause_all_forced(sc, aphy);
sc->sc_flags |= SC_OP_SCANNING;
del_timer_sync(&common->ani.timer);
cancel_delayed_work_sync(&sc->tx_complete_work);
mutex_unlock(&sc->mutex);
}
static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
{
struct ath_wiphy *aphy = hw->priv;
struct ath_softc *sc = aphy->sc;
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
mutex_lock(&sc->mutex);
aphy->state = ATH_WIPHY_ACTIVE;
sc->sc_flags &= ~SC_OP_SCANNING;
sc->sc_flags |= SC_OP_FULL_RESET;
ath_start_ani(common);
ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
ath_beacon_config(sc, NULL);
mutex_unlock(&sc->mutex);
}
struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
.start = ath9k_start,
.stop = ath9k_stop,
.add_interface = ath9k_add_interface,
.remove_interface = ath9k_remove_interface,
.config = ath9k_config,
.configure_filter = ath9k_configure_filter,
.sta_notify = ath9k_sta_notify,
.conf_tx = ath9k_conf_tx,
.bss_info_changed = ath9k_bss_info_changed,
.set_key = ath9k_set_key,
.get_tsf = ath9k_get_tsf,
.set_tsf = ath9k_set_tsf,
.reset_tsf = ath9k_reset_tsf,
.ampdu_action = ath9k_ampdu_action,
.sw_scan_start = ath9k_sw_scan_start,
.sw_scan_complete = ath9k_sw_scan_complete,
.rfkill_poll = ath9k_rfkill_poll_state,
};