linux/net/ipv6/route.c

6791 lines
167 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linux INET6 implementation
* FIB front-end.
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*/
/* Changes:
*
* YOSHIFUJI Hideaki @USAGI
* reworked default router selection.
* - respect outgoing interface
* - select from (probably) reachable routers (i.e.
* routers in REACHABLE, STALE, DELAY or PROBE states).
* - always select the same router if it is (probably)
* reachable. otherwise, round-robin the list.
* Ville Nuorvala
* Fixed routing subtrees.
*/
#define pr_fmt(fmt) "IPv6: " fmt
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/times.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/route.h>
#include <linux/netdevice.h>
#include <linux/in6.h>
#include <linux/mroute6.h>
#include <linux/init.h>
#include <linux/if_arp.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/nsproxy.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/jhash.h>
#include <linux/siphash.h>
#include <net/net_namespace.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/ip6_fib.h>
#include <net/ip6_route.h>
#include <net/ndisc.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <linux/rtnetlink.h>
#include <net/dst.h>
#include <net/dst_metadata.h>
#include <net/xfrm.h>
#include <net/netevent.h>
#include <net/netlink.h>
#include <net/rtnh.h>
#include <net/lwtunnel.h>
#include <net/ip_tunnels.h>
#include <net/l3mdev.h>
#include <net/ip.h>
#include <linux/uaccess.h>
#include <linux/btf_ids.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
static int ip6_rt_type_to_error(u8 fib6_type);
#define CREATE_TRACE_POINTS
#include <trace/events/fib6.h>
EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
#undef CREATE_TRACE_POINTS
enum rt6_nud_state {
RT6_NUD_FAIL_HARD = -3,
RT6_NUD_FAIL_PROBE = -2,
RT6_NUD_FAIL_DO_RR = -1,
RT6_NUD_SUCCEED = 1
};
INDIRECT_CALLABLE_SCOPE
struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
static unsigned int ip6_default_advmss(const struct dst_entry *dst);
INDIRECT_CALLABLE_SCOPE
unsigned int ip6_mtu(const struct dst_entry *dst);
static struct dst_entry *ip6_negative_advice(struct dst_entry *);
static void ip6_dst_destroy(struct dst_entry *);
static void ip6_dst_ifdown(struct dst_entry *,
struct net_device *dev, int how);
static int ip6_dst_gc(struct dst_ops *ops);
static int ip6_pkt_discard(struct sk_buff *skb);
static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
static int ip6_pkt_prohibit(struct sk_buff *skb);
static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
static void ip6_link_failure(struct sk_buff *skb);
static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
struct sk_buff *skb, u32 mtu,
bool confirm_neigh);
static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
struct sk_buff *skb);
static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif,
int strict);
static size_t rt6_nlmsg_size(struct fib6_info *f6i);
static int rt6_fill_node(struct net *net, struct sk_buff *skb,
struct fib6_info *rt, struct dst_entry *dst,
struct in6_addr *dest, struct in6_addr *src,
int iif, int type, u32 portid, u32 seq,
unsigned int flags);
static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res,
const struct in6_addr *daddr,
const struct in6_addr *saddr);
#ifdef CONFIG_IPV6_ROUTE_INFO
static struct fib6_info *rt6_add_route_info(struct net *net,
const struct in6_addr *prefix, int prefixlen,
const struct in6_addr *gwaddr,
struct net_device *dev,
unsigned int pref);
static struct fib6_info *rt6_get_route_info(struct net *net,
const struct in6_addr *prefix, int prefixlen,
const struct in6_addr *gwaddr,
struct net_device *dev);
#endif
struct uncached_list {
spinlock_t lock;
struct list_head head;
struct list_head quarantine;
};
static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
xfrm: reuse uncached_list to track xdsts In early time, when freeing a xdst, it would be inserted into dst_garbage.list first. Then if it's refcnt was still held somewhere, later it would be put into dst_busy_list in dst_gc_task(). When one dev was being unregistered, the dev of these dsts in dst_busy_list would be set with loopback_dev and put this dev. So that this dev's removal wouldn't get blocked, and avoid the kmsg warning: kernel:unregister_netdevice: waiting for veth0 to become \ free. Usage count = 2 However after Commit 52df157f17e5 ("xfrm: take refcnt of dst when creating struct xfrm_dst bundle"), the xdst will not be freed with dst gc, and this warning happens. To fix it, we need to find these xdsts that are still held by others when removing the dev, and free xdst's dev and set it with loopback_dev. But unfortunately after flow_cache for xfrm was deleted, no list tracks them anymore. So we need to save these xdsts somewhere to release the xdst's dev later. To make this easier, this patch is to reuse uncached_list to track xdsts, so that the dev refcnt can be released in the event NETDEV_UNREGISTER process of fib_netdev_notifier. Thanks to Florian, we could move forward this fix quickly. Fixes: 52df157f17e5 ("xfrm: take refcnt of dst when creating struct xfrm_dst bundle") Reported-by: Jianlin Shi <jishi@redhat.com> Reported-by: Hangbin Liu <liuhangbin@gmail.com> Tested-by: Eyal Birger <eyal.birger@gmail.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2018-02-14 11:06:02 +00:00
void rt6_uncached_list_add(struct rt6_info *rt)
{
struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
rt->rt6i_uncached_list = ul;
spin_lock_bh(&ul->lock);
list_add_tail(&rt->rt6i_uncached, &ul->head);
spin_unlock_bh(&ul->lock);
}
xfrm: reuse uncached_list to track xdsts In early time, when freeing a xdst, it would be inserted into dst_garbage.list first. Then if it's refcnt was still held somewhere, later it would be put into dst_busy_list in dst_gc_task(). When one dev was being unregistered, the dev of these dsts in dst_busy_list would be set with loopback_dev and put this dev. So that this dev's removal wouldn't get blocked, and avoid the kmsg warning: kernel:unregister_netdevice: waiting for veth0 to become \ free. Usage count = 2 However after Commit 52df157f17e5 ("xfrm: take refcnt of dst when creating struct xfrm_dst bundle"), the xdst will not be freed with dst gc, and this warning happens. To fix it, we need to find these xdsts that are still held by others when removing the dev, and free xdst's dev and set it with loopback_dev. But unfortunately after flow_cache for xfrm was deleted, no list tracks them anymore. So we need to save these xdsts somewhere to release the xdst's dev later. To make this easier, this patch is to reuse uncached_list to track xdsts, so that the dev refcnt can be released in the event NETDEV_UNREGISTER process of fib_netdev_notifier. Thanks to Florian, we could move forward this fix quickly. Fixes: 52df157f17e5 ("xfrm: take refcnt of dst when creating struct xfrm_dst bundle") Reported-by: Jianlin Shi <jishi@redhat.com> Reported-by: Hangbin Liu <liuhangbin@gmail.com> Tested-by: Eyal Birger <eyal.birger@gmail.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2018-02-14 11:06:02 +00:00
void rt6_uncached_list_del(struct rt6_info *rt)
{
if (!list_empty(&rt->rt6i_uncached)) {
struct uncached_list *ul = rt->rt6i_uncached_list;
spin_lock_bh(&ul->lock);
list_del_init(&rt->rt6i_uncached);
spin_unlock_bh(&ul->lock);
}
}
static void rt6_uncached_list_flush_dev(struct net_device *dev)
{
int cpu;
for_each_possible_cpu(cpu) {
struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
struct rt6_info *rt, *safe;
if (list_empty(&ul->head))
continue;
spin_lock_bh(&ul->lock);
list_for_each_entry_safe(rt, safe, &ul->head, rt6i_uncached) {
struct inet6_dev *rt_idev = rt->rt6i_idev;
struct net_device *rt_dev = rt->dst.dev;
bool handled = false;
if (rt_idev->dev == dev) {
rt->rt6i_idev = in6_dev_get(blackhole_netdev);
in6_dev_put(rt_idev);
handled = true;
}
if (rt_dev == dev) {
rt->dst.dev = blackhole_netdev;
netdev_ref_replace(rt_dev, blackhole_netdev,
&rt->dst.dev_tracker,
GFP_ATOMIC);
handled = true;
}
if (handled)
list_move(&rt->rt6i_uncached,
&ul->quarantine);
}
spin_unlock_bh(&ul->lock);
}
}
static inline const void *choose_neigh_daddr(const struct in6_addr *p,
struct sk_buff *skb,
const void *daddr)
{
if (!ipv6_addr_any(p))
return (const void *) p;
else if (skb)
return &ipv6_hdr(skb)->daddr;
return daddr;
}
struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
struct net_device *dev,
struct sk_buff *skb,
const void *daddr)
{
struct neighbour *n;
daddr = choose_neigh_daddr(gw, skb, daddr);
n = __ipv6_neigh_lookup(dev, daddr);
if (n)
return n;
n = neigh_create(&nd_tbl, daddr, dev);
return IS_ERR(n) ? NULL : n;
}
static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
struct sk_buff *skb,
const void *daddr)
{
const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any),
dst->dev, skb, daddr);
}
static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
{
struct net_device *dev = dst->dev;
struct rt6_info *rt = (struct rt6_info *)dst;
ipv6: Don't use dst gateway directly in ip6_confirm_neigh() This is the equivalent of commit 2c6b55f45d53 ("ipv6: fix neighbour resolution with raw socket") for ip6_confirm_neigh(): we can send a packet with MSG_CONFIRM on a raw socket for a connected route, so the gateway would be :: here, and we should pick the next hop using rt6_nexthop() instead. This was found by code review and, to the best of my knowledge, doesn't actually fix a practical issue: the destination address from the packet is not considered while confirming a neighbour, as ip6_confirm_neigh() calls choose_neigh_daddr() without passing the packet, so there are no similar issues as the one fixed by said commit. A possible source of issues with the existing implementation might come from the fact that, if we have a cached dst, we won't consider it, while rt6_nexthop() takes care of that. I might just not be creative enough to find a practical problem here: the only way to affect this with cached routes is to have one coming from an ICMPv6 redirect, but if the next hop is a directly connected host, there should be no topology for which a redirect applies here, and tests with redirected routes show no differences for MSG_CONFIRM (and MSG_PROBE) packets on raw sockets destined to a directly connected host. However, directly using the dst gateway here is not consistent anymore with neighbour resolution, and, in general, as we want the next hop, using rt6_nexthop() looks like the only sane way to fetch it. Reported-by: Guillaume Nault <gnault@redhat.com> Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: Guillaume Nault <gnault@redhat.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-09 20:44:06 +00:00
daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr);
if (!daddr)
return;
if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
return;
if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
return;
__ipv6_confirm_neigh(dev, daddr);
}
static struct dst_ops ip6_dst_ops_template = {
.family = AF_INET6,
.gc = ip6_dst_gc,
.gc_thresh = 1024,
.check = ip6_dst_check,
.default_advmss = ip6_default_advmss,
.mtu = ip6_mtu,
.cow_metrics = dst_cow_metrics_generic,
.destroy = ip6_dst_destroy,
.ifdown = ip6_dst_ifdown,
.negative_advice = ip6_negative_advice,
.link_failure = ip6_link_failure,
.update_pmtu = ip6_rt_update_pmtu,
.redirect = rt6_do_redirect,
.local_out = __ip6_local_out,
.neigh_lookup = ip6_dst_neigh_lookup,
.confirm_neigh = ip6_confirm_neigh,
};
static struct dst_ops ip6_dst_blackhole_ops = {
.family = AF_INET6,
.default_advmss = ip6_default_advmss,
.neigh_lookup = ip6_dst_neigh_lookup,
.check = ip6_dst_check,
.destroy = ip6_dst_destroy,
.cow_metrics = dst_cow_metrics_generic,
.update_pmtu = dst_blackhole_update_pmtu,
.redirect = dst_blackhole_redirect,
.mtu = dst_blackhole_mtu,
};
net: Implement read-only protection and COW'ing of metrics. Routing metrics are now copy-on-write. Initially a route entry points it's metrics at a read-only location. If a routing table entry exists, it will point there. Else it will point at the all zero metric place-holder called 'dst_default_metrics'. The writeability state of the metrics is stored in the low bits of the metrics pointer, we have two bits left to spare if we want to store more states. For the initial implementation, COW is implemented simply via kmalloc. However future enhancements will change this to place the writable metrics somewhere else, in order to increase sharing. Very likely this "somewhere else" will be the inetpeer cache. Note also that this means that metrics updates may transiently fail if we cannot COW the metrics successfully. But even by itself, this patch should decrease memory usage and increase cache locality especially for routing workloads. In those cases the read-only metric copies stay in place and never get written to. TCP workloads where metrics get updated, and those rare cases where PMTU triggers occur, will take a very slight performance hit. But that hit will be alleviated when the long-term writable metrics move to a more sharable location. Since the metrics storage went from a u32 array of RTAX_MAX entries to what is essentially a pointer, some retooling of the dst_entry layout was necessary. Most importantly, we need to preserve the alignment of the reference count so that it doesn't share cache lines with the read-mostly state, as per Eric Dumazet's alignment assertion checks. The only non-trivial bit here is the move of the 'flags' member into the writeable cacheline. This is OK since we are always accessing the flags around the same moment when we made a modification to the reference count. Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-27 04:51:05 +00:00
static const u32 ip6_template_metrics[RTAX_MAX] = {
[RTAX_HOPLIMIT - 1] = 0,
net: Implement read-only protection and COW'ing of metrics. Routing metrics are now copy-on-write. Initially a route entry points it's metrics at a read-only location. If a routing table entry exists, it will point there. Else it will point at the all zero metric place-holder called 'dst_default_metrics'. The writeability state of the metrics is stored in the low bits of the metrics pointer, we have two bits left to spare if we want to store more states. For the initial implementation, COW is implemented simply via kmalloc. However future enhancements will change this to place the writable metrics somewhere else, in order to increase sharing. Very likely this "somewhere else" will be the inetpeer cache. Note also that this means that metrics updates may transiently fail if we cannot COW the metrics successfully. But even by itself, this patch should decrease memory usage and increase cache locality especially for routing workloads. In those cases the read-only metric copies stay in place and never get written to. TCP workloads where metrics get updated, and those rare cases where PMTU triggers occur, will take a very slight performance hit. But that hit will be alleviated when the long-term writable metrics move to a more sharable location. Since the metrics storage went from a u32 array of RTAX_MAX entries to what is essentially a pointer, some retooling of the dst_entry layout was necessary. Most importantly, we need to preserve the alignment of the reference count so that it doesn't share cache lines with the read-mostly state, as per Eric Dumazet's alignment assertion checks. The only non-trivial bit here is the move of the 'flags' member into the writeable cacheline. This is OK since we are always accessing the flags around the same moment when we made a modification to the reference count. Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-27 04:51:05 +00:00
};
static const struct fib6_info fib6_null_entry_template = {
.fib6_flags = (RTF_REJECT | RTF_NONEXTHOP),
.fib6_protocol = RTPROT_KERNEL,
.fib6_metric = ~(u32)0,
.fib6_ref = REFCOUNT_INIT(1),
.fib6_type = RTN_UNREACHABLE,
.fib6_metrics = (struct dst_metrics *)&dst_default_metrics,
};
static const struct rt6_info ip6_null_entry_template = {
.dst = {
.__refcnt = ATOMIC_INIT(1),
.__use = 1,
.obsolete = DST_OBSOLETE_FORCE_CHK,
.error = -ENETUNREACH,
.input = ip6_pkt_discard,
.output = ip6_pkt_discard_out,
},
.rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
};
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
static const struct rt6_info ip6_prohibit_entry_template = {
.dst = {
.__refcnt = ATOMIC_INIT(1),
.__use = 1,
.obsolete = DST_OBSOLETE_FORCE_CHK,
.error = -EACCES,
.input = ip6_pkt_prohibit,
.output = ip6_pkt_prohibit_out,
},
.rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
};
static const struct rt6_info ip6_blk_hole_entry_template = {
.dst = {
.__refcnt = ATOMIC_INIT(1),
.__use = 1,
.obsolete = DST_OBSOLETE_FORCE_CHK,
.error = -EINVAL,
.input = dst_discard,
.output = dst_discard_out,
},
.rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
};
#endif
static void rt6_info_init(struct rt6_info *rt)
{
memset_after(rt, 0, dst);
INIT_LIST_HEAD(&rt->rt6i_uncached);
}
/* allocate dst with ip6_dst_ops */
struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
int flags)
{
struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
1, DST_OBSOLETE_FORCE_CHK, flags);
if (rt) {
rt6_info_init(rt);
atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
}
return rt;
}
EXPORT_SYMBOL(ip6_dst_alloc);
static void ip6_dst_destroy(struct dst_entry *dst)
{
struct rt6_info *rt = (struct rt6_info *)dst;
struct fib6_info *from;
struct inet6_dev *idev;
ip_dst_metrics_put(dst);
rt6_uncached_list_del(rt);
idev = rt->rt6i_idev;
if (idev) {
rt->rt6i_idev = NULL;
in6_dev_put(idev);
}
ipv6: fix races in ip6_dst_destroy() We had many syzbot reports that seem to be caused by use-after-free of struct fib6_info. ip6_dst_destroy(), fib6_drop_pcpu_from() and rt6_remove_exception() are writers vs rt->from, and use non consistent synchronization among themselves. Switching to xchg() will solve the issues with no possible lockdep issues. BUG: KASAN: user-memory-access in atomic_dec_and_test include/asm-generic/atomic-instrumented.h:747 [inline] BUG: KASAN: user-memory-access in fib6_info_release include/net/ip6_fib.h:294 [inline] BUG: KASAN: user-memory-access in fib6_info_release include/net/ip6_fib.h:292 [inline] BUG: KASAN: user-memory-access in fib6_drop_pcpu_from net/ipv6/ip6_fib.c:927 [inline] BUG: KASAN: user-memory-access in fib6_purge_rt+0x4f6/0x670 net/ipv6/ip6_fib.c:960 Write of size 4 at addr 0000000000ffffb4 by task syz-executor.1/7649 CPU: 0 PID: 7649 Comm: syz-executor.1 Not tainted 5.1.0-rc6+ #183 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 kasan_report.cold+0x5/0x40 mm/kasan/report.c:321 check_memory_region_inline mm/kasan/generic.c:185 [inline] check_memory_region+0x123/0x190 mm/kasan/generic.c:191 kasan_check_write+0x14/0x20 mm/kasan/common.c:108 atomic_dec_and_test include/asm-generic/atomic-instrumented.h:747 [inline] fib6_info_release include/net/ip6_fib.h:294 [inline] fib6_info_release include/net/ip6_fib.h:292 [inline] fib6_drop_pcpu_from net/ipv6/ip6_fib.c:927 [inline] fib6_purge_rt+0x4f6/0x670 net/ipv6/ip6_fib.c:960 fib6_del_route net/ipv6/ip6_fib.c:1813 [inline] fib6_del+0xac2/0x10a0 net/ipv6/ip6_fib.c:1844 fib6_clean_node+0x3a8/0x590 net/ipv6/ip6_fib.c:2006 fib6_walk_continue+0x495/0x900 net/ipv6/ip6_fib.c:1928 fib6_walk+0x9d/0x100 net/ipv6/ip6_fib.c:1976 fib6_clean_tree+0xe0/0x120 net/ipv6/ip6_fib.c:2055 __fib6_clean_all+0x118/0x2a0 net/ipv6/ip6_fib.c:2071 fib6_clean_all+0x2b/0x40 net/ipv6/ip6_fib.c:2082 rt6_sync_down_dev+0x134/0x150 net/ipv6/route.c:4057 rt6_disable_ip+0x27/0x5f0 net/ipv6/route.c:4062 addrconf_ifdown+0xa2/0x1220 net/ipv6/addrconf.c:3705 addrconf_notify+0x19a/0x2260 net/ipv6/addrconf.c:3630 notifier_call_chain+0xc7/0x240 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2e/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x3f/0x90 net/core/dev.c:1753 call_netdevice_notifiers_extack net/core/dev.c:1765 [inline] call_netdevice_notifiers net/core/dev.c:1779 [inline] dev_close_many+0x33f/0x6f0 net/core/dev.c:1522 rollback_registered_many+0x43b/0xfd0 net/core/dev.c:8177 rollback_registered+0x109/0x1d0 net/core/dev.c:8242 unregister_netdevice_queue net/core/dev.c:9289 [inline] unregister_netdevice_queue+0x1ee/0x2c0 net/core/dev.c:9282 unregister_netdevice include/linux/netdevice.h:2658 [inline] __tun_detach+0xd5b/0x1000 drivers/net/tun.c:727 tun_detach drivers/net/tun.c:744 [inline] tun_chr_close+0xe0/0x180 drivers/net/tun.c:3443 __fput+0x2e5/0x8d0 fs/file_table.c:278 ____fput+0x16/0x20 fs/file_table.c:309 task_work_run+0x14a/0x1c0 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x90a/0x2fa0 kernel/exit.c:876 do_group_exit+0x135/0x370 kernel/exit.c:980 __do_sys_exit_group kernel/exit.c:991 [inline] __se_sys_exit_group kernel/exit.c:989 [inline] __x64_sys_exit_group+0x44/0x50 kernel/exit.c:989 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x458da9 Code: ad b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffeafc2a6a8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 000000000000001c RCX: 0000000000458da9 RDX: 0000000000412a80 RSI: 0000000000a54ef0 RDI: 0000000000000043 RBP: 00000000004be552 R08: 000000000000000c R09: 000000000004c0d1 R10: 0000000002341940 R11: 0000000000000246 R12: 00000000ffffffff R13: 00007ffeafc2a7f0 R14: 000000000004c065 R15: 00007ffeafc2a800 Fixes: a68886a69180 ("net/ipv6: Make from in rt6_info rcu protected") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: David Ahern <dsahern@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 19:22:25 +00:00
from = xchg((__force struct fib6_info **)&rt->from, NULL);
fib6_info_release(from);
}
static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
int how)
{
struct rt6_info *rt = (struct rt6_info *)dst;
struct inet6_dev *idev = rt->rt6i_idev;
if (idev && idev->dev != blackhole_netdev) {
struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev);
if (blackhole_idev) {
rt->rt6i_idev = blackhole_idev;
in6_dev_put(idev);
}
}
}
static bool __rt6_check_expired(const struct rt6_info *rt)
{
if (rt->rt6i_flags & RTF_EXPIRES)
return time_after(jiffies, rt->dst.expires);
else
return false;
}
static bool rt6_check_expired(const struct rt6_info *rt)
{
struct fib6_info *from;
from = rcu_dereference(rt->from);
if (rt->rt6i_flags & RTF_EXPIRES) {
if (time_after(jiffies, rt->dst.expires))
return true;
} else if (from) {
return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
fib6_check_expired(from);
}
return false;
}
void fib6_select_path(const struct net *net, struct fib6_result *res,
struct flowi6 *fl6, int oif, bool have_oif_match,
const struct sk_buff *skb, int strict)
{
struct fib6_info *sibling, *next_sibling;
struct fib6_info *match = res->f6i;
if (!match->nh && (!match->fib6_nsiblings || have_oif_match))
goto out;
if (match->nh && have_oif_match && res->nh)
return;
/* We might have already computed the hash for ICMPv6 errors. In such
* case it will always be non-zero. Otherwise now is the time to do it.
*/
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (!fl6->mp_hash &&
(!match->nh || nexthop_is_multipath(match->nh)))
fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (unlikely(match->nh)) {
nexthop_path_fib6_result(res, fl6->mp_hash);
return;
}
if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound))
goto out;
list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
fib6_siblings) {
const struct fib6_nh *nh = sibling->fib6_nh;
int nh_upper_bound;
nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound);
if (fl6->mp_hash > nh_upper_bound)
continue;
if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0)
break;
match = sibling;
break;
}
out:
res->f6i = match;
res->nh = match->fib6_nh;
}
/*
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
* Route lookup. rcu_read_lock() should be held.
*/
static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh,
const struct in6_addr *saddr, int oif, int flags)
{
const struct net_device *dev;
if (nh->fib_nh_flags & RTNH_F_DEAD)
return false;
dev = nh->fib_nh_dev;
if (oif) {
if (dev->ifindex == oif)
return true;
} else {
if (ipv6_chk_addr(net, saddr, dev,
flags & RT6_LOOKUP_F_IFACE))
return true;
}
return false;
}
struct fib6_nh_dm_arg {
struct net *net;
const struct in6_addr *saddr;
int oif;
int flags;
struct fib6_nh *nh;
};
static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_dm_arg *arg = _arg;
arg->nh = nh;
return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif,
arg->flags);
}
/* returns fib6_nh from nexthop or NULL */
static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh,
struct fib6_result *res,
const struct in6_addr *saddr,
int oif, int flags)
{
struct fib6_nh_dm_arg arg = {
.net = net,
.saddr = saddr,
.oif = oif,
.flags = flags,
};
if (nexthop_is_blackhole(nh))
return NULL;
if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg))
return arg.nh;
return NULL;
}
static void rt6_device_match(struct net *net, struct fib6_result *res,
const struct in6_addr *saddr, int oif, int flags)
{
struct fib6_info *f6i = res->f6i;
struct fib6_info *spf6i;
struct fib6_nh *nh;
if (!oif && ipv6_addr_any(saddr)) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (unlikely(f6i->nh)) {
nh = nexthop_fib6_nh(f6i->nh);
if (nexthop_is_blackhole(f6i->nh))
goto out_blackhole;
} else {
nh = f6i->fib6_nh;
}
if (!(nh->fib_nh_flags & RTNH_F_DEAD))
goto out;
}
for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) {
bool matched = false;
if (unlikely(spf6i->nh)) {
nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr,
oif, flags);
if (nh)
matched = true;
} else {
nh = spf6i->fib6_nh;
if (__rt6_device_match(net, nh, saddr, oif, flags))
matched = true;
}
if (matched) {
res->f6i = spf6i;
goto out;
}
}
if (oif && flags & RT6_LOOKUP_F_IFACE) {
res->f6i = net->ipv6.fib6_null_entry;
nh = res->f6i->fib6_nh;
goto out;
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (unlikely(f6i->nh)) {
nh = nexthop_fib6_nh(f6i->nh);
if (nexthop_is_blackhole(f6i->nh))
goto out_blackhole;
} else {
nh = f6i->fib6_nh;
}
if (nh->fib_nh_flags & RTNH_F_DEAD) {
res->f6i = net->ipv6.fib6_null_entry;
nh = res->f6i->fib6_nh;
}
out:
res->nh = nh;
res->fib6_type = res->f6i->fib6_type;
res->fib6_flags = res->f6i->fib6_flags;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
return;
out_blackhole:
res->fib6_flags |= RTF_REJECT;
res->fib6_type = RTN_BLACKHOLE;
res->nh = nh;
}
#ifdef CONFIG_IPV6_ROUTER_PREF
struct __rt6_probe_work {
struct work_struct work;
struct in6_addr target;
struct net_device *dev;
netdevice_tracker dev_tracker;
};
static void rt6_probe_deferred(struct work_struct *w)
{
struct in6_addr mcaddr;
struct __rt6_probe_work *work =
container_of(w, struct __rt6_probe_work, work);
addrconf_addr_solict_mult(&work->target, &mcaddr);
ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
netdev_put(work->dev, &work->dev_tracker);
kfree(work);
}
static void rt6_probe(struct fib6_nh *fib6_nh)
{
struct __rt6_probe_work *work = NULL;
const struct in6_addr *nh_gw;
ipv6: fixes rt6_probe() and fib6_nh->last_probe init While looking at a syzbot KCSAN report [1], I found multiple issues in this code : 1) fib6_nh->last_probe has an initial value of 0. While probably okay on 64bit kernels, this causes an issue on 32bit kernels since the time_after(jiffies, 0 + interval) might be false ~24 days after boot (for HZ=1000) 2) The data-race found by KCSAN I could use READ_ONCE() and WRITE_ONCE(), but we also can take the opportunity of not piling-up too many rt6_probe_deferred() works by using instead cmpxchg() so that only one cpu wins the race. [1] BUG: KCSAN: data-race in find_match / find_match write to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 1: rt6_probe net/ipv6/route.c:663 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x5bd/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 tcp_transmit_skb net/ipv4/tcp_output.c:1185 [inline] tcp_xmit_probe_skb+0x19b/0x1d0 net/ipv4/tcp_output.c:3735 read to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 0: rt6_probe net/ipv6/route.c:657 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x521/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 18894 Comm: udevd Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: cc3a86c802f0 ("ipv6: Change rt6_probe to take a fib6_nh") Fixes: f547fac624be ("ipv6: rate-limit probes for neighbourless routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 17:26:19 +00:00
unsigned long last_probe;
struct neighbour *neigh;
struct net_device *dev;
struct inet6_dev *idev;
/*
* Okay, this does not seem to be appropriate
* for now, however, we need to check if it
* is really so; aka Router Reachability Probing.
*
* Router Reachability Probe MUST be rate-limited
* to no more than one per minute.
*/
if (!fib6_nh->fib_nh_gw_family)
return;
nh_gw = &fib6_nh->fib_nh_gw6;
dev = fib6_nh->fib_nh_dev;
rcu_read_lock_bh();
ipv6: fixes rt6_probe() and fib6_nh->last_probe init While looking at a syzbot KCSAN report [1], I found multiple issues in this code : 1) fib6_nh->last_probe has an initial value of 0. While probably okay on 64bit kernels, this causes an issue on 32bit kernels since the time_after(jiffies, 0 + interval) might be false ~24 days after boot (for HZ=1000) 2) The data-race found by KCSAN I could use READ_ONCE() and WRITE_ONCE(), but we also can take the opportunity of not piling-up too many rt6_probe_deferred() works by using instead cmpxchg() so that only one cpu wins the race. [1] BUG: KCSAN: data-race in find_match / find_match write to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 1: rt6_probe net/ipv6/route.c:663 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x5bd/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 tcp_transmit_skb net/ipv4/tcp_output.c:1185 [inline] tcp_xmit_probe_skb+0x19b/0x1d0 net/ipv4/tcp_output.c:3735 read to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 0: rt6_probe net/ipv6/route.c:657 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x521/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 18894 Comm: udevd Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: cc3a86c802f0 ("ipv6: Change rt6_probe to take a fib6_nh") Fixes: f547fac624be ("ipv6: rate-limit probes for neighbourless routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 17:26:19 +00:00
last_probe = READ_ONCE(fib6_nh->last_probe);
idev = __in6_dev_get(dev);
neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
if (neigh) {
if (neigh->nud_state & NUD_VALID)
goto out;
write_lock(&neigh->lock);
if (!(neigh->nud_state & NUD_VALID) &&
time_after(jiffies,
neigh->updated + idev->cnf.rtr_probe_interval)) {
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work)
__neigh_set_probe_once(neigh);
}
write_unlock(&neigh->lock);
ipv6: fixes rt6_probe() and fib6_nh->last_probe init While looking at a syzbot KCSAN report [1], I found multiple issues in this code : 1) fib6_nh->last_probe has an initial value of 0. While probably okay on 64bit kernels, this causes an issue on 32bit kernels since the time_after(jiffies, 0 + interval) might be false ~24 days after boot (for HZ=1000) 2) The data-race found by KCSAN I could use READ_ONCE() and WRITE_ONCE(), but we also can take the opportunity of not piling-up too many rt6_probe_deferred() works by using instead cmpxchg() so that only one cpu wins the race. [1] BUG: KCSAN: data-race in find_match / find_match write to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 1: rt6_probe net/ipv6/route.c:663 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x5bd/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 tcp_transmit_skb net/ipv4/tcp_output.c:1185 [inline] tcp_xmit_probe_skb+0x19b/0x1d0 net/ipv4/tcp_output.c:3735 read to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 0: rt6_probe net/ipv6/route.c:657 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x521/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 18894 Comm: udevd Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: cc3a86c802f0 ("ipv6: Change rt6_probe to take a fib6_nh") Fixes: f547fac624be ("ipv6: rate-limit probes for neighbourless routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 17:26:19 +00:00
} else if (time_after(jiffies, last_probe +
idev->cnf.rtr_probe_interval)) {
work = kmalloc(sizeof(*work), GFP_ATOMIC);
}
ipv6: fixes rt6_probe() and fib6_nh->last_probe init While looking at a syzbot KCSAN report [1], I found multiple issues in this code : 1) fib6_nh->last_probe has an initial value of 0. While probably okay on 64bit kernels, this causes an issue on 32bit kernels since the time_after(jiffies, 0 + interval) might be false ~24 days after boot (for HZ=1000) 2) The data-race found by KCSAN I could use READ_ONCE() and WRITE_ONCE(), but we also can take the opportunity of not piling-up too many rt6_probe_deferred() works by using instead cmpxchg() so that only one cpu wins the race. [1] BUG: KCSAN: data-race in find_match / find_match write to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 1: rt6_probe net/ipv6/route.c:663 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x5bd/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 tcp_transmit_skb net/ipv4/tcp_output.c:1185 [inline] tcp_xmit_probe_skb+0x19b/0x1d0 net/ipv4/tcp_output.c:3735 read to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 0: rt6_probe net/ipv6/route.c:657 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x521/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 18894 Comm: udevd Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: cc3a86c802f0 ("ipv6: Change rt6_probe to take a fib6_nh") Fixes: f547fac624be ("ipv6: rate-limit probes for neighbourless routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 17:26:19 +00:00
if (!work || cmpxchg(&fib6_nh->last_probe,
last_probe, jiffies) != last_probe) {
kfree(work);
} else {
INIT_WORK(&work->work, rt6_probe_deferred);
work->target = *nh_gw;
netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC);
work->dev = dev;
schedule_work(&work->work);
}
out:
rcu_read_unlock_bh();
}
#else
static inline void rt6_probe(struct fib6_nh *fib6_nh)
{
}
#endif
/*
* Default Router Selection (RFC 2461 6.3.6)
*/
static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh)
{
enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
struct neighbour *neigh;
rcu_read_lock_bh();
neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev,
&fib6_nh->fib_nh_gw6);
if (neigh) {
read_lock(&neigh->lock);
if (neigh->nud_state & NUD_VALID)
ret = RT6_NUD_SUCCEED;
#ifdef CONFIG_IPV6_ROUTER_PREF
else if (!(neigh->nud_state & NUD_FAILED))
ret = RT6_NUD_SUCCEED;
else
ret = RT6_NUD_FAIL_PROBE;
#endif
read_unlock(&neigh->lock);
} else {
ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
}
rcu_read_unlock_bh();
return ret;
}
static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif,
int strict)
{
int m = 0;
if (!oif || nh->fib_nh_dev->ifindex == oif)
m = 2;
if (!m && (strict & RT6_LOOKUP_F_IFACE))
return RT6_NUD_FAIL_HARD;
#ifdef CONFIG_IPV6_ROUTER_PREF
m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2;
#endif
if ((strict & RT6_LOOKUP_F_REACHABLE) &&
!(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) {
int n = rt6_check_neigh(nh);
if (n < 0)
return n;
}
return m;
}
static bool find_match(struct fib6_nh *nh, u32 fib6_flags,
int oif, int strict, int *mpri, bool *do_rr)
{
bool match_do_rr = false;
bool rc = false;
int m;
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
if (nh->fib_nh_flags & RTNH_F_DEAD)
goto out;
if (ip6_ignore_linkdown(nh->fib_nh_dev) &&
nh->fib_nh_flags & RTNH_F_LINKDOWN &&
!(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
net: ipv6 sysctl option to ignore routes when nexthop link is down Like the ipv4 patch with a similar title, this adds a sysctl to allow the user to change routing behavior based on whether or not the interface associated with the nexthop was an up or down link. The default setting preserves the current behavior, but anyone that enables it will notice that nexthops on down interfaces will no longer be selected: net.ipv6.conf.all.ignore_routes_with_linkdown = 0 net.ipv6.conf.default.ignore_routes_with_linkdown = 0 net.ipv6.conf.lo.ignore_routes_with_linkdown = 0 ... When the above sysctls are set, not only will link status be reported to userspace, but an indication that a nexthop is dead and will not be used is also reported. 1000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium 1000::/8 via 8000::2 dev p8p1 metric 1024 pref medium 7000::/8 dev p7p1 proto kernel metric 256 dead linkdown pref medium 8000::/8 dev p8p1 proto kernel metric 256 pref medium 9000::/8 via 8000::2 dev p8p1 metric 2048 pref medium 9000::/8 via 7000::2 dev p7p1 metric 1024 dead linkdown pref medium fe80::/64 dev p7p1 proto kernel metric 256 dead linkdown pref medium fe80::/64 dev p8p1 proto kernel metric 256 pref medium This also adds devconf support and notification when sysctl values change. v2: drop use of rt6i_nhflags since it is not needed right now Signed-off-by: Andy Gospodarek <gospo@cumulusnetworks.com> Signed-off-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-13 14:39:01 +00:00
goto out;
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
m = rt6_score_route(nh, fib6_flags, oif, strict);
if (m == RT6_NUD_FAIL_DO_RR) {
match_do_rr = true;
m = 0; /* lowest valid score */
} else if (m == RT6_NUD_FAIL_HARD) {
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
goto out;
}
if (strict & RT6_LOOKUP_F_REACHABLE)
rt6_probe(nh);
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
/* note that m can be RT6_NUD_FAIL_PROBE at this point */
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
if (m > *mpri) {
*do_rr = match_do_rr;
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
*mpri = m;
rc = true;
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
}
out:
return rc;
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
}
struct fib6_nh_frl_arg {
u32 flags;
int oif;
int strict;
int *mpri;
bool *do_rr;
struct fib6_nh *nh;
};
static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_frl_arg *arg = _arg;
arg->nh = nh;
return find_match(nh, arg->flags, arg->oif, arg->strict,
arg->mpri, arg->do_rr);
}
static void __find_rr_leaf(struct fib6_info *f6i_start,
struct fib6_info *nomatch, u32 metric,
struct fib6_result *res, struct fib6_info **cont,
int oif, int strict, bool *do_rr, int *mpri)
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
{
struct fib6_info *f6i;
for (f6i = f6i_start;
f6i && f6i != nomatch;
f6i = rcu_dereference(f6i->fib6_next)) {
bool matched = false;
struct fib6_nh *nh;
if (cont && f6i->fib6_metric != metric) {
*cont = f6i;
return;
}
if (fib6_check_expired(f6i))
continue;
if (unlikely(f6i->nh)) {
struct fib6_nh_frl_arg arg = {
.flags = f6i->fib6_flags,
.oif = oif,
.strict = strict,
.mpri = mpri,
.do_rr = do_rr
};
if (nexthop_is_blackhole(f6i->nh)) {
res->fib6_flags = RTF_REJECT;
res->fib6_type = RTN_BLACKHOLE;
res->f6i = f6i;
res->nh = nexthop_fib6_nh(f6i->nh);
return;
}
if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match,
&arg)) {
matched = true;
nh = arg.nh;
}
} else {
nh = f6i->fib6_nh;
if (find_match(nh, f6i->fib6_flags, oif, strict,
mpri, do_rr))
matched = true;
}
if (matched) {
res->f6i = f6i;
res->nh = nh;
res->fib6_flags = f6i->fib6_flags;
res->fib6_type = f6i->fib6_type;
}
}
}
static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf,
struct fib6_info *rr_head, int oif, int strict,
bool *do_rr, struct fib6_result *res)
{
u32 metric = rr_head->fib6_metric;
struct fib6_info *cont = NULL;
int mpri = -1;
__find_rr_leaf(rr_head, NULL, metric, res, &cont,
oif, strict, do_rr, &mpri);
__find_rr_leaf(leaf, rr_head, metric, res, &cont,
oif, strict, do_rr, &mpri);
if (res->f6i || !cont)
return;
__find_rr_leaf(cont, NULL, metric, res, NULL,
oif, strict, do_rr, &mpri);
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
}
static void rt6_select(struct net *net, struct fib6_node *fn, int oif,
struct fib6_result *res, int strict)
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
{
struct fib6_info *leaf = rcu_dereference(fn->leaf);
struct fib6_info *rt0;
bool do_rr = false;
int key_plen;
/* make sure this function or its helpers sets f6i */
res->f6i = NULL;
if (!leaf || leaf == net->ipv6.fib6_null_entry)
goto out;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rt0 = rcu_dereference(fn->rr_ptr);
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
if (!rt0)
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rt0 = leaf;
/* Double check to make sure fn is not an intermediate node
* and fn->leaf does not points to its child's leaf
* (This might happen if all routes under fn are deleted from
* the tree and fib6_repair_tree() is called on the node.)
*/
key_plen = rt0->fib6_dst.plen;
#ifdef CONFIG_IPV6_SUBTREES
if (rt0->fib6_src.plen)
key_plen = rt0->fib6_src.plen;
#endif
if (fn->fn_bit != key_plen)
goto out;
find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res);
if (do_rr) {
struct fib6_info *next = rcu_dereference(rt0->fib6_next);
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
/* no entries matched; do round-robin */
if (!next || next->fib6_metric != rt0->fib6_metric)
next = leaf;
[IPV6]: Fix routing round-robin locking. As per RFC2461, section 6.3.6, item #2, when no routers on the matching list are known to be reachable or probably reachable we do round robin on those available routes so that we make sure to probe as many of them as possible to detect when one becomes reachable faster. Each routing table has a rwlock protecting the tree and the linked list of routes at each leaf. The round robin code executes during lookup and thus with the rwlock taken as a reader. A small local spinlock tries to provide protection but this does not work at all for two reasons: 1) The round-robin list manipulation, as coded, goes like this (with read lock held): walk routes finding head and tail spin_lock(); rotate list using head and tail spin_unlock(); While one thread is rotating the list, another thread can end up with stale values of head and tail and then proceed to corrupt the list when it gets the lock. This ends up causing the OOPS in fib6_add() later onthat many people have been hitting. 2) All the other code paths that run with the rwlock held as a reader do not expect the list to change on them, they expect it to remain completely fixed while they hold the lock in that way. So, simply stated, it is impossible to implement this correctly using a manipulation of the list without violating the rwlock locking semantics. Reimplement using a per-fib6_node round-robin pointer. This way we don't need to manipulate the list at all, and since the round-robin pointer can only ever point to real existing entries we don't need to perform any locking on the changing of the round-robin pointer itself. We only need to reset the round-robin pointer to NULL when the entry it is pointing to is removed. The idea is from Thomas Graf and it is very similar to how this was implemented before the advanced router selection code when in. Signed-off-by: David S. Miller <davem@davemloft.net>
2007-03-25 03:36:25 +00:00
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
if (next != rt0) {
spin_lock_bh(&leaf->fib6_table->tb6_lock);
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
/* make sure next is not being deleted from the tree */
if (next->fib6_node)
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_assign_pointer(fn->rr_ptr, next);
spin_unlock_bh(&leaf->fib6_table->tb6_lock);
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
}
}
out:
if (!res->f6i) {
res->f6i = net->ipv6.fib6_null_entry;
res->nh = res->f6i->fib6_nh;
res->fib6_flags = res->f6i->fib6_flags;
res->fib6_type = res->f6i->fib6_type;
}
}
static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res)
{
return (res->f6i->fib6_flags & RTF_NONEXTHOP) ||
res->nh->fib_nh_gw_family;
}
#ifdef CONFIG_IPV6_ROUTE_INFO
int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
const struct in6_addr *gwaddr)
{
struct net *net = dev_net(dev);
struct route_info *rinfo = (struct route_info *) opt;
struct in6_addr prefix_buf, *prefix;
unsigned int pref;
unsigned long lifetime;
struct fib6_info *rt;
if (len < sizeof(struct route_info)) {
return -EINVAL;
}
/* Sanity check for prefix_len and length */
if (rinfo->length > 3) {
return -EINVAL;
} else if (rinfo->prefix_len > 128) {
return -EINVAL;
} else if (rinfo->prefix_len > 64) {
if (rinfo->length < 2) {
return -EINVAL;
}
} else if (rinfo->prefix_len > 0) {
if (rinfo->length < 1) {
return -EINVAL;
}
}
pref = rinfo->route_pref;
if (pref == ICMPV6_ROUTER_PREF_INVALID)
return -EINVAL;
lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
if (rinfo->length == 3)
prefix = (struct in6_addr *)rinfo->prefix;
else {
/* this function is safe */
ipv6_addr_prefix(&prefix_buf,
(struct in6_addr *)rinfo->prefix,
rinfo->prefix_len);
prefix = &prefix_buf;
}
if (rinfo->prefix_len == 0)
rt = rt6_get_dflt_router(net, gwaddr, dev);
else
rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
gwaddr, dev);
if (rt && !lifetime) {
ip6_del_rt(net, rt, false);
rt = NULL;
}
if (!rt && lifetime)
rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
dev, pref);
else if (rt)
rt->fib6_flags = RTF_ROUTEINFO |
(rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
if (rt) {
if (!addrconf_finite_timeout(lifetime))
fib6_clean_expires(rt);
else
fib6_set_expires(rt, jiffies + HZ * lifetime);
fib6_info_release(rt);
}
return 0;
}
#endif
/*
* Misc support functions
*/
/* called with rcu_lock held */
static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res)
{
struct net_device *dev = res->nh->fib_nh_dev;
if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
/* for copies of local routes, dst->dev needs to be the
* device if it is a master device, the master device if
* device is enslaved, and the loopback as the default
*/
if (netif_is_l3_slave(dev) &&
!rt6_need_strict(&res->f6i->fib6_dst.addr))
dev = l3mdev_master_dev_rcu(dev);
else if (!netif_is_l3_master(dev))
dev = dev_net(dev)->loopback_dev;
/* last case is netif_is_l3_master(dev) is true in which
* case we want dev returned to be dev
*/
}
return dev;
}
static const int fib6_prop[RTN_MAX + 1] = {
[RTN_UNSPEC] = 0,
[RTN_UNICAST] = 0,
[RTN_LOCAL] = 0,
[RTN_BROADCAST] = 0,
[RTN_ANYCAST] = 0,
[RTN_MULTICAST] = 0,
[RTN_BLACKHOLE] = -EINVAL,
[RTN_UNREACHABLE] = -EHOSTUNREACH,
[RTN_PROHIBIT] = -EACCES,
[RTN_THROW] = -EAGAIN,
[RTN_NAT] = -EINVAL,
[RTN_XRESOLVE] = -EINVAL,
};
static int ip6_rt_type_to_error(u8 fib6_type)
{
return fib6_prop[fib6_type];
}
static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
{
unsigned short flags = 0;
if (rt->dst_nocount)
flags |= DST_NOCOUNT;
if (rt->dst_nopolicy)
flags |= DST_NOPOLICY;
return flags;
}
static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type)
{
rt->dst.error = ip6_rt_type_to_error(fib6_type);
switch (fib6_type) {
case RTN_BLACKHOLE:
rt->dst.output = dst_discard_out;
rt->dst.input = dst_discard;
break;
case RTN_PROHIBIT:
rt->dst.output = ip6_pkt_prohibit_out;
rt->dst.input = ip6_pkt_prohibit;
break;
case RTN_THROW:
case RTN_UNREACHABLE:
default:
rt->dst.output = ip6_pkt_discard_out;
rt->dst.input = ip6_pkt_discard;
break;
}
}
static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res)
{
struct fib6_info *f6i = res->f6i;
if (res->fib6_flags & RTF_REJECT) {
ip6_rt_init_dst_reject(rt, res->fib6_type);
return;
}
rt->dst.error = 0;
rt->dst.output = ip6_output;
if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) {
rt->dst.input = ip6_input;
} else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
rt->dst.input = ip6_mc_input;
} else {
rt->dst.input = ip6_forward;
}
if (res->nh->fib_nh_lws) {
rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws);
lwtunnel_set_redirect(&rt->dst);
}
rt->dst.lastuse = jiffies;
}
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
/* Caller must already hold reference to @from */
static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
{
rt->rt6i_flags &= ~RTF_EXPIRES;
rcu_assign_pointer(rt->from, from);
ip_dst_init_metrics(&rt->dst, from->fib6_metrics);
}
/* Caller must already hold reference to f6i in result */
static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res)
{
const struct fib6_nh *nh = res->nh;
const struct net_device *dev = nh->fib_nh_dev;
struct fib6_info *f6i = res->f6i;
ip6_rt_init_dst(rt, res);
rt->rt6i_dst = f6i->fib6_dst;
rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
rt->rt6i_flags = res->fib6_flags;
if (nh->fib_nh_gw_family) {
rt->rt6i_gateway = nh->fib_nh_gw6;
rt->rt6i_flags |= RTF_GATEWAY;
}
rt6_set_from(rt, f6i);
#ifdef CONFIG_IPV6_SUBTREES
rt->rt6i_src = f6i->fib6_src;
#endif
}
static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
struct in6_addr *saddr)
{
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
struct fib6_node *pn, *sn;
while (1) {
if (fn->fn_flags & RTN_TL_ROOT)
return NULL;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
pn = rcu_dereference(fn->parent);
sn = FIB6_SUBTREE(pn);
if (sn && sn != fn)
fn = fib6_node_lookup(sn, NULL, saddr);
else
fn = pn;
if (fn->fn_flags & RTN_RTINFO)
return fn;
}
}
static bool ip6_hold_safe(struct net *net, struct rt6_info **prt)
{
struct rt6_info *rt = *prt;
if (dst_hold_safe(&rt->dst))
return true;
if (net) {
rt = net->ipv6.ip6_null_entry;
dst_hold(&rt->dst);
} else {
rt = NULL;
}
*prt = rt;
return false;
}
/* called with rcu_lock held */
static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res)
{
struct net_device *dev = res->nh->fib_nh_dev;
struct fib6_info *f6i = res->f6i;
unsigned short flags;
struct rt6_info *nrt;
if (!fib6_info_hold_safe(f6i))
goto fallback;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
flags = fib6_info_dst_flags(f6i);
nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
if (!nrt) {
fib6_info_release(f6i);
goto fallback;
}
ip6_rt_copy_init(nrt, res);
return nrt;
fallback:
nrt = dev_net(dev)->ipv6.ip6_null_entry;
dst_hold(&nrt->dst);
return nrt;
}
ipv6: fib6: avoid indirect calls from fib6_rule_lookup It was reported that a considerable amount of cycles were spent on the expensive indirect calls on fib6_rule_lookup. This patch introduces an inline helper called pol_route_func that uses the indirect_call_wrappers to avoid the indirect calls. This patch saves around 50ns per call. Performance was measured on the receiver by checking the amount of syncookies that server was able to generate under a synflood load. Traffic was generated using trafgen[1] which was pushing around 1Mpps on a single queue. Receiver was using only one rx queue which help to create a bottle neck and make the experiment rx-bounded. These are the syncookies generated over 10s from the different runs: Whithout the patch: TcpExtSyncookiesSent 3553749 0.0 TcpExtSyncookiesSent 3550895 0.0 TcpExtSyncookiesSent 3553845 0.0 TcpExtSyncookiesSent 3541050 0.0 TcpExtSyncookiesSent 3539921 0.0 TcpExtSyncookiesSent 3557659 0.0 TcpExtSyncookiesSent 3526812 0.0 TcpExtSyncookiesSent 3536121 0.0 TcpExtSyncookiesSent 3529963 0.0 TcpExtSyncookiesSent 3536319 0.0 With the patch: TcpExtSyncookiesSent 3611786 0.0 TcpExtSyncookiesSent 3596682 0.0 TcpExtSyncookiesSent 3606878 0.0 TcpExtSyncookiesSent 3599564 0.0 TcpExtSyncookiesSent 3601304 0.0 TcpExtSyncookiesSent 3609249 0.0 TcpExtSyncookiesSent 3617437 0.0 TcpExtSyncookiesSent 3608765 0.0 TcpExtSyncookiesSent 3620205 0.0 TcpExtSyncookiesSent 3601895 0.0 Without the patch the average is 354263 pkt/s or 2822 ns/pkt and with the patch the average is 360738 pkt/s or 2772 ns/pkt which gives an estimate of 50 ns per packet. [1] http://netsniff-ng.org/ Changelog since v1: - Change ordering in the ICW (Paolo Abeni) Cc: Luigi Rizzo <lrizzo@google.com> Cc: Paolo Abeni <pabeni@redhat.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Brian Vazquez <brianvv@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 16:42:32 +00:00
INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net,
struct fib6_table *table,
struct flowi6 *fl6,
const struct sk_buff *skb,
int flags)
{
struct fib6_result res = {};
struct fib6_node *fn;
struct rt6_info *rt;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
restart:
res.f6i = rcu_dereference(fn->leaf);
if (!res.f6i)
res.f6i = net->ipv6.fib6_null_entry;
else
rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif,
flags);
if (res.f6i == net->ipv6.fib6_null_entry) {
fn = fib6_backtrack(fn, &fl6->saddr);
if (fn)
goto restart;
rt = net->ipv6.ip6_null_entry;
dst_hold(&rt->dst);
goto out;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
} else if (res.fib6_flags & RTF_REJECT) {
goto do_create;
}
fib6_select_path(net, &res, fl6, fl6->flowi6_oif,
fl6->flowi6_oif != 0, skb, flags);
/* Search through exception table */
rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr);
if (rt) {
if (ip6_hold_safe(net, &rt))
dst_use_noref(&rt->dst, jiffies);
} else {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
do_create:
rt = ip6_create_rt_rcu(&res);
}
out:
trace_fib6_table_lookup(net, &res, table, fl6);
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
return rt;
}
struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
const struct sk_buff *skb, int flags)
{
return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
}
EXPORT_SYMBOL_GPL(ip6_route_lookup);
struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
const struct in6_addr *saddr, int oif,
const struct sk_buff *skb, int strict)
{
struct flowi6 fl6 = {
.flowi6_oif = oif,
.daddr = *daddr,
};
struct dst_entry *dst;
int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
if (saddr) {
memcpy(&fl6.saddr, saddr, sizeof(*saddr));
flags |= RT6_LOOKUP_F_HAS_SADDR;
}
dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
if (dst->error == 0)
return (struct rt6_info *) dst;
dst_release(dst);
return NULL;
}
EXPORT_SYMBOL(rt6_lookup);
/* ip6_ins_rt is called with FREE table->tb6_lock.
* It takes new route entry, the addition fails by any reason the
* route is released.
* Caller must hold dst before calling it.
*/
static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
struct netlink_ext_ack *extack)
{
int err;
struct fib6_table *table;
table = rt->fib6_table;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_lock_bh(&table->tb6_lock);
err = fib6_add(&table->tb6_root, rt, info, extack);
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_unlock_bh(&table->tb6_lock);
return err;
}
int ip6_ins_rt(struct net *net, struct fib6_info *rt)
{
struct nl_info info = { .nl_net = net, };
return __ip6_ins_rt(rt, &info, NULL);
}
static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res,
const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
struct fib6_info *f6i = res->f6i;
struct net_device *dev;
struct rt6_info *rt;
/*
* Clone the route.
*/
if (!fib6_info_hold_safe(f6i))
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
return NULL;
dev = ip6_rt_get_dev_rcu(res);
rt = ip6_dst_alloc(dev_net(dev), dev, 0);
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (!rt) {
fib6_info_release(f6i);
return NULL;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
}
ip6_rt_copy_init(rt, res);
rt->rt6i_flags |= RTF_CACHE;
rt->rt6i_dst.addr = *daddr;
rt->rt6i_dst.plen = 128;
if (!rt6_is_gw_or_nonexthop(res)) {
if (f6i->fib6_dst.plen != 128 &&
ipv6_addr_equal(&f6i->fib6_dst.addr, daddr))
rt->rt6i_flags |= RTF_ANYCAST;
#ifdef CONFIG_IPV6_SUBTREES
if (rt->rt6i_src.plen && saddr) {
rt->rt6i_src.addr = *saddr;
rt->rt6i_src.plen = 128;
}
#endif
}
return rt;
}
static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res)
{
struct fib6_info *f6i = res->f6i;
unsigned short flags = fib6_info_dst_flags(f6i);
struct net_device *dev;
struct rt6_info *pcpu_rt;
if (!fib6_info_hold_safe(f6i))
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
return NULL;
rcu_read_lock();
dev = ip6_rt_get_dev_rcu(res);
pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT);
rcu_read_unlock();
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (!pcpu_rt) {
fib6_info_release(f6i);
return NULL;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
}
ip6_rt_copy_init(pcpu_rt, res);
pcpu_rt->rt6i_flags |= RTF_PCPU;
ipv6: Use global sernum for dst validation with nexthop objects Nik reported a bug with pcpu dst cache when nexthop objects are used illustrated by the following: $ ip netns add foo $ ip -netns foo li set lo up $ ip -netns foo addr add 2001:db8:11::1/128 dev lo $ ip netns exec foo sysctl net.ipv6.conf.all.forwarding=1 $ ip li add veth1 type veth peer name veth2 $ ip li set veth1 up $ ip addr add 2001:db8:10::1/64 dev veth1 $ ip li set dev veth2 netns foo $ ip -netns foo li set veth2 up $ ip -netns foo addr add 2001:db8:10::2/64 dev veth2 $ ip -6 nexthop add id 100 via 2001:db8:10::2 dev veth1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Create a pcpu entry on cpu 0: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 Re-add the route entry: $ ip -6 ro del 2001:db8:11::1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Route get on cpu 0 returns the stale pcpu: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 RTNETLINK answers: Network is unreachable While cpu 1 works: $ taskset -a -c 1 ip -6 route get 2001:db8:11::1 2001:db8:11::1 from :: via 2001:db8:10::2 dev veth1 src 2001:db8:10::1 metric 1024 pref medium Conversion of FIB entries to work with external nexthop objects missed an important difference between IPv4 and IPv6 - how dst entries are invalidated when the FIB changes. IPv4 has a per-network namespace generation id (rt_genid) that is bumped on changes to the FIB. Checking if a dst_entry is still valid means comparing rt_genid in the rtable to the current value of rt_genid for the namespace. IPv6 also has a per network namespace counter, fib6_sernum, but the count is saved per fib6_node. With the per-node counter only dst_entries based on fib entries under the node are invalidated when changes are made to the routes - limiting the scope of invalidations. IPv6 uses a reference in the rt6_info, 'from', to track the corresponding fib entry used to create the dst_entry. When validating a dst_entry, the 'from' is used to backtrack to the fib6_node and check the sernum of it to the cookie passed to the dst_check operation. With the inline format (nexthop definition inline with the fib6_info), dst_entries cached in the fib6_nh have a 1:1 correlation between fib entries, nexthop data and dst_entries. With external nexthops, IPv6 looks more like IPv4 which means multiple fib entries across disparate fib6_nodes can all reference the same fib6_nh. That means validation of dst_entries based on external nexthops needs to use the IPv4 format - the per-network namespace counter. Add sernum to rt6_info and set it when creating a pcpu dst entry. Update rt6_get_cookie to return sernum if it is set and update dst_check for IPv6 to look for sernum set and based the check on it if so. Finally, rt6_get_pcpu_route needs to validate the cached entry before returning a pcpu entry (similar to the rt_cache_valid calls in __mkroute_input and __mkroute_output for IPv4). This problem only affects routes using the new, external nexthops. Thanks to the kbuild test robot for catching the IS_ENABLED needed around rt_genid_ipv6 before I sent this out. Fixes: 5b98324ebe29 ("ipv6: Allow routes to use nexthop objects") Reported-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David Ahern <dsahern@kernel.org> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Tested-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 14:53:08 +00:00
if (f6i->nh)
pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev));
return pcpu_rt;
}
ipv6: Use global sernum for dst validation with nexthop objects Nik reported a bug with pcpu dst cache when nexthop objects are used illustrated by the following: $ ip netns add foo $ ip -netns foo li set lo up $ ip -netns foo addr add 2001:db8:11::1/128 dev lo $ ip netns exec foo sysctl net.ipv6.conf.all.forwarding=1 $ ip li add veth1 type veth peer name veth2 $ ip li set veth1 up $ ip addr add 2001:db8:10::1/64 dev veth1 $ ip li set dev veth2 netns foo $ ip -netns foo li set veth2 up $ ip -netns foo addr add 2001:db8:10::2/64 dev veth2 $ ip -6 nexthop add id 100 via 2001:db8:10::2 dev veth1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Create a pcpu entry on cpu 0: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 Re-add the route entry: $ ip -6 ro del 2001:db8:11::1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Route get on cpu 0 returns the stale pcpu: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 RTNETLINK answers: Network is unreachable While cpu 1 works: $ taskset -a -c 1 ip -6 route get 2001:db8:11::1 2001:db8:11::1 from :: via 2001:db8:10::2 dev veth1 src 2001:db8:10::1 metric 1024 pref medium Conversion of FIB entries to work with external nexthop objects missed an important difference between IPv4 and IPv6 - how dst entries are invalidated when the FIB changes. IPv4 has a per-network namespace generation id (rt_genid) that is bumped on changes to the FIB. Checking if a dst_entry is still valid means comparing rt_genid in the rtable to the current value of rt_genid for the namespace. IPv6 also has a per network namespace counter, fib6_sernum, but the count is saved per fib6_node. With the per-node counter only dst_entries based on fib entries under the node are invalidated when changes are made to the routes - limiting the scope of invalidations. IPv6 uses a reference in the rt6_info, 'from', to track the corresponding fib entry used to create the dst_entry. When validating a dst_entry, the 'from' is used to backtrack to the fib6_node and check the sernum of it to the cookie passed to the dst_check operation. With the inline format (nexthop definition inline with the fib6_info), dst_entries cached in the fib6_nh have a 1:1 correlation between fib entries, nexthop data and dst_entries. With external nexthops, IPv6 looks more like IPv4 which means multiple fib entries across disparate fib6_nodes can all reference the same fib6_nh. That means validation of dst_entries based on external nexthops needs to use the IPv4 format - the per-network namespace counter. Add sernum to rt6_info and set it when creating a pcpu dst entry. Update rt6_get_cookie to return sernum if it is set and update dst_check for IPv6 to look for sernum set and based the check on it if so. Finally, rt6_get_pcpu_route needs to validate the cached entry before returning a pcpu entry (similar to the rt_cache_valid calls in __mkroute_input and __mkroute_output for IPv4). This problem only affects routes using the new, external nexthops. Thanks to the kbuild test robot for catching the IS_ENABLED needed around rt_genid_ipv6 before I sent this out. Fixes: 5b98324ebe29 ("ipv6: Allow routes to use nexthop objects") Reported-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David Ahern <dsahern@kernel.org> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Tested-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 14:53:08 +00:00
static bool rt6_is_valid(const struct rt6_info *rt6)
{
return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev));
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
/* It should be called with rcu_read_lock() acquired */
static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res)
{
struct rt6_info *pcpu_rt;
pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu);
ipv6: Use global sernum for dst validation with nexthop objects Nik reported a bug with pcpu dst cache when nexthop objects are used illustrated by the following: $ ip netns add foo $ ip -netns foo li set lo up $ ip -netns foo addr add 2001:db8:11::1/128 dev lo $ ip netns exec foo sysctl net.ipv6.conf.all.forwarding=1 $ ip li add veth1 type veth peer name veth2 $ ip li set veth1 up $ ip addr add 2001:db8:10::1/64 dev veth1 $ ip li set dev veth2 netns foo $ ip -netns foo li set veth2 up $ ip -netns foo addr add 2001:db8:10::2/64 dev veth2 $ ip -6 nexthop add id 100 via 2001:db8:10::2 dev veth1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Create a pcpu entry on cpu 0: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 Re-add the route entry: $ ip -6 ro del 2001:db8:11::1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Route get on cpu 0 returns the stale pcpu: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 RTNETLINK answers: Network is unreachable While cpu 1 works: $ taskset -a -c 1 ip -6 route get 2001:db8:11::1 2001:db8:11::1 from :: via 2001:db8:10::2 dev veth1 src 2001:db8:10::1 metric 1024 pref medium Conversion of FIB entries to work with external nexthop objects missed an important difference between IPv4 and IPv6 - how dst entries are invalidated when the FIB changes. IPv4 has a per-network namespace generation id (rt_genid) that is bumped on changes to the FIB. Checking if a dst_entry is still valid means comparing rt_genid in the rtable to the current value of rt_genid for the namespace. IPv6 also has a per network namespace counter, fib6_sernum, but the count is saved per fib6_node. With the per-node counter only dst_entries based on fib entries under the node are invalidated when changes are made to the routes - limiting the scope of invalidations. IPv6 uses a reference in the rt6_info, 'from', to track the corresponding fib entry used to create the dst_entry. When validating a dst_entry, the 'from' is used to backtrack to the fib6_node and check the sernum of it to the cookie passed to the dst_check operation. With the inline format (nexthop definition inline with the fib6_info), dst_entries cached in the fib6_nh have a 1:1 correlation between fib entries, nexthop data and dst_entries. With external nexthops, IPv6 looks more like IPv4 which means multiple fib entries across disparate fib6_nodes can all reference the same fib6_nh. That means validation of dst_entries based on external nexthops needs to use the IPv4 format - the per-network namespace counter. Add sernum to rt6_info and set it when creating a pcpu dst entry. Update rt6_get_cookie to return sernum if it is set and update dst_check for IPv6 to look for sernum set and based the check on it if so. Finally, rt6_get_pcpu_route needs to validate the cached entry before returning a pcpu entry (similar to the rt_cache_valid calls in __mkroute_input and __mkroute_output for IPv4). This problem only affects routes using the new, external nexthops. Thanks to the kbuild test robot for catching the IS_ENABLED needed around rt_genid_ipv6 before I sent this out. Fixes: 5b98324ebe29 ("ipv6: Allow routes to use nexthop objects") Reported-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David Ahern <dsahern@kernel.org> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Tested-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 14:53:08 +00:00
if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) {
struct rt6_info *prev, **p;
p = this_cpu_ptr(res->nh->rt6i_pcpu);
prev = xchg(p, NULL);
if (prev) {
dst_dev_put(&prev->dst);
dst_release(&prev->dst);
}
pcpu_rt = NULL;
}
return pcpu_rt;
}
static struct rt6_info *rt6_make_pcpu_route(struct net *net,
const struct fib6_result *res)
{
struct rt6_info *pcpu_rt, *prev, **p;
pcpu_rt = ip6_rt_pcpu_alloc(res);
if (!pcpu_rt)
return NULL;
p = this_cpu_ptr(res->nh->rt6i_pcpu);
prev = cmpxchg(p, NULL, pcpu_rt);
BUG_ON(prev);
if (res->f6i->fib6_destroying) {
struct fib6_info *from;
from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
fib6_info_release(from);
}
return pcpu_rt;
}
/* exception hash table implementation
*/
static DEFINE_SPINLOCK(rt6_exception_lock);
/* Remove rt6_ex from hash table and free the memory
* Caller must hold rt6_exception_lock
*/
static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
struct rt6_exception *rt6_ex)
{
ipv6: route: purge exception on removal When a netdevice is unregistered, we flush the relevant exception via rt6_sync_down_dev() -> fib6_ifdown() -> fib6_del() -> fib6_del_route(). Finally, we end-up calling rt6_remove_exception(), where we release the relevant dst, while we keep the references to the related fib6_info and dev. Such references should be released later when the dst will be destroyed. There are a number of caches that can keep the exception around for an unlimited amount of time - namely dst_cache, possibly even socket cache. As a result device registration may hang, as demonstrated by this script: ip netns add cl ip netns add rt ip netns add srv ip netns exec rt sysctl -w net.ipv6.conf.all.forwarding=1 ip link add name cl_veth type veth peer name cl_rt_veth ip link set dev cl_veth netns cl ip -n cl link set dev cl_veth up ip -n cl addr add dev cl_veth 2001::2/64 ip -n cl route add default via 2001::1 ip -n cl link add tunv6 type ip6tnl mode ip6ip6 local 2001::2 remote 2002::1 hoplimit 64 dev cl_veth ip -n cl link set tunv6 up ip -n cl addr add 2013::2/64 dev tunv6 ip link set dev cl_rt_veth netns rt ip -n rt link set dev cl_rt_veth up ip -n rt addr add dev cl_rt_veth 2001::1/64 ip link add name rt_srv_veth type veth peer name srv_veth ip link set dev srv_veth netns srv ip -n srv link set dev srv_veth up ip -n srv addr add dev srv_veth 2002::1/64 ip -n srv route add default via 2002::2 ip -n srv link add tunv6 type ip6tnl mode ip6ip6 local 2002::1 remote 2001::2 hoplimit 64 dev srv_veth ip -n srv link set tunv6 up ip -n srv addr add 2013::1/64 dev tunv6 ip link set dev rt_srv_veth netns rt ip -n rt link set dev rt_srv_veth up ip -n rt addr add dev rt_srv_veth 2002::2/64 ip netns exec srv netserver & sleep 0.1 ip netns exec cl ping6 -c 4 2013::1 ip netns exec cl netperf -H 2013::1 -t TCP_STREAM -l 3 & sleep 1 ip -n rt link set dev rt_srv_veth mtu 1400 wait %2 ip -n cl link del cl_veth This commit addresses the issue purging all the references held by the exception at time, as we currently do for e.g. ipv6 pcpu dst entries. v1 -> v2: - re-order the code to avoid accessing dst and net after dst_dev_put() Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-20 17:18:12 +00:00
struct fib6_info *from;
struct net *net;
if (!bucket || !rt6_ex)
return;
net = dev_net(rt6_ex->rt6i->dst.dev);
ipv6: route: purge exception on removal When a netdevice is unregistered, we flush the relevant exception via rt6_sync_down_dev() -> fib6_ifdown() -> fib6_del() -> fib6_del_route(). Finally, we end-up calling rt6_remove_exception(), where we release the relevant dst, while we keep the references to the related fib6_info and dev. Such references should be released later when the dst will be destroyed. There are a number of caches that can keep the exception around for an unlimited amount of time - namely dst_cache, possibly even socket cache. As a result device registration may hang, as demonstrated by this script: ip netns add cl ip netns add rt ip netns add srv ip netns exec rt sysctl -w net.ipv6.conf.all.forwarding=1 ip link add name cl_veth type veth peer name cl_rt_veth ip link set dev cl_veth netns cl ip -n cl link set dev cl_veth up ip -n cl addr add dev cl_veth 2001::2/64 ip -n cl route add default via 2001::1 ip -n cl link add tunv6 type ip6tnl mode ip6ip6 local 2001::2 remote 2002::1 hoplimit 64 dev cl_veth ip -n cl link set tunv6 up ip -n cl addr add 2013::2/64 dev tunv6 ip link set dev cl_rt_veth netns rt ip -n rt link set dev cl_rt_veth up ip -n rt addr add dev cl_rt_veth 2001::1/64 ip link add name rt_srv_veth type veth peer name srv_veth ip link set dev srv_veth netns srv ip -n srv link set dev srv_veth up ip -n srv addr add dev srv_veth 2002::1/64 ip -n srv route add default via 2002::2 ip -n srv link add tunv6 type ip6tnl mode ip6ip6 local 2002::1 remote 2001::2 hoplimit 64 dev srv_veth ip -n srv link set tunv6 up ip -n srv addr add 2013::1/64 dev tunv6 ip link set dev rt_srv_veth netns rt ip -n rt link set dev rt_srv_veth up ip -n rt addr add dev rt_srv_veth 2002::2/64 ip netns exec srv netserver & sleep 0.1 ip netns exec cl ping6 -c 4 2013::1 ip netns exec cl netperf -H 2013::1 -t TCP_STREAM -l 3 & sleep 1 ip -n rt link set dev rt_srv_veth mtu 1400 wait %2 ip -n cl link del cl_veth This commit addresses the issue purging all the references held by the exception at time, as we currently do for e.g. ipv6 pcpu dst entries. v1 -> v2: - re-order the code to avoid accessing dst and net after dst_dev_put() Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-20 17:18:12 +00:00
net->ipv6.rt6_stats->fib_rt_cache--;
/* purge completely the exception to allow releasing the held resources:
* some [sk] cache may keep the dst around for unlimited time
*/
ipv6: fix races in ip6_dst_destroy() We had many syzbot reports that seem to be caused by use-after-free of struct fib6_info. ip6_dst_destroy(), fib6_drop_pcpu_from() and rt6_remove_exception() are writers vs rt->from, and use non consistent synchronization among themselves. Switching to xchg() will solve the issues with no possible lockdep issues. BUG: KASAN: user-memory-access in atomic_dec_and_test include/asm-generic/atomic-instrumented.h:747 [inline] BUG: KASAN: user-memory-access in fib6_info_release include/net/ip6_fib.h:294 [inline] BUG: KASAN: user-memory-access in fib6_info_release include/net/ip6_fib.h:292 [inline] BUG: KASAN: user-memory-access in fib6_drop_pcpu_from net/ipv6/ip6_fib.c:927 [inline] BUG: KASAN: user-memory-access in fib6_purge_rt+0x4f6/0x670 net/ipv6/ip6_fib.c:960 Write of size 4 at addr 0000000000ffffb4 by task syz-executor.1/7649 CPU: 0 PID: 7649 Comm: syz-executor.1 Not tainted 5.1.0-rc6+ #183 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 kasan_report.cold+0x5/0x40 mm/kasan/report.c:321 check_memory_region_inline mm/kasan/generic.c:185 [inline] check_memory_region+0x123/0x190 mm/kasan/generic.c:191 kasan_check_write+0x14/0x20 mm/kasan/common.c:108 atomic_dec_and_test include/asm-generic/atomic-instrumented.h:747 [inline] fib6_info_release include/net/ip6_fib.h:294 [inline] fib6_info_release include/net/ip6_fib.h:292 [inline] fib6_drop_pcpu_from net/ipv6/ip6_fib.c:927 [inline] fib6_purge_rt+0x4f6/0x670 net/ipv6/ip6_fib.c:960 fib6_del_route net/ipv6/ip6_fib.c:1813 [inline] fib6_del+0xac2/0x10a0 net/ipv6/ip6_fib.c:1844 fib6_clean_node+0x3a8/0x590 net/ipv6/ip6_fib.c:2006 fib6_walk_continue+0x495/0x900 net/ipv6/ip6_fib.c:1928 fib6_walk+0x9d/0x100 net/ipv6/ip6_fib.c:1976 fib6_clean_tree+0xe0/0x120 net/ipv6/ip6_fib.c:2055 __fib6_clean_all+0x118/0x2a0 net/ipv6/ip6_fib.c:2071 fib6_clean_all+0x2b/0x40 net/ipv6/ip6_fib.c:2082 rt6_sync_down_dev+0x134/0x150 net/ipv6/route.c:4057 rt6_disable_ip+0x27/0x5f0 net/ipv6/route.c:4062 addrconf_ifdown+0xa2/0x1220 net/ipv6/addrconf.c:3705 addrconf_notify+0x19a/0x2260 net/ipv6/addrconf.c:3630 notifier_call_chain+0xc7/0x240 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2e/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x3f/0x90 net/core/dev.c:1753 call_netdevice_notifiers_extack net/core/dev.c:1765 [inline] call_netdevice_notifiers net/core/dev.c:1779 [inline] dev_close_many+0x33f/0x6f0 net/core/dev.c:1522 rollback_registered_many+0x43b/0xfd0 net/core/dev.c:8177 rollback_registered+0x109/0x1d0 net/core/dev.c:8242 unregister_netdevice_queue net/core/dev.c:9289 [inline] unregister_netdevice_queue+0x1ee/0x2c0 net/core/dev.c:9282 unregister_netdevice include/linux/netdevice.h:2658 [inline] __tun_detach+0xd5b/0x1000 drivers/net/tun.c:727 tun_detach drivers/net/tun.c:744 [inline] tun_chr_close+0xe0/0x180 drivers/net/tun.c:3443 __fput+0x2e5/0x8d0 fs/file_table.c:278 ____fput+0x16/0x20 fs/file_table.c:309 task_work_run+0x14a/0x1c0 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x90a/0x2fa0 kernel/exit.c:876 do_group_exit+0x135/0x370 kernel/exit.c:980 __do_sys_exit_group kernel/exit.c:991 [inline] __se_sys_exit_group kernel/exit.c:989 [inline] __x64_sys_exit_group+0x44/0x50 kernel/exit.c:989 do_syscall_64+0x103/0x610 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x458da9 Code: ad b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b8 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffeafc2a6a8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 000000000000001c RCX: 0000000000458da9 RDX: 0000000000412a80 RSI: 0000000000a54ef0 RDI: 0000000000000043 RBP: 00000000004be552 R08: 000000000000000c R09: 000000000004c0d1 R10: 0000000002341940 R11: 0000000000000246 R12: 00000000ffffffff R13: 00007ffeafc2a7f0 R14: 000000000004c065 R15: 00007ffeafc2a800 Fixes: a68886a69180 ("net/ipv6: Make from in rt6_info rcu protected") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: David Ahern <dsahern@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28 19:22:25 +00:00
from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL);
ipv6: route: purge exception on removal When a netdevice is unregistered, we flush the relevant exception via rt6_sync_down_dev() -> fib6_ifdown() -> fib6_del() -> fib6_del_route(). Finally, we end-up calling rt6_remove_exception(), where we release the relevant dst, while we keep the references to the related fib6_info and dev. Such references should be released later when the dst will be destroyed. There are a number of caches that can keep the exception around for an unlimited amount of time - namely dst_cache, possibly even socket cache. As a result device registration may hang, as demonstrated by this script: ip netns add cl ip netns add rt ip netns add srv ip netns exec rt sysctl -w net.ipv6.conf.all.forwarding=1 ip link add name cl_veth type veth peer name cl_rt_veth ip link set dev cl_veth netns cl ip -n cl link set dev cl_veth up ip -n cl addr add dev cl_veth 2001::2/64 ip -n cl route add default via 2001::1 ip -n cl link add tunv6 type ip6tnl mode ip6ip6 local 2001::2 remote 2002::1 hoplimit 64 dev cl_veth ip -n cl link set tunv6 up ip -n cl addr add 2013::2/64 dev tunv6 ip link set dev cl_rt_veth netns rt ip -n rt link set dev cl_rt_veth up ip -n rt addr add dev cl_rt_veth 2001::1/64 ip link add name rt_srv_veth type veth peer name srv_veth ip link set dev srv_veth netns srv ip -n srv link set dev srv_veth up ip -n srv addr add dev srv_veth 2002::1/64 ip -n srv route add default via 2002::2 ip -n srv link add tunv6 type ip6tnl mode ip6ip6 local 2002::1 remote 2001::2 hoplimit 64 dev srv_veth ip -n srv link set tunv6 up ip -n srv addr add 2013::1/64 dev tunv6 ip link set dev rt_srv_veth netns rt ip -n rt link set dev rt_srv_veth up ip -n rt addr add dev rt_srv_veth 2002::2/64 ip netns exec srv netserver & sleep 0.1 ip netns exec cl ping6 -c 4 2013::1 ip netns exec cl netperf -H 2013::1 -t TCP_STREAM -l 3 & sleep 1 ip -n rt link set dev rt_srv_veth mtu 1400 wait %2 ip -n cl link del cl_veth This commit addresses the issue purging all the references held by the exception at time, as we currently do for e.g. ipv6 pcpu dst entries. v1 -> v2: - re-order the code to avoid accessing dst and net after dst_dev_put() Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-20 17:18:12 +00:00
fib6_info_release(from);
dst_dev_put(&rt6_ex->rt6i->dst);
hlist_del_rcu(&rt6_ex->hlist);
dst_release(&rt6_ex->rt6i->dst);
kfree_rcu(rt6_ex, rcu);
WARN_ON_ONCE(!bucket->depth);
bucket->depth--;
}
/* Remove oldest rt6_ex in bucket and free the memory
* Caller must hold rt6_exception_lock
*/
static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
{
struct rt6_exception *rt6_ex, *oldest = NULL;
if (!bucket)
return;
hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
oldest = rt6_ex;
}
rt6_remove_exception(bucket, oldest);
}
static u32 rt6_exception_hash(const struct in6_addr *dst,
const struct in6_addr *src)
{
static siphash_aligned_key_t rt6_exception_key;
struct {
struct in6_addr dst;
struct in6_addr src;
} __aligned(SIPHASH_ALIGNMENT) combined = {
.dst = *dst,
};
u64 val;
net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key));
#ifdef CONFIG_IPV6_SUBTREES
if (src)
combined.src = *src;
#endif
val = siphash(&combined, sizeof(combined), &rt6_exception_key);
return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
}
/* Helper function to find the cached rt in the hash table
* and update bucket pointer to point to the bucket for this
* (daddr, saddr) pair
* Caller must hold rt6_exception_lock
*/
static struct rt6_exception *
__rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
struct rt6_exception *rt6_ex;
u32 hval;
if (!(*bucket) || !daddr)
return NULL;
hval = rt6_exception_hash(daddr, saddr);
*bucket += hval;
hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
struct rt6_info *rt6 = rt6_ex->rt6i;
bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
#ifdef CONFIG_IPV6_SUBTREES
if (matched && saddr)
matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
#endif
if (matched)
return rt6_ex;
}
return NULL;
}
/* Helper function to find the cached rt in the hash table
* and update bucket pointer to point to the bucket for this
* (daddr, saddr) pair
* Caller must hold rcu_read_lock()
*/
static struct rt6_exception *
__rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
struct rt6_exception *rt6_ex;
u32 hval;
WARN_ON_ONCE(!rcu_read_lock_held());
if (!(*bucket) || !daddr)
return NULL;
hval = rt6_exception_hash(daddr, saddr);
*bucket += hval;
hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
struct rt6_info *rt6 = rt6_ex->rt6i;
bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
#ifdef CONFIG_IPV6_SUBTREES
if (matched && saddr)
matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
#endif
if (matched)
return rt6_ex;
}
return NULL;
}
static unsigned int fib6_mtu(const struct fib6_result *res)
{
const struct fib6_nh *nh = res->nh;
unsigned int mtu;
if (res->f6i->fib6_pmtu) {
mtu = res->f6i->fib6_pmtu;
} else {
struct net_device *dev = nh->fib_nh_dev;
struct inet6_dev *idev;
rcu_read_lock();
idev = __in6_dev_get(dev);
mtu = idev->cnf.mtu6;
rcu_read_unlock();
}
mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu);
}
#define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL
/* used when the flushed bit is not relevant, only access to the bucket
* (ie., all bucket users except rt6_insert_exception);
*
* called under rcu lock; sometimes called with rt6_exception_lock held
*/
static
struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh,
spinlock_t *lock)
{
struct rt6_exception_bucket *bucket;
if (lock)
bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
lockdep_is_held(lock));
else
bucket = rcu_dereference(nh->rt6i_exception_bucket);
/* remove bucket flushed bit if set */
if (bucket) {
unsigned long p = (unsigned long)bucket;
p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED;
bucket = (struct rt6_exception_bucket *)p;
}
return bucket;
}
static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket)
{
unsigned long p = (unsigned long)bucket;
return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED);
}
/* called with rt6_exception_lock held */
static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh,
spinlock_t *lock)
{
struct rt6_exception_bucket *bucket;
unsigned long p;
bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
lockdep_is_held(lock));
p = (unsigned long)bucket;
p |= FIB6_EXCEPTION_BUCKET_FLUSHED;
bucket = (struct rt6_exception_bucket *)p;
rcu_assign_pointer(nh->rt6i_exception_bucket, bucket);
}
static int rt6_insert_exception(struct rt6_info *nrt,
const struct fib6_result *res)
{
struct net *net = dev_net(nrt->dst.dev);
struct rt6_exception_bucket *bucket;
struct fib6_info *f6i = res->f6i;
struct in6_addr *src_key = NULL;
struct rt6_exception *rt6_ex;
struct fib6_nh *nh = res->nh;
int max_depth;
int err = 0;
spin_lock_bh(&rt6_exception_lock);
bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
lockdep_is_held(&rt6_exception_lock));
if (!bucket) {
bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
GFP_ATOMIC);
if (!bucket) {
err = -ENOMEM;
goto out;
}
rcu_assign_pointer(nh->rt6i_exception_bucket, bucket);
} else if (fib6_nh_excptn_bucket_flushed(bucket)) {
err = -EINVAL;
goto out;
}
#ifdef CONFIG_IPV6_SUBTREES
/* fib6_src.plen != 0 indicates f6i is in subtree
* and exception table is indexed by a hash of
* both fib6_dst and fib6_src.
* Otherwise, the exception table is indexed by
* a hash of only fib6_dst.
*/
if (f6i->fib6_src.plen)
src_key = &nrt->rt6i_src.addr;
#endif
/* rt6_mtu_change() might lower mtu on f6i.
* Only insert this exception route if its mtu
* is less than f6i's mtu value.
*/
if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) {
err = -EINVAL;
goto out;
}
rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
src_key);
if (rt6_ex)
rt6_remove_exception(bucket, rt6_ex);
rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
if (!rt6_ex) {
err = -ENOMEM;
goto out;
}
rt6_ex->rt6i = nrt;
rt6_ex->stamp = jiffies;
hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
bucket->depth++;
net->ipv6.rt6_stats->fib_rt_cache++;
/* Randomize max depth to avoid some side channels attacks. */
max_depth = FIB6_MAX_DEPTH + prandom_u32_max(FIB6_MAX_DEPTH);
while (bucket->depth > max_depth)
rt6_exception_remove_oldest(bucket);
out:
spin_unlock_bh(&rt6_exception_lock);
/* Update fn->fn_sernum to invalidate all cached dst */
if (!err) {
spin_lock_bh(&f6i->fib6_table->tb6_lock);
fib6_update_sernum(net, f6i);
spin_unlock_bh(&f6i->fib6_table->tb6_lock);
fib6_force_start_gc(net);
}
return err;
}
static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from)
{
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
struct hlist_node *tmp;
int i;
spin_lock_bh(&rt6_exception_lock);
bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
if (!bucket)
goto out;
/* Prevent rt6_insert_exception() to recreate the bucket list */
if (!from)
fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock);
for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) {
if (!from ||
rcu_access_pointer(rt6_ex->rt6i->from) == from)
rt6_remove_exception(bucket, rt6_ex);
}
WARN_ON_ONCE(!from && bucket->depth);
bucket++;
}
out:
spin_unlock_bh(&rt6_exception_lock);
}
static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg)
{
struct fib6_info *f6i = arg;
fib6_nh_flush_exceptions(nh, f6i);
return 0;
}
void rt6_flush_exceptions(struct fib6_info *f6i)
{
if (f6i->nh)
nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions,
f6i);
else
fib6_nh_flush_exceptions(f6i->fib6_nh, f6i);
}
/* Find cached rt in the hash table inside passed in rt
* Caller has to hold rcu_read_lock()
*/
static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res,
const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
const struct in6_addr *src_key = NULL;
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
struct rt6_info *ret = NULL;
#ifdef CONFIG_IPV6_SUBTREES
/* fib6i_src.plen != 0 indicates f6i is in subtree
* and exception table is indexed by a hash of
* both fib6_dst and fib6_src.
* However, the src addr used to create the hash
* might not be exactly the passed in saddr which
* is a /128 addr from the flow.
* So we need to use f6i->fib6_src to redo lookup
* if the passed in saddr does not find anything.
* (See the logic in ip6_rt_cache_alloc() on how
* rt->rt6i_src is updated.)
*/
if (res->f6i->fib6_src.plen)
src_key = saddr;
find_ex:
#endif
bucket = fib6_nh_get_excptn_bucket(res->nh, NULL);
rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
ret = rt6_ex->rt6i;
#ifdef CONFIG_IPV6_SUBTREES
/* Use fib6_src as src_key and redo lookup */
if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) {
src_key = &res->f6i->fib6_src.addr;
goto find_ex;
}
#endif
return ret;
}
/* Remove the passed in cached rt from the hash table that contains it */
static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen,
const struct rt6_info *rt)
{
const struct in6_addr *src_key = NULL;
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
int err;
if (!rcu_access_pointer(nh->rt6i_exception_bucket))
return -ENOENT;
spin_lock_bh(&rt6_exception_lock);
bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
#ifdef CONFIG_IPV6_SUBTREES
/* rt6i_src.plen != 0 indicates 'from' is in subtree
* and exception table is indexed by a hash of
* both rt6i_dst and rt6i_src.
* Otherwise, the exception table is indexed by
* a hash of only rt6i_dst.
*/
if (plen)
src_key = &rt->rt6i_src.addr;
#endif
rt6_ex = __rt6_find_exception_spinlock(&bucket,
&rt->rt6i_dst.addr,
src_key);
if (rt6_ex) {
rt6_remove_exception(bucket, rt6_ex);
err = 0;
} else {
err = -ENOENT;
}
spin_unlock_bh(&rt6_exception_lock);
return err;
}
struct fib6_nh_excptn_arg {
struct rt6_info *rt;
int plen;
};
static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_excptn_arg *arg = _arg;
int err;
err = fib6_nh_remove_exception(nh, arg->plen, arg->rt);
if (err == 0)
return 1;
return 0;
}
static int rt6_remove_exception_rt(struct rt6_info *rt)
{
struct fib6_info *from;
from = rcu_dereference(rt->from);
if (!from || !(rt->rt6i_flags & RTF_CACHE))
return -EINVAL;
if (from->nh) {
struct fib6_nh_excptn_arg arg = {
.rt = rt,
.plen = from->fib6_src.plen
};
int rc;
/* rc = 1 means an entry was found */
rc = nexthop_for_each_fib6_nh(from->nh,
rt6_nh_remove_exception_rt,
&arg);
return rc ? 0 : -ENOENT;
}
return fib6_nh_remove_exception(from->fib6_nh,
from->fib6_src.plen, rt);
}
/* Find rt6_ex which contains the passed in rt cache and
* refresh its stamp
*/
static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen,
const struct rt6_info *rt)
{
const struct in6_addr *src_key = NULL;
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
bucket = fib6_nh_get_excptn_bucket(nh, NULL);
#ifdef CONFIG_IPV6_SUBTREES
/* rt6i_src.plen != 0 indicates 'from' is in subtree
* and exception table is indexed by a hash of
* both rt6i_dst and rt6i_src.
* Otherwise, the exception table is indexed by
* a hash of only rt6i_dst.
*/
if (plen)
src_key = &rt->rt6i_src.addr;
#endif
rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key);
if (rt6_ex)
rt6_ex->stamp = jiffies;
}
struct fib6_nh_match_arg {
const struct net_device *dev;
const struct in6_addr *gw;
struct fib6_nh *match;
};
/* determine if fib6_nh has given device and gateway */
static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_match_arg *arg = _arg;
if (arg->dev != nh->fib_nh_dev ||
(arg->gw && !nh->fib_nh_gw_family) ||
(!arg->gw && nh->fib_nh_gw_family) ||
(arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6)))
return 0;
arg->match = nh;
/* found a match, break the loop */
return 1;
}
static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
{
struct fib6_info *from;
struct fib6_nh *fib6_nh;
rcu_read_lock();
from = rcu_dereference(rt->from);
if (!from || !(rt->rt6i_flags & RTF_CACHE))
goto unlock;
if (from->nh) {
struct fib6_nh_match_arg arg = {
.dev = rt->dst.dev,
.gw = &rt->rt6i_gateway,
};
nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg);
if (!arg.match)
goto unlock;
fib6_nh = arg.match;
} else {
fib6_nh = from->fib6_nh;
}
fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt);
unlock:
rcu_read_unlock();
}
ipv6: Reflect MTU changes on PMTU of exceptions for MTU-less routes Currently, administrative MTU changes on a given netdevice are not reflected on route exceptions for MTU-less routes, with a set PMTU value, for that device: # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a proto kernel src 2001:db8::a metric 256 pref medium # ping6 -c 1 -q -s10000 2001:db8::b > /dev/null # ip netns exec a ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 3000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 9000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium The first issue is that since commit fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") we don't call rt6_exceptions_update_pmtu() from rt6_mtu_change_route(), which handles administrative MTU changes, if the regular route is MTU-less. However, PMTU exceptions should be always updated, as long as RTAX_MTU is not locked. Keep the check for MTU-less main route, as introduced by that commit, but, for exceptions, call rt6_exceptions_update_pmtu() regardless of that check. Once that is fixed, one problem remains: MTU changes are not reflected if the new MTU is higher than the previous one, because rt6_exceptions_update_pmtu() doesn't allow that. We should instead allow PMTU increase if the old PMTU matches the local MTU, as that implies that the old MTU was the lowest in the path, and PMTU discovery might lead to different results. The existing check in rt6_mtu_change_route() correctly took that case into account (for regular routes only), so factor it out and re-use it also in rt6_exceptions_update_pmtu(). While at it, fix comments style and grammar, and try to be a bit more descriptive. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") Fixes: f5bbe7ee79c2 ("ipv6: prepare rt6_mtu_change() for exception table") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-06 10:10:19 +00:00
static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
struct rt6_info *rt, int mtu)
{
/* If the new MTU is lower than the route PMTU, this new MTU will be the
* lowest MTU in the path: always allow updating the route PMTU to
* reflect PMTU decreases.
*
* If the new MTU is higher, and the route PMTU is equal to the local
* MTU, this means the old MTU is the lowest in the path, so allow
* updating it: if other nodes now have lower MTUs, PMTU discovery will
* handle this.
*/
if (dst_mtu(&rt->dst) >= mtu)
return true;
if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
return true;
return false;
}
static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
const struct fib6_nh *nh, int mtu)
{
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
int i;
bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
ipv6: Reflect MTU changes on PMTU of exceptions for MTU-less routes Currently, administrative MTU changes on a given netdevice are not reflected on route exceptions for MTU-less routes, with a set PMTU value, for that device: # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a proto kernel src 2001:db8::a metric 256 pref medium # ping6 -c 1 -q -s10000 2001:db8::b > /dev/null # ip netns exec a ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 3000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 9000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium The first issue is that since commit fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") we don't call rt6_exceptions_update_pmtu() from rt6_mtu_change_route(), which handles administrative MTU changes, if the regular route is MTU-less. However, PMTU exceptions should be always updated, as long as RTAX_MTU is not locked. Keep the check for MTU-less main route, as introduced by that commit, but, for exceptions, call rt6_exceptions_update_pmtu() regardless of that check. Once that is fixed, one problem remains: MTU changes are not reflected if the new MTU is higher than the previous one, because rt6_exceptions_update_pmtu() doesn't allow that. We should instead allow PMTU increase if the old PMTU matches the local MTU, as that implies that the old MTU was the lowest in the path, and PMTU discovery might lead to different results. The existing check in rt6_mtu_change_route() correctly took that case into account (for regular routes only), so factor it out and re-use it also in rt6_exceptions_update_pmtu(). While at it, fix comments style and grammar, and try to be a bit more descriptive. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") Fixes: f5bbe7ee79c2 ("ipv6: prepare rt6_mtu_change() for exception table") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-06 10:10:19 +00:00
if (!bucket)
return;
for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
struct rt6_info *entry = rt6_ex->rt6i;
/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
* route), the metrics of its rt->from have already
ipv6: Reflect MTU changes on PMTU of exceptions for MTU-less routes Currently, administrative MTU changes on a given netdevice are not reflected on route exceptions for MTU-less routes, with a set PMTU value, for that device: # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a proto kernel src 2001:db8::a metric 256 pref medium # ping6 -c 1 -q -s10000 2001:db8::b > /dev/null # ip netns exec a ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 3000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 9000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium The first issue is that since commit fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") we don't call rt6_exceptions_update_pmtu() from rt6_mtu_change_route(), which handles administrative MTU changes, if the regular route is MTU-less. However, PMTU exceptions should be always updated, as long as RTAX_MTU is not locked. Keep the check for MTU-less main route, as introduced by that commit, but, for exceptions, call rt6_exceptions_update_pmtu() regardless of that check. Once that is fixed, one problem remains: MTU changes are not reflected if the new MTU is higher than the previous one, because rt6_exceptions_update_pmtu() doesn't allow that. We should instead allow PMTU increase if the old PMTU matches the local MTU, as that implies that the old MTU was the lowest in the path, and PMTU discovery might lead to different results. The existing check in rt6_mtu_change_route() correctly took that case into account (for regular routes only), so factor it out and re-use it also in rt6_exceptions_update_pmtu(). While at it, fix comments style and grammar, and try to be a bit more descriptive. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") Fixes: f5bbe7ee79c2 ("ipv6: prepare rt6_mtu_change() for exception table") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-06 10:10:19 +00:00
* been updated.
*/
if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
ipv6: Reflect MTU changes on PMTU of exceptions for MTU-less routes Currently, administrative MTU changes on a given netdevice are not reflected on route exceptions for MTU-less routes, with a set PMTU value, for that device: # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a proto kernel src 2001:db8::a metric 256 pref medium # ping6 -c 1 -q -s10000 2001:db8::b > /dev/null # ip netns exec a ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 3000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 9000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium The first issue is that since commit fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") we don't call rt6_exceptions_update_pmtu() from rt6_mtu_change_route(), which handles administrative MTU changes, if the regular route is MTU-less. However, PMTU exceptions should be always updated, as long as RTAX_MTU is not locked. Keep the check for MTU-less main route, as introduced by that commit, but, for exceptions, call rt6_exceptions_update_pmtu() regardless of that check. Once that is fixed, one problem remains: MTU changes are not reflected if the new MTU is higher than the previous one, because rt6_exceptions_update_pmtu() doesn't allow that. We should instead allow PMTU increase if the old PMTU matches the local MTU, as that implies that the old MTU was the lowest in the path, and PMTU discovery might lead to different results. The existing check in rt6_mtu_change_route() correctly took that case into account (for regular routes only), so factor it out and re-use it also in rt6_exceptions_update_pmtu(). While at it, fix comments style and grammar, and try to be a bit more descriptive. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") Fixes: f5bbe7ee79c2 ("ipv6: prepare rt6_mtu_change() for exception table") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-06 10:10:19 +00:00
rt6_mtu_change_route_allowed(idev, entry, mtu))
dst_metric_set(&entry->dst, RTAX_MTU, mtu);
}
ipv6: Reflect MTU changes on PMTU of exceptions for MTU-less routes Currently, administrative MTU changes on a given netdevice are not reflected on route exceptions for MTU-less routes, with a set PMTU value, for that device: # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a proto kernel src 2001:db8::a metric 256 pref medium # ping6 -c 1 -q -s10000 2001:db8::b > /dev/null # ip netns exec a ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 3000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium # ip link set dev vti_a mtu 9000 # ip -6 route get 2001:db8::b 2001:db8::b from :: dev vti_a src 2001:db8::a metric 0 cache expires 571sec mtu 4926 pref medium The first issue is that since commit fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") we don't call rt6_exceptions_update_pmtu() from rt6_mtu_change_route(), which handles administrative MTU changes, if the regular route is MTU-less. However, PMTU exceptions should be always updated, as long as RTAX_MTU is not locked. Keep the check for MTU-less main route, as introduced by that commit, but, for exceptions, call rt6_exceptions_update_pmtu() regardless of that check. Once that is fixed, one problem remains: MTU changes are not reflected if the new MTU is higher than the previous one, because rt6_exceptions_update_pmtu() doesn't allow that. We should instead allow PMTU increase if the old PMTU matches the local MTU, as that implies that the old MTU was the lowest in the path, and PMTU discovery might lead to different results. The existing check in rt6_mtu_change_route() correctly took that case into account (for regular routes only), so factor it out and re-use it also in rt6_exceptions_update_pmtu(). While at it, fix comments style and grammar, and try to be a bit more descriptive. Reported-by: Xiumei Mu <xmu@redhat.com> Fixes: fb56be83e43d ("net-ipv6: on device mtu change do not add mtu to mtu-less routes") Fixes: f5bbe7ee79c2 ("ipv6: prepare rt6_mtu_change() for exception table") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-06 10:10:19 +00:00
bucket++;
}
}
#define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE)
static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh,
const struct in6_addr *gateway)
{
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
struct hlist_node *tmp;
int i;
if (!rcu_access_pointer(nh->rt6i_exception_bucket))
return;
spin_lock_bh(&rt6_exception_lock);
bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
if (bucket) {
for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
hlist_for_each_entry_safe(rt6_ex, tmp,
&bucket->chain, hlist) {
struct rt6_info *entry = rt6_ex->rt6i;
if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
RTF_CACHE_GATEWAY &&
ipv6_addr_equal(gateway,
&entry->rt6i_gateway)) {
rt6_remove_exception(bucket, rt6_ex);
}
}
bucket++;
}
}
spin_unlock_bh(&rt6_exception_lock);
}
static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
struct rt6_exception *rt6_ex,
struct fib6_gc_args *gc_args,
unsigned long now)
{
struct rt6_info *rt = rt6_ex->rt6i;
/* we are pruning and obsoleting aged-out and non gateway exceptions
* even if others have still references to them, so that on next
* dst_check() such references can be dropped.
* EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
* expired, independently from their aging, as per RFC 8201 section 4
*/
if (!(rt->rt6i_flags & RTF_EXPIRES)) {
if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
RT6_TRACE("aging clone %p\n", rt);
rt6_remove_exception(bucket, rt6_ex);
return;
}
} else if (time_after(jiffies, rt->dst.expires)) {
RT6_TRACE("purging expired route %p\n", rt);
rt6_remove_exception(bucket, rt6_ex);
return;
}
if (rt->rt6i_flags & RTF_GATEWAY) {
struct neighbour *neigh;
ipv6: fix possible deadlock in rt6_age_examine_exception() syzbot reported a LOCKDEP splat [1] in rt6_age_examine_exception() rt6_age_examine_exception() is called while rt6_exception_lock is held. This lock is the lower one in the lock hierarchy, thus we can not call dst_neigh_lookup() function, as it can fallback to neigh_create() We should instead do a pure RCU lookup. As a bonus we avoid a pair of atomic operations on neigh refcount. [1] WARNING: possible circular locking dependency detected 4.16.0-rc4+ #277 Not tainted syz-executor7/4015 is trying to acquire lock: (&ndev->lock){++--}, at: [<00000000416dce19>] __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 but task is already holding lock: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&tbl->lock){++-.}: __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __neigh_create+0x87e/0x1d90 net/core/neighbour.c:528 neigh_create include/net/neighbour.h:315 [inline] ip6_neigh_lookup+0x9a7/0xba0 net/ipv6/route.c:228 dst_neigh_lookup include/net/dst.h:405 [inline] rt6_age_examine_exception net/ipv6/route.c:1609 [inline] rt6_age_exceptions+0x381/0x660 net/ipv6/route.c:1645 fib6_age+0xfb/0x140 net/ipv6/ip6_fib.c:2033 fib6_clean_node+0x389/0x580 net/ipv6/ip6_fib.c:1919 fib6_walk_continue+0x46c/0x8a0 net/ipv6/ip6_fib.c:1845 fib6_walk+0x91/0xf0 net/ipv6/ip6_fib.c:1893 fib6_clean_tree+0x1e6/0x340 net/ipv6/ip6_fib.c:1970 __fib6_clean_all+0x1f4/0x3a0 net/ipv6/ip6_fib.c:1986 fib6_clean_all net/ipv6/ip6_fib.c:1997 [inline] fib6_run_gc+0x16b/0x3c0 net/ipv6/ip6_fib.c:2053 ndisc_netdev_event+0x3c2/0x4a0 net/ipv6/ndisc.c:1781 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #2 (rt6_exception_lock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] rt6_flush_exceptions+0x21/0x210 net/ipv6/route.c:1367 fib6_del_route net/ipv6/ip6_fib.c:1677 [inline] fib6_del+0x624/0x12c0 net/ipv6/ip6_fib.c:1761 __ip6_del_rt+0xc7/0x120 net/ipv6/route.c:2980 ip6_del_rt+0x132/0x1a0 net/ipv6/route.c:2993 __ipv6_dev_ac_dec+0x3b1/0x600 net/ipv6/anycast.c:332 ipv6_dev_ac_dec net/ipv6/anycast.c:345 [inline] ipv6_sock_ac_close+0x2b4/0x3e0 net/ipv6/anycast.c:200 inet6_release+0x48/0x70 net/ipv6/af_inet6.c:433 sock_release+0x8d/0x1e0 net/socket.c:594 sock_close+0x16/0x20 net/socket.c:1149 __fput+0x327/0x7e0 fs/file_table.c:209 ____fput+0x15/0x20 fs/file_table.c:243 task_work_run+0x199/0x270 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x9bb/0x1ad0 kernel/exit.c:865 do_group_exit+0x149/0x400 kernel/exit.c:968 get_signal+0x73a/0x16d0 kernel/signal.c:2469 do_signal+0x90/0x1e90 arch/x86/kernel/signal.c:809 exit_to_usermode_loop+0x258/0x2f0 arch/x86/entry/common.c:162 prepare_exit_to_usermode arch/x86/entry/common.c:196 [inline] syscall_return_slowpath arch/x86/entry/common.c:265 [inline] do_syscall_64+0x6ec/0x940 arch/x86/entry/common.c:292 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #1 (&(&tb->tb6_lock)->rlock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] __ip6_ins_rt+0x56/0x90 net/ipv6/route.c:1007 ip6_route_add+0x141/0x190 net/ipv6/route.c:2955 addrconf_prefix_route+0x44f/0x620 net/ipv6/addrconf.c:2359 fixup_permanent_addr net/ipv6/addrconf.c:3368 [inline] addrconf_permanent_addr net/ipv6/addrconf.c:3391 [inline] addrconf_notify+0x1ad2/0x2310 net/ipv6/addrconf.c:3460 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x15d/0x430 net/core/dev.c:6958 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 do_setlink+0xa22/0x3bb0 net/core/rtnetlink.c:2357 rtnl_newlink+0xf37/0x1a50 net/core/rtnetlink.c:2965 rtnetlink_rcv_msg+0x57f/0xb10 net/core/rtnetlink.c:4641 netlink_rcv_skb+0x14b/0x380 net/netlink/af_netlink.c:2444 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4659 netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline] netlink_unicast+0x4c4/0x6b0 net/netlink/af_netlink.c:1334 netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg+0xca/0x110 net/socket.c:639 ___sys_sendmsg+0x767/0x8b0 net/socket.c:2047 __sys_sendmsg+0xe5/0x210 net/socket.c:2081 SYSC_sendmsg net/socket.c:2092 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2088 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #0 (&ndev->lock){++--}: lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 other info that might help us debug this: Chain exists of: &ndev->lock --> rt6_exception_lock --> &tbl->lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&tbl->lock); lock(rt6_exception_lock); lock(&tbl->lock); lock(&ndev->lock); *** DEADLOCK *** 2 locks held by syz-executor7/4015: #0: (rtnl_mutex){+.+.}, at: [<00000000a2f16daa>] rtnl_lock+0x17/0x20 net/core/rtnetlink.c:74 #1: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 stack backtrace: CPU: 0 PID: 4015 Comm: syz-executor7 Not tainted 4.16.0-rc4+ #277 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x194/0x24d lib/dump_stack.c:53 print_circular_bug.isra.38+0x2cd/0x2dc kernel/locking/lockdep.c:1223 check_prev_add kernel/locking/lockdep.c:1863 [inline] check_prevs_add kernel/locking/lockdep.c:1976 [inline] validate_chain kernel/locking/lockdep.c:2417 [inline] __lock_acquire+0x30a8/0x3e00 kernel/locking/lockdep.c:3431 lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 Fixes: c757faa8bfa2 ("ipv6: prepare fib6_age() for exception table") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Wei Wang <weiwan@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 14:56:58 +00:00
neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
if (!(neigh && (neigh->flags & NTF_ROUTER))) {
RT6_TRACE("purging route %p via non-router but gateway\n",
rt);
rt6_remove_exception(bucket, rt6_ex);
return;
}
}
gc_args->more++;
}
static void fib6_nh_age_exceptions(const struct fib6_nh *nh,
struct fib6_gc_args *gc_args,
unsigned long now)
{
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
struct hlist_node *tmp;
int i;
if (!rcu_access_pointer(nh->rt6i_exception_bucket))
return;
ipv6: fix possible deadlock in rt6_age_examine_exception() syzbot reported a LOCKDEP splat [1] in rt6_age_examine_exception() rt6_age_examine_exception() is called while rt6_exception_lock is held. This lock is the lower one in the lock hierarchy, thus we can not call dst_neigh_lookup() function, as it can fallback to neigh_create() We should instead do a pure RCU lookup. As a bonus we avoid a pair of atomic operations on neigh refcount. [1] WARNING: possible circular locking dependency detected 4.16.0-rc4+ #277 Not tainted syz-executor7/4015 is trying to acquire lock: (&ndev->lock){++--}, at: [<00000000416dce19>] __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 but task is already holding lock: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&tbl->lock){++-.}: __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __neigh_create+0x87e/0x1d90 net/core/neighbour.c:528 neigh_create include/net/neighbour.h:315 [inline] ip6_neigh_lookup+0x9a7/0xba0 net/ipv6/route.c:228 dst_neigh_lookup include/net/dst.h:405 [inline] rt6_age_examine_exception net/ipv6/route.c:1609 [inline] rt6_age_exceptions+0x381/0x660 net/ipv6/route.c:1645 fib6_age+0xfb/0x140 net/ipv6/ip6_fib.c:2033 fib6_clean_node+0x389/0x580 net/ipv6/ip6_fib.c:1919 fib6_walk_continue+0x46c/0x8a0 net/ipv6/ip6_fib.c:1845 fib6_walk+0x91/0xf0 net/ipv6/ip6_fib.c:1893 fib6_clean_tree+0x1e6/0x340 net/ipv6/ip6_fib.c:1970 __fib6_clean_all+0x1f4/0x3a0 net/ipv6/ip6_fib.c:1986 fib6_clean_all net/ipv6/ip6_fib.c:1997 [inline] fib6_run_gc+0x16b/0x3c0 net/ipv6/ip6_fib.c:2053 ndisc_netdev_event+0x3c2/0x4a0 net/ipv6/ndisc.c:1781 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #2 (rt6_exception_lock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] rt6_flush_exceptions+0x21/0x210 net/ipv6/route.c:1367 fib6_del_route net/ipv6/ip6_fib.c:1677 [inline] fib6_del+0x624/0x12c0 net/ipv6/ip6_fib.c:1761 __ip6_del_rt+0xc7/0x120 net/ipv6/route.c:2980 ip6_del_rt+0x132/0x1a0 net/ipv6/route.c:2993 __ipv6_dev_ac_dec+0x3b1/0x600 net/ipv6/anycast.c:332 ipv6_dev_ac_dec net/ipv6/anycast.c:345 [inline] ipv6_sock_ac_close+0x2b4/0x3e0 net/ipv6/anycast.c:200 inet6_release+0x48/0x70 net/ipv6/af_inet6.c:433 sock_release+0x8d/0x1e0 net/socket.c:594 sock_close+0x16/0x20 net/socket.c:1149 __fput+0x327/0x7e0 fs/file_table.c:209 ____fput+0x15/0x20 fs/file_table.c:243 task_work_run+0x199/0x270 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x9bb/0x1ad0 kernel/exit.c:865 do_group_exit+0x149/0x400 kernel/exit.c:968 get_signal+0x73a/0x16d0 kernel/signal.c:2469 do_signal+0x90/0x1e90 arch/x86/kernel/signal.c:809 exit_to_usermode_loop+0x258/0x2f0 arch/x86/entry/common.c:162 prepare_exit_to_usermode arch/x86/entry/common.c:196 [inline] syscall_return_slowpath arch/x86/entry/common.c:265 [inline] do_syscall_64+0x6ec/0x940 arch/x86/entry/common.c:292 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #1 (&(&tb->tb6_lock)->rlock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] __ip6_ins_rt+0x56/0x90 net/ipv6/route.c:1007 ip6_route_add+0x141/0x190 net/ipv6/route.c:2955 addrconf_prefix_route+0x44f/0x620 net/ipv6/addrconf.c:2359 fixup_permanent_addr net/ipv6/addrconf.c:3368 [inline] addrconf_permanent_addr net/ipv6/addrconf.c:3391 [inline] addrconf_notify+0x1ad2/0x2310 net/ipv6/addrconf.c:3460 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x15d/0x430 net/core/dev.c:6958 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 do_setlink+0xa22/0x3bb0 net/core/rtnetlink.c:2357 rtnl_newlink+0xf37/0x1a50 net/core/rtnetlink.c:2965 rtnetlink_rcv_msg+0x57f/0xb10 net/core/rtnetlink.c:4641 netlink_rcv_skb+0x14b/0x380 net/netlink/af_netlink.c:2444 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4659 netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline] netlink_unicast+0x4c4/0x6b0 net/netlink/af_netlink.c:1334 netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg+0xca/0x110 net/socket.c:639 ___sys_sendmsg+0x767/0x8b0 net/socket.c:2047 __sys_sendmsg+0xe5/0x210 net/socket.c:2081 SYSC_sendmsg net/socket.c:2092 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2088 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #0 (&ndev->lock){++--}: lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 other info that might help us debug this: Chain exists of: &ndev->lock --> rt6_exception_lock --> &tbl->lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&tbl->lock); lock(rt6_exception_lock); lock(&tbl->lock); lock(&ndev->lock); *** DEADLOCK *** 2 locks held by syz-executor7/4015: #0: (rtnl_mutex){+.+.}, at: [<00000000a2f16daa>] rtnl_lock+0x17/0x20 net/core/rtnetlink.c:74 #1: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 stack backtrace: CPU: 0 PID: 4015 Comm: syz-executor7 Not tainted 4.16.0-rc4+ #277 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x194/0x24d lib/dump_stack.c:53 print_circular_bug.isra.38+0x2cd/0x2dc kernel/locking/lockdep.c:1223 check_prev_add kernel/locking/lockdep.c:1863 [inline] check_prevs_add kernel/locking/lockdep.c:1976 [inline] validate_chain kernel/locking/lockdep.c:2417 [inline] __lock_acquire+0x30a8/0x3e00 kernel/locking/lockdep.c:3431 lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 Fixes: c757faa8bfa2 ("ipv6: prepare fib6_age() for exception table") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Wei Wang <weiwan@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 14:56:58 +00:00
rcu_read_lock_bh();
spin_lock(&rt6_exception_lock);
bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
if (bucket) {
for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
hlist_for_each_entry_safe(rt6_ex, tmp,
&bucket->chain, hlist) {
rt6_age_examine_exception(bucket, rt6_ex,
gc_args, now);
}
bucket++;
}
}
ipv6: fix possible deadlock in rt6_age_examine_exception() syzbot reported a LOCKDEP splat [1] in rt6_age_examine_exception() rt6_age_examine_exception() is called while rt6_exception_lock is held. This lock is the lower one in the lock hierarchy, thus we can not call dst_neigh_lookup() function, as it can fallback to neigh_create() We should instead do a pure RCU lookup. As a bonus we avoid a pair of atomic operations on neigh refcount. [1] WARNING: possible circular locking dependency detected 4.16.0-rc4+ #277 Not tainted syz-executor7/4015 is trying to acquire lock: (&ndev->lock){++--}, at: [<00000000416dce19>] __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 but task is already holding lock: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&tbl->lock){++-.}: __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __neigh_create+0x87e/0x1d90 net/core/neighbour.c:528 neigh_create include/net/neighbour.h:315 [inline] ip6_neigh_lookup+0x9a7/0xba0 net/ipv6/route.c:228 dst_neigh_lookup include/net/dst.h:405 [inline] rt6_age_examine_exception net/ipv6/route.c:1609 [inline] rt6_age_exceptions+0x381/0x660 net/ipv6/route.c:1645 fib6_age+0xfb/0x140 net/ipv6/ip6_fib.c:2033 fib6_clean_node+0x389/0x580 net/ipv6/ip6_fib.c:1919 fib6_walk_continue+0x46c/0x8a0 net/ipv6/ip6_fib.c:1845 fib6_walk+0x91/0xf0 net/ipv6/ip6_fib.c:1893 fib6_clean_tree+0x1e6/0x340 net/ipv6/ip6_fib.c:1970 __fib6_clean_all+0x1f4/0x3a0 net/ipv6/ip6_fib.c:1986 fib6_clean_all net/ipv6/ip6_fib.c:1997 [inline] fib6_run_gc+0x16b/0x3c0 net/ipv6/ip6_fib.c:2053 ndisc_netdev_event+0x3c2/0x4a0 net/ipv6/ndisc.c:1781 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #2 (rt6_exception_lock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] rt6_flush_exceptions+0x21/0x210 net/ipv6/route.c:1367 fib6_del_route net/ipv6/ip6_fib.c:1677 [inline] fib6_del+0x624/0x12c0 net/ipv6/ip6_fib.c:1761 __ip6_del_rt+0xc7/0x120 net/ipv6/route.c:2980 ip6_del_rt+0x132/0x1a0 net/ipv6/route.c:2993 __ipv6_dev_ac_dec+0x3b1/0x600 net/ipv6/anycast.c:332 ipv6_dev_ac_dec net/ipv6/anycast.c:345 [inline] ipv6_sock_ac_close+0x2b4/0x3e0 net/ipv6/anycast.c:200 inet6_release+0x48/0x70 net/ipv6/af_inet6.c:433 sock_release+0x8d/0x1e0 net/socket.c:594 sock_close+0x16/0x20 net/socket.c:1149 __fput+0x327/0x7e0 fs/file_table.c:209 ____fput+0x15/0x20 fs/file_table.c:243 task_work_run+0x199/0x270 kernel/task_work.c:113 exit_task_work include/linux/task_work.h:22 [inline] do_exit+0x9bb/0x1ad0 kernel/exit.c:865 do_group_exit+0x149/0x400 kernel/exit.c:968 get_signal+0x73a/0x16d0 kernel/signal.c:2469 do_signal+0x90/0x1e90 arch/x86/kernel/signal.c:809 exit_to_usermode_loop+0x258/0x2f0 arch/x86/entry/common.c:162 prepare_exit_to_usermode arch/x86/entry/common.c:196 [inline] syscall_return_slowpath arch/x86/entry/common.c:265 [inline] do_syscall_64+0x6ec/0x940 arch/x86/entry/common.c:292 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #1 (&(&tb->tb6_lock)->rlock){+.-.}: __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline] _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168 spin_lock_bh include/linux/spinlock.h:315 [inline] __ip6_ins_rt+0x56/0x90 net/ipv6/route.c:1007 ip6_route_add+0x141/0x190 net/ipv6/route.c:2955 addrconf_prefix_route+0x44f/0x620 net/ipv6/addrconf.c:2359 fixup_permanent_addr net/ipv6/addrconf.c:3368 [inline] addrconf_permanent_addr net/ipv6/addrconf.c:3391 [inline] addrconf_notify+0x1ad2/0x2310 net/ipv6/addrconf.c:3460 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x15d/0x430 net/core/dev.c:6958 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 do_setlink+0xa22/0x3bb0 net/core/rtnetlink.c:2357 rtnl_newlink+0xf37/0x1a50 net/core/rtnetlink.c:2965 rtnetlink_rcv_msg+0x57f/0xb10 net/core/rtnetlink.c:4641 netlink_rcv_skb+0x14b/0x380 net/netlink/af_netlink.c:2444 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4659 netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline] netlink_unicast+0x4c4/0x6b0 net/netlink/af_netlink.c:1334 netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg+0xca/0x110 net/socket.c:639 ___sys_sendmsg+0x767/0x8b0 net/socket.c:2047 __sys_sendmsg+0xe5/0x210 net/socket.c:2081 SYSC_sendmsg net/socket.c:2092 [inline] SyS_sendmsg+0x2d/0x50 net/socket.c:2088 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> #0 (&ndev->lock){++--}: lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 other info that might help us debug this: Chain exists of: &ndev->lock --> rt6_exception_lock --> &tbl->lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&tbl->lock); lock(rt6_exception_lock); lock(&tbl->lock); lock(&ndev->lock); *** DEADLOCK *** 2 locks held by syz-executor7/4015: #0: (rtnl_mutex){+.+.}, at: [<00000000a2f16daa>] rtnl_lock+0x17/0x20 net/core/rtnetlink.c:74 #1: (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292 stack backtrace: CPU: 0 PID: 4015 Comm: syz-executor7 Not tainted 4.16.0-rc4+ #277 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x194/0x24d lib/dump_stack.c:53 print_circular_bug.isra.38+0x2cd/0x2dc kernel/locking/lockdep.c:1223 check_prev_add kernel/locking/lockdep.c:1863 [inline] check_prevs_add kernel/locking/lockdep.c:1976 [inline] validate_chain kernel/locking/lockdep.c:2417 [inline] __lock_acquire+0x30a8/0x3e00 kernel/locking/lockdep.c:3431 lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline] _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392 pneigh_ifdown net/core/neighbour.c:695 [inline] neigh_ifdown+0x149/0x250 net/core/neighbour.c:294 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707 call_netdevice_notifiers net/core/dev.c:1725 [inline] __dev_notify_flags+0x262/0x430 net/core/dev.c:6960 dev_change_flags+0xf5/0x140 net/core/dev.c:6994 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066 sock_do_ioctl+0xef/0x390 net/socket.c:957 sock_ioctl+0x36b/0x610 net/socket.c:1081 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686 SYSC_ioctl fs/ioctl.c:701 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 Fixes: c757faa8bfa2 ("ipv6: prepare fib6_age() for exception table") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Wei Wang <weiwan@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-23 14:56:58 +00:00
spin_unlock(&rt6_exception_lock);
rcu_read_unlock_bh();
}
struct fib6_nh_age_excptn_arg {
struct fib6_gc_args *gc_args;
unsigned long now;
};
static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_age_excptn_arg *arg = _arg;
fib6_nh_age_exceptions(nh, arg->gc_args, arg->now);
return 0;
}
void rt6_age_exceptions(struct fib6_info *f6i,
struct fib6_gc_args *gc_args,
unsigned long now)
{
if (f6i->nh) {
struct fib6_nh_age_excptn_arg arg = {
.gc_args = gc_args,
.now = now
};
nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions,
&arg);
} else {
fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now);
}
}
/* must be called with rcu lock held */
int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif,
struct flowi6 *fl6, struct fib6_result *res, int strict)
{
struct fib6_node *fn, *saved_fn;
fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
saved_fn = fn;
redo_rt6_select:
rt6_select(net, fn, oif, res, strict);
if (res->f6i == net->ipv6.fib6_null_entry) {
fn = fib6_backtrack(fn, &fl6->saddr);
if (fn)
goto redo_rt6_select;
else if (strict & RT6_LOOKUP_F_REACHABLE) {
/* also consider unreachable route */
strict &= ~RT6_LOOKUP_F_REACHABLE;
fn = saved_fn;
goto redo_rt6_select;
}
}
trace_fib6_table_lookup(net, res, table, fl6);
return 0;
}
struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
int oif, struct flowi6 *fl6,
const struct sk_buff *skb, int flags)
{
struct fib6_result res = {};
struct rt6_info *rt = NULL;
int strict = 0;
WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) &&
!rcu_read_lock_held());
strict |= flags & RT6_LOOKUP_F_IFACE;
strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
if (net->ipv6.devconf_all->forwarding == 0)
strict |= RT6_LOOKUP_F_REACHABLE;
rcu_read_lock();
fib6_table_lookup(net, table, oif, fl6, &res, strict);
if (res.f6i == net->ipv6.fib6_null_entry)
goto out;
fib6_select_path(net, &res, fl6, oif, false, skb, strict);
/*Search through exception table */
rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr);
if (rt) {
goto out;
} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
!res.nh->fib_nh_gw_family)) {
/* Create a RTF_CACHE clone which will not be
* owned by the fib6 tree. It is for the special case where
* the daddr in the skb during the neighbor look-up is different
* from the fl6->daddr used to look-up route here.
*/
rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL);
if (rt) {
/* 1 refcnt is taken during ip6_rt_cache_alloc().
* As rt6_uncached_list_add() does not consume refcnt,
* this refcnt is always returned to the caller even
* if caller sets RT6_LOOKUP_F_DST_NOREF flag.
*/
rt6_uncached_list_add(rt);
rcu_read_unlock();
return rt;
}
} else {
/* Get a percpu copy */
local_bh_disable();
rt = rt6_get_pcpu_route(&res);
if (!rt)
rt = rt6_make_pcpu_route(net, &res);
local_bh_enable();
}
out:
if (!rt)
rt = net->ipv6.ip6_null_entry;
if (!(flags & RT6_LOOKUP_F_DST_NOREF))
ip6_hold_safe(net, &rt);
rcu_read_unlock();
return rt;
}
EXPORT_SYMBOL_GPL(ip6_pol_route);
ipv6: fib6: avoid indirect calls from fib6_rule_lookup It was reported that a considerable amount of cycles were spent on the expensive indirect calls on fib6_rule_lookup. This patch introduces an inline helper called pol_route_func that uses the indirect_call_wrappers to avoid the indirect calls. This patch saves around 50ns per call. Performance was measured on the receiver by checking the amount of syncookies that server was able to generate under a synflood load. Traffic was generated using trafgen[1] which was pushing around 1Mpps on a single queue. Receiver was using only one rx queue which help to create a bottle neck and make the experiment rx-bounded. These are the syncookies generated over 10s from the different runs: Whithout the patch: TcpExtSyncookiesSent 3553749 0.0 TcpExtSyncookiesSent 3550895 0.0 TcpExtSyncookiesSent 3553845 0.0 TcpExtSyncookiesSent 3541050 0.0 TcpExtSyncookiesSent 3539921 0.0 TcpExtSyncookiesSent 3557659 0.0 TcpExtSyncookiesSent 3526812 0.0 TcpExtSyncookiesSent 3536121 0.0 TcpExtSyncookiesSent 3529963 0.0 TcpExtSyncookiesSent 3536319 0.0 With the patch: TcpExtSyncookiesSent 3611786 0.0 TcpExtSyncookiesSent 3596682 0.0 TcpExtSyncookiesSent 3606878 0.0 TcpExtSyncookiesSent 3599564 0.0 TcpExtSyncookiesSent 3601304 0.0 TcpExtSyncookiesSent 3609249 0.0 TcpExtSyncookiesSent 3617437 0.0 TcpExtSyncookiesSent 3608765 0.0 TcpExtSyncookiesSent 3620205 0.0 TcpExtSyncookiesSent 3601895 0.0 Without the patch the average is 354263 pkt/s or 2822 ns/pkt and with the patch the average is 360738 pkt/s or 2772 ns/pkt which gives an estimate of 50 ns per packet. [1] http://netsniff-ng.org/ Changelog since v1: - Change ordering in the ICW (Paolo Abeni) Cc: Luigi Rizzo <lrizzo@google.com> Cc: Paolo Abeni <pabeni@redhat.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Brian Vazquez <brianvv@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 16:42:32 +00:00
INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net,
struct fib6_table *table,
struct flowi6 *fl6,
const struct sk_buff *skb,
int flags)
{
return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
}
struct dst_entry *ip6_route_input_lookup(struct net *net,
struct net_device *dev,
struct flowi6 *fl6,
const struct sk_buff *skb,
int flags)
{
if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
flags |= RT6_LOOKUP_F_IFACE;
return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
}
EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
static void ip6_multipath_l3_keys(const struct sk_buff *skb,
struct flow_keys *keys,
struct flow_keys *flkeys)
{
const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
const struct ipv6hdr *key_iph = outer_iph;
struct flow_keys *_flkeys = flkeys;
const struct ipv6hdr *inner_iph;
const struct icmp6hdr *icmph;
struct ipv6hdr _inner_iph;
ipv6: fix uninit-value in ip6_multipath_l3_keys() syzbot/KMSAN reported an uninit-value in ip6_multipath_l3_keys(), root caused to a bad assumption of ICMP header being already pulled in skb->head ip_multipath_l3_keys() does the correct thing, so it is an IPv6 only bug. BUG: KMSAN: uninit-value in ip6_multipath_l3_keys net/ipv6/route.c:1830 [inline] BUG: KMSAN: uninit-value in rt6_multipath_hash+0x5c4/0x640 net/ipv6/route.c:1858 CPU: 0 PID: 4507 Comm: syz-executor661 Not tainted 4.16.0+ #87 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x185/0x1d0 lib/dump_stack.c:53 kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067 __msan_warning_32+0x6c/0xb0 mm/kmsan/kmsan_instr.c:683 ip6_multipath_l3_keys net/ipv6/route.c:1830 [inline] rt6_multipath_hash+0x5c4/0x640 net/ipv6/route.c:1858 ip6_route_input+0x65a/0x920 net/ipv6/route.c:1884 ip6_rcv_finish+0x413/0x6e0 net/ipv6/ip6_input.c:69 NF_HOOK include/linux/netfilter.h:288 [inline] ipv6_rcv+0x1e16/0x2340 net/ipv6/ip6_input.c:208 __netif_receive_skb_core+0x47df/0x4a90 net/core/dev.c:4562 __netif_receive_skb net/core/dev.c:4627 [inline] netif_receive_skb_internal+0x49d/0x630 net/core/dev.c:4701 netif_receive_skb+0x230/0x240 net/core/dev.c:4725 tun_rx_batched drivers/net/tun.c:1555 [inline] tun_get_user+0x740f/0x7c60 drivers/net/tun.c:1962 tun_chr_write_iter+0x1d4/0x330 drivers/net/tun.c:1990 call_write_iter include/linux/fs.h:1782 [inline] new_sync_write fs/read_write.c:469 [inline] __vfs_write+0x7fb/0x9f0 fs/read_write.c:482 vfs_write+0x463/0x8d0 fs/read_write.c:544 SYSC_write+0x172/0x360 fs/read_write.c:589 SyS_write+0x55/0x80 fs/read_write.c:581 do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 Fixes: 23aebdacb05d ("ipv6: Compute multipath hash for ICMP errors from offending packet") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jakub Sitnicki <jkbs@redhat.com> Acked-by: Jakub Sitnicki <jkbs@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-29 16:54:59 +00:00
struct icmp6hdr _icmph;
if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
goto out;
ipv6: fix uninit-value in ip6_multipath_l3_keys() syzbot/KMSAN reported an uninit-value in ip6_multipath_l3_keys(), root caused to a bad assumption of ICMP header being already pulled in skb->head ip_multipath_l3_keys() does the correct thing, so it is an IPv6 only bug. BUG: KMSAN: uninit-value in ip6_multipath_l3_keys net/ipv6/route.c:1830 [inline] BUG: KMSAN: uninit-value in rt6_multipath_hash+0x5c4/0x640 net/ipv6/route.c:1858 CPU: 0 PID: 4507 Comm: syz-executor661 Not tainted 4.16.0+ #87 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x185/0x1d0 lib/dump_stack.c:53 kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067 __msan_warning_32+0x6c/0xb0 mm/kmsan/kmsan_instr.c:683 ip6_multipath_l3_keys net/ipv6/route.c:1830 [inline] rt6_multipath_hash+0x5c4/0x640 net/ipv6/route.c:1858 ip6_route_input+0x65a/0x920 net/ipv6/route.c:1884 ip6_rcv_finish+0x413/0x6e0 net/ipv6/ip6_input.c:69 NF_HOOK include/linux/netfilter.h:288 [inline] ipv6_rcv+0x1e16/0x2340 net/ipv6/ip6_input.c:208 __netif_receive_skb_core+0x47df/0x4a90 net/core/dev.c:4562 __netif_receive_skb net/core/dev.c:4627 [inline] netif_receive_skb_internal+0x49d/0x630 net/core/dev.c:4701 netif_receive_skb+0x230/0x240 net/core/dev.c:4725 tun_rx_batched drivers/net/tun.c:1555 [inline] tun_get_user+0x740f/0x7c60 drivers/net/tun.c:1962 tun_chr_write_iter+0x1d4/0x330 drivers/net/tun.c:1990 call_write_iter include/linux/fs.h:1782 [inline] new_sync_write fs/read_write.c:469 [inline] __vfs_write+0x7fb/0x9f0 fs/read_write.c:482 vfs_write+0x463/0x8d0 fs/read_write.c:544 SYSC_write+0x172/0x360 fs/read_write.c:589 SyS_write+0x55/0x80 fs/read_write.c:581 do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 Fixes: 23aebdacb05d ("ipv6: Compute multipath hash for ICMP errors from offending packet") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jakub Sitnicki <jkbs@redhat.com> Acked-by: Jakub Sitnicki <jkbs@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-29 16:54:59 +00:00
icmph = skb_header_pointer(skb, skb_transport_offset(skb),
sizeof(_icmph), &_icmph);
if (!icmph)
goto out;
if (!icmpv6_is_err(icmph->icmp6_type))
goto out;
inner_iph = skb_header_pointer(skb,
skb_transport_offset(skb) + sizeof(*icmph),
sizeof(_inner_iph), &_inner_iph);
if (!inner_iph)
goto out;
key_iph = inner_iph;
_flkeys = NULL;
out:
if (_flkeys) {
keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
keys->tags.flow_label = _flkeys->tags.flow_label;
keys->basic.ip_proto = _flkeys->basic.ip_proto;
} else {
keys->addrs.v6addrs.src = key_iph->saddr;
keys->addrs.v6addrs.dst = key_iph->daddr;
keys->tags.flow_label = ip6_flowlabel(key_iph);
keys->basic.ip_proto = key_iph->nexthdr;
}
}
static u32 rt6_multipath_custom_hash_outer(const struct net *net,
const struct sk_buff *skb,
bool *p_has_inner)
{
u32 hash_fields = ip6_multipath_hash_fields(net);
struct flow_keys keys, hash_keys;
if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK))
return 0;
memset(&hash_keys, 0, sizeof(hash_keys));
skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP);
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP)
hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP)
hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO)
hash_keys.basic.ip_proto = keys.basic.ip_proto;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL)
hash_keys.tags.flow_label = keys.tags.flow_label;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT)
hash_keys.ports.src = keys.ports.src;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT)
hash_keys.ports.dst = keys.ports.dst;
*p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION);
return flow_hash_from_keys(&hash_keys);
}
static u32 rt6_multipath_custom_hash_inner(const struct net *net,
const struct sk_buff *skb,
bool has_inner)
{
u32 hash_fields = ip6_multipath_hash_fields(net);
struct flow_keys keys, hash_keys;
/* We assume the packet carries an encapsulation, but if none was
* encountered during dissection of the outer flow, then there is no
* point in calling the flow dissector again.
*/
if (!has_inner)
return 0;
if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK))
return 0;
memset(&hash_keys, 0, sizeof(hash_keys));
skb_flow_dissect_flow_keys(skb, &keys, 0);
if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION))
return 0;
if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP)
hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP)
hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst;
} else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP)
hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP)
hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL)
hash_keys.tags.flow_label = keys.tags.flow_label;
}
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO)
hash_keys.basic.ip_proto = keys.basic.ip_proto;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT)
hash_keys.ports.src = keys.ports.src;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT)
hash_keys.ports.dst = keys.ports.dst;
return flow_hash_from_keys(&hash_keys);
}
static u32 rt6_multipath_custom_hash_skb(const struct net *net,
const struct sk_buff *skb)
{
u32 mhash, mhash_inner;
bool has_inner = true;
mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner);
mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner);
return jhash_2words(mhash, mhash_inner, 0);
}
static u32 rt6_multipath_custom_hash_fl6(const struct net *net,
const struct flowi6 *fl6)
{
u32 hash_fields = ip6_multipath_hash_fields(net);
struct flow_keys hash_keys;
if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK))
return 0;
memset(&hash_keys, 0, sizeof(hash_keys));
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP)
hash_keys.addrs.v6addrs.src = fl6->saddr;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP)
hash_keys.addrs.v6addrs.dst = fl6->daddr;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO)
hash_keys.basic.ip_proto = fl6->flowi6_proto;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL)
hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT)
hash_keys.ports.src = fl6->fl6_sport;
if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT)
hash_keys.ports.dst = fl6->fl6_dport;
return flow_hash_from_keys(&hash_keys);
}
/* if skb is set it will be used and fl6 can be NULL */
u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
const struct sk_buff *skb, struct flow_keys *flkeys)
{
struct flow_keys hash_keys;
u32 mhash = 0;
switch (ip6_multipath_hash_policy(net)) {
case 0:
memset(&hash_keys, 0, sizeof(hash_keys));
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (skb) {
ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
} else {
hash_keys.addrs.v6addrs.src = fl6->saddr;
hash_keys.addrs.v6addrs.dst = fl6->daddr;
hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
hash_keys.basic.ip_proto = fl6->flowi6_proto;
}
mhash = flow_hash_from_keys(&hash_keys);
break;
case 1:
if (skb) {
unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
struct flow_keys keys;
/* short-circuit if we already have L4 hash present */
if (skb->l4_hash)
return skb_get_hash_raw(skb) >> 1;
memset(&hash_keys, 0, sizeof(hash_keys));
if (!flkeys) {
skb_flow_dissect_flow_keys(skb, &keys, flag);
flkeys = &keys;
}
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
hash_keys.ports.src = flkeys->ports.src;
hash_keys.ports.dst = flkeys->ports.dst;
hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
} else {
memset(&hash_keys, 0, sizeof(hash_keys));
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
hash_keys.addrs.v6addrs.src = fl6->saddr;
hash_keys.addrs.v6addrs.dst = fl6->daddr;
hash_keys.ports.src = fl6->fl6_sport;
hash_keys.ports.dst = fl6->fl6_dport;
hash_keys.basic.ip_proto = fl6->flowi6_proto;
}
mhash = flow_hash_from_keys(&hash_keys);
break;
case 2:
memset(&hash_keys, 0, sizeof(hash_keys));
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (skb) {
struct flow_keys keys;
if (!flkeys) {
skb_flow_dissect_flow_keys(skb, &keys, 0);
flkeys = &keys;
}
/* Inner can be v4 or v6 */
if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src;
hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst;
} else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
hash_keys.tags.flow_label = flkeys->tags.flow_label;
hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
} else {
/* Same as case 0 */
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
}
} else {
/* Same as case 0 */
hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
hash_keys.addrs.v6addrs.src = fl6->saddr;
hash_keys.addrs.v6addrs.dst = fl6->daddr;
hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
hash_keys.basic.ip_proto = fl6->flowi6_proto;
}
mhash = flow_hash_from_keys(&hash_keys);
break;
case 3:
if (skb)
mhash = rt6_multipath_custom_hash_skb(net, skb);
else
mhash = rt6_multipath_custom_hash_fl6(net, fl6);
break;
}
return mhash >> 1;
}
/* Called with rcu held */
void ip6_route_input(struct sk_buff *skb)
{
const struct ipv6hdr *iph = ipv6_hdr(skb);
struct net *net = dev_net(skb->dev);
int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF;
struct ip_tunnel_info *tun_info;
struct flowi6 fl6 = {
.flowi6_iif = skb->dev->ifindex,
.daddr = iph->daddr,
.saddr = iph->saddr,
.flowlabel = ip6_flowinfo(iph),
.flowi6_mark = skb->mark,
.flowi6_proto = iph->nexthdr,
};
struct flow_keys *flkeys = NULL, _flkeys;
tun_info = skb_tunnel_info(skb);
if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
flkeys = &_flkeys;
if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
skb_dst_drop(skb);
skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev,
&fl6, skb, flags));
}
ipv6: fib6: avoid indirect calls from fib6_rule_lookup It was reported that a considerable amount of cycles were spent on the expensive indirect calls on fib6_rule_lookup. This patch introduces an inline helper called pol_route_func that uses the indirect_call_wrappers to avoid the indirect calls. This patch saves around 50ns per call. Performance was measured on the receiver by checking the amount of syncookies that server was able to generate under a synflood load. Traffic was generated using trafgen[1] which was pushing around 1Mpps on a single queue. Receiver was using only one rx queue which help to create a bottle neck and make the experiment rx-bounded. These are the syncookies generated over 10s from the different runs: Whithout the patch: TcpExtSyncookiesSent 3553749 0.0 TcpExtSyncookiesSent 3550895 0.0 TcpExtSyncookiesSent 3553845 0.0 TcpExtSyncookiesSent 3541050 0.0 TcpExtSyncookiesSent 3539921 0.0 TcpExtSyncookiesSent 3557659 0.0 TcpExtSyncookiesSent 3526812 0.0 TcpExtSyncookiesSent 3536121 0.0 TcpExtSyncookiesSent 3529963 0.0 TcpExtSyncookiesSent 3536319 0.0 With the patch: TcpExtSyncookiesSent 3611786 0.0 TcpExtSyncookiesSent 3596682 0.0 TcpExtSyncookiesSent 3606878 0.0 TcpExtSyncookiesSent 3599564 0.0 TcpExtSyncookiesSent 3601304 0.0 TcpExtSyncookiesSent 3609249 0.0 TcpExtSyncookiesSent 3617437 0.0 TcpExtSyncookiesSent 3608765 0.0 TcpExtSyncookiesSent 3620205 0.0 TcpExtSyncookiesSent 3601895 0.0 Without the patch the average is 354263 pkt/s or 2822 ns/pkt and with the patch the average is 360738 pkt/s or 2772 ns/pkt which gives an estimate of 50 ns per packet. [1] http://netsniff-ng.org/ Changelog since v1: - Change ordering in the ICW (Paolo Abeni) Cc: Luigi Rizzo <lrizzo@google.com> Cc: Paolo Abeni <pabeni@redhat.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Brian Vazquez <brianvv@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 16:42:32 +00:00
INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net,
struct fib6_table *table,
struct flowi6 *fl6,
const struct sk_buff *skb,
int flags)
{
return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
}
struct dst_entry *ip6_route_output_flags_noref(struct net *net,
const struct sock *sk,
struct flowi6 *fl6, int flags)
{
bool any_src;
if (ipv6_addr_type(&fl6->daddr) &
(IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
struct dst_entry *dst;
/* This function does not take refcnt on the dst */
dst = l3mdev_link_scope_lookup(net, fl6);
if (dst)
return dst;
}
fl6->flowi6_iif = LOOPBACK_IFINDEX;
flags |= RT6_LOOKUP_F_DST_NOREF;
any_src = ipv6_addr_any(&fl6->saddr);
if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
(fl6->flowi6_oif && any_src))
flags |= RT6_LOOKUP_F_IFACE;
if (!any_src)
flags |= RT6_LOOKUP_F_HAS_SADDR;
else if (sk)
flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
}
EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref);
struct dst_entry *ip6_route_output_flags(struct net *net,
const struct sock *sk,
struct flowi6 *fl6,
int flags)
{
struct dst_entry *dst;
struct rt6_info *rt6;
rcu_read_lock();
dst = ip6_route_output_flags_noref(net, sk, fl6, flags);
rt6 = (struct rt6_info *)dst;
/* For dst cached in uncached_list, refcnt is already taken. */
if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) {
dst = &net->ipv6.ip6_null_entry->dst;
dst_hold(dst);
}
rcu_read_unlock();
return dst;
}
EXPORT_SYMBOL_GPL(ip6_route_output_flags);
struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
{
struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
struct net_device *loopback_dev = net->loopback_dev;
struct dst_entry *new = NULL;
rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
DST_OBSOLETE_DEAD, 0);
if (rt) {
rt6_info_init(rt);
atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
new = &rt->dst;
new->__use = 1;
new->input = dst_discard;
new->output = dst_discard_out;
dst_copy_metrics(new, &ort->dst);
rt->rt6i_idev = in6_dev_get(loopback_dev);
rt->rt6i_gateway = ort->rt6i_gateway;
rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
#ifdef CONFIG_IPV6_SUBTREES
memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
#endif
}
dst_release(dst_orig);
return new ? new : ERR_PTR(-ENOMEM);
}
/*
* Destination cache support functions
*/
static bool fib6_check(struct fib6_info *f6i, u32 cookie)
ipv6: Stop rt6_info from using inet_peer's metrics inet_peer is indexed by the dst address alone. However, the fib6 tree could have multiple routing entries (rt6_info) for the same dst. For example, 1. A /128 dst via multiple gateways. 2. A RTF_CACHE route cloned from a /128 route. In the above cases, all of them will share the same metrics and step on each other. This patch will steer away from inet_peer's metrics and use dst_cow_metrics_generic() for everything. Change Highlights: 1. Remove rt6_cow_metrics() which currently acquires metrics from inet_peer for DST_HOST route (i.e. /128 route). 2. Add rt6i_pmtu to take care of the pmtu update to avoid creating a full size metrics just to override the RTAX_MTU. 3. After (2), the RTF_CACHE route can also share the metrics with its dst.from route, by: dst_init_metrics(&cache_rt->dst, dst_metrics_ptr(cache_rt->dst.from), true); 4. Stop creating RTF_CACHE route by cloning another RTF_CACHE route. Instead, directly clone from rt->dst. [ Currently, cloning from another RTF_CACHE is only possible during rt6_do_redirect(). Also, the old clone is removed from the tree immediately after the new clone is added. ] In case of cloning from an older redirect RTF_CACHE, it should work as before. In case of cloning from an older pmtu RTF_CACHE, this patch will forget the pmtu and re-learn it (if there is any) from the redirected route. The _rt6i_peer and DST_METRICS_FORCE_OVERWRITE will be removed in the next cleanup patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-28 20:03:06 +00:00
{
u32 rt_cookie = 0;
if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
return false;
if (fib6_check_expired(f6i))
return false;
return true;
ipv6: Stop rt6_info from using inet_peer's metrics inet_peer is indexed by the dst address alone. However, the fib6 tree could have multiple routing entries (rt6_info) for the same dst. For example, 1. A /128 dst via multiple gateways. 2. A RTF_CACHE route cloned from a /128 route. In the above cases, all of them will share the same metrics and step on each other. This patch will steer away from inet_peer's metrics and use dst_cow_metrics_generic() for everything. Change Highlights: 1. Remove rt6_cow_metrics() which currently acquires metrics from inet_peer for DST_HOST route (i.e. /128 route). 2. Add rt6i_pmtu to take care of the pmtu update to avoid creating a full size metrics just to override the RTAX_MTU. 3. After (2), the RTF_CACHE route can also share the metrics with its dst.from route, by: dst_init_metrics(&cache_rt->dst, dst_metrics_ptr(cache_rt->dst.from), true); 4. Stop creating RTF_CACHE route by cloning another RTF_CACHE route. Instead, directly clone from rt->dst. [ Currently, cloning from another RTF_CACHE is only possible during rt6_do_redirect(). Also, the old clone is removed from the tree immediately after the new clone is added. ] In case of cloning from an older redirect RTF_CACHE, it should work as before. In case of cloning from an older pmtu RTF_CACHE, this patch will forget the pmtu and re-learn it (if there is any) from the redirected route. The _rt6i_peer and DST_METRICS_FORCE_OVERWRITE will be removed in the next cleanup patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-28 20:03:06 +00:00
}
static struct dst_entry *rt6_check(struct rt6_info *rt,
struct fib6_info *from,
u32 cookie)
{
u32 rt_cookie = 0;
if (!from || !fib6_get_cookie_safe(from, &rt_cookie) ||
rt_cookie != cookie)
return NULL;
if (rt6_check_expired(rt))
return NULL;
return &rt->dst;
}
static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
struct fib6_info *from,
u32 cookie)
{
if (!__rt6_check_expired(rt) &&
rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
fib6_check(from, cookie))
return &rt->dst;
else
return NULL;
}
INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst,
u32 cookie)
{
struct dst_entry *dst_ret;
struct fib6_info *from;
struct rt6_info *rt;
rt = container_of(dst, struct rt6_info, dst);
ipv6: Use global sernum for dst validation with nexthop objects Nik reported a bug with pcpu dst cache when nexthop objects are used illustrated by the following: $ ip netns add foo $ ip -netns foo li set lo up $ ip -netns foo addr add 2001:db8:11::1/128 dev lo $ ip netns exec foo sysctl net.ipv6.conf.all.forwarding=1 $ ip li add veth1 type veth peer name veth2 $ ip li set veth1 up $ ip addr add 2001:db8:10::1/64 dev veth1 $ ip li set dev veth2 netns foo $ ip -netns foo li set veth2 up $ ip -netns foo addr add 2001:db8:10::2/64 dev veth2 $ ip -6 nexthop add id 100 via 2001:db8:10::2 dev veth1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Create a pcpu entry on cpu 0: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 Re-add the route entry: $ ip -6 ro del 2001:db8:11::1 $ ip -6 route add 2001:db8:11::1/128 nhid 100 Route get on cpu 0 returns the stale pcpu: $ taskset -a -c 0 ip -6 route get 2001:db8:11::1 RTNETLINK answers: Network is unreachable While cpu 1 works: $ taskset -a -c 1 ip -6 route get 2001:db8:11::1 2001:db8:11::1 from :: via 2001:db8:10::2 dev veth1 src 2001:db8:10::1 metric 1024 pref medium Conversion of FIB entries to work with external nexthop objects missed an important difference between IPv4 and IPv6 - how dst entries are invalidated when the FIB changes. IPv4 has a per-network namespace generation id (rt_genid) that is bumped on changes to the FIB. Checking if a dst_entry is still valid means comparing rt_genid in the rtable to the current value of rt_genid for the namespace. IPv6 also has a per network namespace counter, fib6_sernum, but the count is saved per fib6_node. With the per-node counter only dst_entries based on fib entries under the node are invalidated when changes are made to the routes - limiting the scope of invalidations. IPv6 uses a reference in the rt6_info, 'from', to track the corresponding fib entry used to create the dst_entry. When validating a dst_entry, the 'from' is used to backtrack to the fib6_node and check the sernum of it to the cookie passed to the dst_check operation. With the inline format (nexthop definition inline with the fib6_info), dst_entries cached in the fib6_nh have a 1:1 correlation between fib entries, nexthop data and dst_entries. With external nexthops, IPv6 looks more like IPv4 which means multiple fib entries across disparate fib6_nodes can all reference the same fib6_nh. That means validation of dst_entries based on external nexthops needs to use the IPv4 format - the per-network namespace counter. Add sernum to rt6_info and set it when creating a pcpu dst entry. Update rt6_get_cookie to return sernum if it is set and update dst_check for IPv6 to look for sernum set and based the check on it if so. Finally, rt6_get_pcpu_route needs to validate the cached entry before returning a pcpu entry (similar to the rt_cache_valid calls in __mkroute_input and __mkroute_output for IPv4). This problem only affects routes using the new, external nexthops. Thanks to the kbuild test robot for catching the IS_ENABLED needed around rt_genid_ipv6 before I sent this out. Fixes: 5b98324ebe29 ("ipv6: Allow routes to use nexthop objects") Reported-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David Ahern <dsahern@kernel.org> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Tested-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 14:53:08 +00:00
if (rt->sernum)
return rt6_is_valid(rt) ? dst : NULL;
rcu_read_lock();
/* All IPV6 dsts are created with ->obsolete set to the value
* DST_OBSOLETE_FORCE_CHK which forces validation calls down
* into this function always.
*/
ipv6: ip6_dst_check needs to check for expired dst_entries On receiving a packet too big icmp error we check if our current cached dst_entry in the socket is still valid. This validation check did not care about the expiration of the (cached) route. The error path I traced down: The socket receives a packet too big mtu notification. It still has a valid dst_entry and thus issues the ip6_rt_pmtu_update on this dst_entry, setting RTF_EXPIRE and updates the dst.expiration value (which could fail because of not up-to-date expiration values, see previous patch). In some seldom cases we race with a) the ip6_fib gc or b) another routing lookup which would result in a recreation of the cached rt6_info from its parent non-cached rt6_info. While copying the rt6_info we reinitialize the metrics store by copying it over from the parent thus invalidating the just installed pmtu update (both dsts use the same key to the inetpeer storage). The dst_entry with the just invalidated metrics data would just get its RTF_EXPIRES flag cleared and would continue to stay valid for the socket. We should have not issued the pmtu update on the already expired dst_entry in the first placed. By checking the expiration on the dst entry and doing a relookup in case it is out of date we close the race because we would install a new rt6_info into the fib before we issue the pmtu update, thus closing this race. Not reliably updating the dst.expire value was fixed by the patch "ipv6: reset dst.expires value when clearing expire flag". Reported-by: Steinar H. Gunderson <sgunderson@bigfoot.com> Reported-by: Valentijn Sessink <valentyn@blub.net> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Tested-by: Valentijn Sessink <valentyn@blub.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-24 05:48:24 +00:00
from = rcu_dereference(rt->from);
ipv6: Stop rt6_info from using inet_peer's metrics inet_peer is indexed by the dst address alone. However, the fib6 tree could have multiple routing entries (rt6_info) for the same dst. For example, 1. A /128 dst via multiple gateways. 2. A RTF_CACHE route cloned from a /128 route. In the above cases, all of them will share the same metrics and step on each other. This patch will steer away from inet_peer's metrics and use dst_cow_metrics_generic() for everything. Change Highlights: 1. Remove rt6_cow_metrics() which currently acquires metrics from inet_peer for DST_HOST route (i.e. /128 route). 2. Add rt6i_pmtu to take care of the pmtu update to avoid creating a full size metrics just to override the RTAX_MTU. 3. After (2), the RTF_CACHE route can also share the metrics with its dst.from route, by: dst_init_metrics(&cache_rt->dst, dst_metrics_ptr(cache_rt->dst.from), true); 4. Stop creating RTF_CACHE route by cloning another RTF_CACHE route. Instead, directly clone from rt->dst. [ Currently, cloning from another RTF_CACHE is only possible during rt6_do_redirect(). Also, the old clone is removed from the tree immediately after the new clone is added. ] In case of cloning from an older redirect RTF_CACHE, it should work as before. In case of cloning from an older pmtu RTF_CACHE, this patch will forget the pmtu and re-learn it (if there is any) from the redirected route. The _rt6i_peer and DST_METRICS_FORCE_OVERWRITE will be removed in the next cleanup patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reviewed-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-28 20:03:06 +00:00
if (from && (rt->rt6i_flags & RTF_PCPU ||
unlikely(!list_empty(&rt->rt6i_uncached))))
dst_ret = rt6_dst_from_check(rt, from, cookie);
else
dst_ret = rt6_check(rt, from, cookie);
rcu_read_unlock();
return dst_ret;
}
EXPORT_INDIRECT_CALLABLE(ip6_dst_check);
static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
{
struct rt6_info *rt = (struct rt6_info *) dst;
if (rt) {
if (rt->rt6i_flags & RTF_CACHE) {
rcu_read_lock();
if (rt6_check_expired(rt)) {
rt6_remove_exception_rt(rt);
dst = NULL;
}
rcu_read_unlock();
} else {
dst_release(dst);
dst = NULL;
}
}
return dst;
}
static void ip6_link_failure(struct sk_buff *skb)
{
struct rt6_info *rt;
icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
rt = (struct rt6_info *) skb_dst(skb);
if (rt) {
rcu_read_lock();
ipv6: in case of link failure remove route directly instead of letting it expire We could end up expiring a route which is part of an ecmp route set. Doing so would invalidate the rt->rt6i_nsiblings calculations and could provoke the following panic: [ 80.144667] ------------[ cut here ]------------ [ 80.145172] kernel BUG at net/ipv6/ip6_fib.c:733! [ 80.145172] invalid opcode: 0000 [#1] SMP [ 80.145172] Modules linked in: 8021q nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6table_mangle ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 iptable_nat nf_nat_ipv4 nf_nat iptable_mangle nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ebtable_filter ebtables ip6table_filter ip6_tables +snd_hda_intel snd_hda_codec snd_hwdep snd_seq snd_seq_device snd_pcm snd_page_alloc snd_timer virtio_balloon snd soundcore i2c_piix4 i2c_core virtio_net virtio_blk [ 80.145172] CPU: 1 PID: 786 Comm: ping6 Not tainted 3.10.0+ #118 [ 80.145172] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 80.145172] task: ffff880117fa0000 ti: ffff880118770000 task.ti: ffff880118770000 [ 80.145172] RIP: 0010:[<ffffffff815f3b5d>] [<ffffffff815f3b5d>] fib6_add+0x75d/0x830 [ 80.145172] RSP: 0018:ffff880118771798 EFLAGS: 00010202 [ 80.145172] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88011350e480 [ 80.145172] RDX: ffff88011350e238 RSI: 0000000000000004 RDI: ffff88011350f738 [ 80.145172] RBP: ffff880118771848 R08: ffff880117903280 R09: 0000000000000001 [ 80.145172] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011350f680 [ 80.145172] R13: ffff880117903280 R14: ffff880118771890 R15: ffff88011350ef90 [ 80.145172] FS: 00007f02b5127740(0000) GS:ffff88011fd00000(0000) knlGS:0000000000000000 [ 80.145172] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 80.145172] CR2: 00007f981322a000 CR3: 00000001181b1000 CR4: 00000000000006e0 [ 80.145172] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 80.145172] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 80.145172] Stack: [ 80.145172] 0000000000000001 ffff880100000000 ffff880100000000 ffff880117903280 [ 80.145172] 0000000000000000 ffff880119a4cf00 0000000000000400 00000000000007fa [ 80.145172] 0000000000000000 0000000000000000 0000000000000000 ffff88011350f680 [ 80.145172] Call Trace: [ 80.145172] [<ffffffff815eeceb>] ? rt6_bind_peer+0x4b/0x90 [ 80.145172] [<ffffffff815ed985>] __ip6_ins_rt+0x45/0x70 [ 80.145172] [<ffffffff815eee35>] ip6_ins_rt+0x35/0x40 [ 80.145172] [<ffffffff815ef1e4>] ip6_pol_route.isra.44+0x3a4/0x4b0 [ 80.145172] [<ffffffff815ef34a>] ip6_pol_route_output+0x2a/0x30 [ 80.145172] [<ffffffff81616077>] fib6_rule_action+0xd7/0x210 [ 80.145172] [<ffffffff815ef320>] ? ip6_pol_route_input+0x30/0x30 [ 80.145172] [<ffffffff81553026>] fib_rules_lookup+0xc6/0x140 [ 80.145172] [<ffffffff81616374>] fib6_rule_lookup+0x44/0x80 [ 80.145172] [<ffffffff815ef320>] ? ip6_pol_route_input+0x30/0x30 [ 80.145172] [<ffffffff815edea3>] ip6_route_output+0x73/0xb0 [ 80.145172] [<ffffffff815dfdf3>] ip6_dst_lookup_tail+0x2c3/0x2e0 [ 80.145172] [<ffffffff813007b1>] ? list_del+0x11/0x40 [ 80.145172] [<ffffffff81082a4c>] ? remove_wait_queue+0x3c/0x50 [ 80.145172] [<ffffffff815dfe4d>] ip6_dst_lookup_flow+0x3d/0xa0 [ 80.145172] [<ffffffff815fda77>] rawv6_sendmsg+0x267/0xc20 [ 80.145172] [<ffffffff815a8a83>] inet_sendmsg+0x63/0xb0 [ 80.145172] [<ffffffff8128eb93>] ? selinux_socket_sendmsg+0x23/0x30 [ 80.145172] [<ffffffff815218d6>] sock_sendmsg+0xa6/0xd0 [ 80.145172] [<ffffffff81524a68>] SYSC_sendto+0x128/0x180 [ 80.145172] [<ffffffff8109825c>] ? update_curr+0xec/0x170 [ 80.145172] [<ffffffff81041d09>] ? kvm_clock_get_cycles+0x9/0x10 [ 80.145172] [<ffffffff810afd1e>] ? __getnstimeofday+0x3e/0xd0 [ 80.145172] [<ffffffff8152509e>] SyS_sendto+0xe/0x10 [ 80.145172] [<ffffffff8164efd9>] system_call_fastpath+0x16/0x1b [ 80.145172] Code: fe ff ff 41 f6 45 2a 06 0f 85 ca fe ff ff 49 8b 7e 08 4c 89 ee e8 94 ef ff ff e9 b9 fe ff ff 48 8b 82 28 05 00 00 e9 01 ff ff ff <0f> 0b 49 8b 54 24 30 0d 00 00 40 00 89 83 14 01 00 00 48 89 53 [ 80.145172] RIP [<ffffffff815f3b5d>] fib6_add+0x75d/0x830 [ 80.145172] RSP <ffff880118771798> [ 80.387413] ---[ end trace 02f20b7a8b81ed95 ]--- [ 80.390154] Kernel panic - not syncing: Fatal exception in interrupt Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-10 21:00:57 +00:00
if (rt->rt6i_flags & RTF_CACHE) {
rt6_remove_exception_rt(rt);
} else {
struct fib6_info *from;
struct fib6_node *fn;
from = rcu_dereference(rt->from);
if (from) {
fn = rcu_dereference(from->fib6_node);
if (fn && (rt->rt6i_flags & RTF_DEFAULT))
ipv6: annotate accesses to fn->fn_sernum struct fib6_node's fn_sernum field can be read while other threads change it. Add READ_ONCE()/WRITE_ONCE() annotations. Do not change existing smp barriers in fib6_get_cookie_safe() and __fib6_update_sernum_upto_root() syzbot reported: BUG: KCSAN: data-race in fib6_clean_node / inet6_csk_route_socket write to 0xffff88813df62e2c of 4 bytes by task 1920 on cpu 1: fib6_clean_node+0xc2/0x260 net/ipv6/ip6_fib.c:2178 fib6_walk_continue+0x38e/0x430 net/ipv6/ip6_fib.c:2112 fib6_walk net/ipv6/ip6_fib.c:2160 [inline] fib6_clean_tree net/ipv6/ip6_fib.c:2240 [inline] __fib6_clean_all+0x1a9/0x2e0 net/ipv6/ip6_fib.c:2256 fib6_flush_trees+0x6c/0x80 net/ipv6/ip6_fib.c:2281 rt_genid_bump_ipv6 include/net/net_namespace.h:488 [inline] addrconf_dad_completed+0x57f/0x870 net/ipv6/addrconf.c:4230 addrconf_dad_work+0x908/0x1170 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x1bf/0x1e0 kernel/kthread.c:359 ret_from_fork+0x1f/0x30 read to 0xffff88813df62e2c of 4 bytes by task 15701 on cpu 0: fib6_get_cookie_safe include/net/ip6_fib.h:285 [inline] rt6_get_cookie include/net/ip6_fib.h:306 [inline] ip6_dst_store include/net/ip6_route.h:234 [inline] inet6_csk_route_socket+0x352/0x3c0 net/ipv6/inet6_connection_sock.c:109 inet6_csk_xmit+0x91/0x1e0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0x1323/0x1840 net/ipv4/tcp_output.c:1402 tcp_transmit_skb net/ipv4/tcp_output.c:1420 [inline] tcp_write_xmit+0x1450/0x4460 net/ipv4/tcp_output.c:2680 __tcp_push_pending_frames+0x68/0x1c0 net/ipv4/tcp_output.c:2864 tcp_push+0x2d9/0x2f0 net/ipv4/tcp.c:725 mptcp_push_release net/mptcp/protocol.c:1491 [inline] __mptcp_push_pending+0x46c/0x490 net/mptcp/protocol.c:1578 mptcp_sendmsg+0x9ec/0xa50 net/mptcp/protocol.c:1764 inet6_sendmsg+0x5f/0x80 net/ipv6/af_inet6.c:643 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg net/socket.c:725 [inline] kernel_sendmsg+0x97/0xd0 net/socket.c:745 sock_no_sendpage+0x84/0xb0 net/core/sock.c:3086 inet_sendpage+0x9d/0xc0 net/ipv4/af_inet.c:834 kernel_sendpage+0x187/0x200 net/socket.c:3492 sock_sendpage+0x5a/0x70 net/socket.c:1007 pipe_to_sendpage+0x128/0x160 fs/splice.c:364 splice_from_pipe_feed fs/splice.c:418 [inline] __splice_from_pipe+0x207/0x500 fs/splice.c:562 splice_from_pipe fs/splice.c:597 [inline] generic_splice_sendpage+0x94/0xd0 fs/splice.c:746 do_splice_from fs/splice.c:767 [inline] direct_splice_actor+0x80/0xa0 fs/splice.c:936 splice_direct_to_actor+0x345/0x650 fs/splice.c:891 do_splice_direct+0x106/0x190 fs/splice.c:979 do_sendfile+0x675/0xc40 fs/read_write.c:1245 __do_sys_sendfile64 fs/read_write.c:1310 [inline] __se_sys_sendfile64 fs/read_write.c:1296 [inline] __x64_sys_sendfile64+0x102/0x140 fs/read_write.c:1296 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x0000026f -> 0x00000271 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 15701 Comm: syz-executor.2 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 The Fixes tag I chose is probably arbitrary, I do not think we need to backport this patch to older kernels. Fixes: c5cff8561d2d ("ipv6: add rcu grace period before freeing fib6_node") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220120174112.1126644-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-01-20 17:41:12 +00:00
WRITE_ONCE(fn->fn_sernum, -1);
}
ipv6: in case of link failure remove route directly instead of letting it expire We could end up expiring a route which is part of an ecmp route set. Doing so would invalidate the rt->rt6i_nsiblings calculations and could provoke the following panic: [ 80.144667] ------------[ cut here ]------------ [ 80.145172] kernel BUG at net/ipv6/ip6_fib.c:733! [ 80.145172] invalid opcode: 0000 [#1] SMP [ 80.145172] Modules linked in: 8021q nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6table_mangle ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 iptable_nat nf_nat_ipv4 nf_nat iptable_mangle nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ebtable_filter ebtables ip6table_filter ip6_tables +snd_hda_intel snd_hda_codec snd_hwdep snd_seq snd_seq_device snd_pcm snd_page_alloc snd_timer virtio_balloon snd soundcore i2c_piix4 i2c_core virtio_net virtio_blk [ 80.145172] CPU: 1 PID: 786 Comm: ping6 Not tainted 3.10.0+ #118 [ 80.145172] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 80.145172] task: ffff880117fa0000 ti: ffff880118770000 task.ti: ffff880118770000 [ 80.145172] RIP: 0010:[<ffffffff815f3b5d>] [<ffffffff815f3b5d>] fib6_add+0x75d/0x830 [ 80.145172] RSP: 0018:ffff880118771798 EFLAGS: 00010202 [ 80.145172] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88011350e480 [ 80.145172] RDX: ffff88011350e238 RSI: 0000000000000004 RDI: ffff88011350f738 [ 80.145172] RBP: ffff880118771848 R08: ffff880117903280 R09: 0000000000000001 [ 80.145172] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011350f680 [ 80.145172] R13: ffff880117903280 R14: ffff880118771890 R15: ffff88011350ef90 [ 80.145172] FS: 00007f02b5127740(0000) GS:ffff88011fd00000(0000) knlGS:0000000000000000 [ 80.145172] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 80.145172] CR2: 00007f981322a000 CR3: 00000001181b1000 CR4: 00000000000006e0 [ 80.145172] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 80.145172] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 80.145172] Stack: [ 80.145172] 0000000000000001 ffff880100000000 ffff880100000000 ffff880117903280 [ 80.145172] 0000000000000000 ffff880119a4cf00 0000000000000400 00000000000007fa [ 80.145172] 0000000000000000 0000000000000000 0000000000000000 ffff88011350f680 [ 80.145172] Call Trace: [ 80.145172] [<ffffffff815eeceb>] ? rt6_bind_peer+0x4b/0x90 [ 80.145172] [<ffffffff815ed985>] __ip6_ins_rt+0x45/0x70 [ 80.145172] [<ffffffff815eee35>] ip6_ins_rt+0x35/0x40 [ 80.145172] [<ffffffff815ef1e4>] ip6_pol_route.isra.44+0x3a4/0x4b0 [ 80.145172] [<ffffffff815ef34a>] ip6_pol_route_output+0x2a/0x30 [ 80.145172] [<ffffffff81616077>] fib6_rule_action+0xd7/0x210 [ 80.145172] [<ffffffff815ef320>] ? ip6_pol_route_input+0x30/0x30 [ 80.145172] [<ffffffff81553026>] fib_rules_lookup+0xc6/0x140 [ 80.145172] [<ffffffff81616374>] fib6_rule_lookup+0x44/0x80 [ 80.145172] [<ffffffff815ef320>] ? ip6_pol_route_input+0x30/0x30 [ 80.145172] [<ffffffff815edea3>] ip6_route_output+0x73/0xb0 [ 80.145172] [<ffffffff815dfdf3>] ip6_dst_lookup_tail+0x2c3/0x2e0 [ 80.145172] [<ffffffff813007b1>] ? list_del+0x11/0x40 [ 80.145172] [<ffffffff81082a4c>] ? remove_wait_queue+0x3c/0x50 [ 80.145172] [<ffffffff815dfe4d>] ip6_dst_lookup_flow+0x3d/0xa0 [ 80.145172] [<ffffffff815fda77>] rawv6_sendmsg+0x267/0xc20 [ 80.145172] [<ffffffff815a8a83>] inet_sendmsg+0x63/0xb0 [ 80.145172] [<ffffffff8128eb93>] ? selinux_socket_sendmsg+0x23/0x30 [ 80.145172] [<ffffffff815218d6>] sock_sendmsg+0xa6/0xd0 [ 80.145172] [<ffffffff81524a68>] SYSC_sendto+0x128/0x180 [ 80.145172] [<ffffffff8109825c>] ? update_curr+0xec/0x170 [ 80.145172] [<ffffffff81041d09>] ? kvm_clock_get_cycles+0x9/0x10 [ 80.145172] [<ffffffff810afd1e>] ? __getnstimeofday+0x3e/0xd0 [ 80.145172] [<ffffffff8152509e>] SyS_sendto+0xe/0x10 [ 80.145172] [<ffffffff8164efd9>] system_call_fastpath+0x16/0x1b [ 80.145172] Code: fe ff ff 41 f6 45 2a 06 0f 85 ca fe ff ff 49 8b 7e 08 4c 89 ee e8 94 ef ff ff e9 b9 fe ff ff 48 8b 82 28 05 00 00 e9 01 ff ff ff <0f> 0b 49 8b 54 24 30 0d 00 00 40 00 89 83 14 01 00 00 48 89 53 [ 80.145172] RIP [<ffffffff815f3b5d>] fib6_add+0x75d/0x830 [ 80.145172] RSP <ffff880118771798> [ 80.387413] ---[ end trace 02f20b7a8b81ed95 ]--- [ 80.390154] Kernel panic - not syncing: Fatal exception in interrupt Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-10 21:00:57 +00:00
}
rcu_read_unlock();
}
}
static void rt6_update_expires(struct rt6_info *rt0, int timeout)
{
if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
struct fib6_info *from;
rcu_read_lock();
from = rcu_dereference(rt0->from);
if (from)
rt0->dst.expires = from->expires;
rcu_read_unlock();
}
dst_set_expires(&rt0->dst, timeout);
rt0->rt6i_flags |= RTF_EXPIRES;
}
static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
{
struct net *net = dev_net(rt->dst.dev);
dst_metric_set(&rt->dst, RTAX_MTU, mtu);
rt->rt6i_flags |= RTF_MODIFIED;
rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
}
ipv6: Avoid creating RTF_CACHE from a rt that is not managed by fib6 tree The original bug report: https://bugzilla.redhat.com/show_bug.cgi?id=1272571 The setup has a IPv4 GRE tunnel running in a IPSec. The bug happens when ndisc starts sending router solicitation at the gre interface. The simplified oops stack is like: __lock_acquire+0x1b2/0x1c30 lock_acquire+0xb9/0x140 _raw_write_lock_bh+0x3f/0x50 __ip6_ins_rt+0x2e/0x60 ip6_ins_rt+0x49/0x50 ~~~~~~~~ __ip6_rt_update_pmtu.part.54+0x145/0x250 ip6_rt_update_pmtu+0x2e/0x40 ~~~~~~~~ ip_tunnel_xmit+0x1f1/0xf40 __gre_xmit+0x7a/0x90 ipgre_xmit+0x15a/0x220 dev_hard_start_xmit+0x2bd/0x480 __dev_queue_xmit+0x696/0x730 dev_queue_xmit+0x10/0x20 neigh_direct_output+0x11/0x20 ip6_finish_output2+0x21f/0x770 ip6_finish_output+0xa7/0x1d0 ip6_output+0x56/0x190 ~~~~~~~~ ndisc_send_skb+0x1d9/0x400 ndisc_send_rs+0x88/0xc0 ~~~~~~~~ The rt passed to ip6_rt_update_pmtu() is created by icmp6_dst_alloc() and it is not managed by the fib6 tree, so its rt6i_table == NULL. When __ip6_rt_update_pmtu() creates a RTF_CACHE clone, the newly created clone also has rt6i_table == NULL and it causes the ip6_ins_rt() oops. During pmtu update, we only want to create a RTF_CACHE clone from a rt which is currently managed (or owned) by the fib6 tree. It means either rt->rt6i_node != NULL or rt is a RTF_PCPU clone. It is worth to note that rt6i_table may not be NULL even it is not (yet) managed by the fib6 tree (e.g. addrconf_dst_alloc()). Hence, rt6i_node is a better check instead of rt6i_table. Fixes: 45e4fd26683c ("ipv6: Only create RTF_CACHE routes after encountering pmtu") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reported-by: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-11 19:51:06 +00:00
static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
{
return !(rt->rt6i_flags & RTF_CACHE) &&
(rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from));
ipv6: Avoid creating RTF_CACHE from a rt that is not managed by fib6 tree The original bug report: https://bugzilla.redhat.com/show_bug.cgi?id=1272571 The setup has a IPv4 GRE tunnel running in a IPSec. The bug happens when ndisc starts sending router solicitation at the gre interface. The simplified oops stack is like: __lock_acquire+0x1b2/0x1c30 lock_acquire+0xb9/0x140 _raw_write_lock_bh+0x3f/0x50 __ip6_ins_rt+0x2e/0x60 ip6_ins_rt+0x49/0x50 ~~~~~~~~ __ip6_rt_update_pmtu.part.54+0x145/0x250 ip6_rt_update_pmtu+0x2e/0x40 ~~~~~~~~ ip_tunnel_xmit+0x1f1/0xf40 __gre_xmit+0x7a/0x90 ipgre_xmit+0x15a/0x220 dev_hard_start_xmit+0x2bd/0x480 __dev_queue_xmit+0x696/0x730 dev_queue_xmit+0x10/0x20 neigh_direct_output+0x11/0x20 ip6_finish_output2+0x21f/0x770 ip6_finish_output+0xa7/0x1d0 ip6_output+0x56/0x190 ~~~~~~~~ ndisc_send_skb+0x1d9/0x400 ndisc_send_rs+0x88/0xc0 ~~~~~~~~ The rt passed to ip6_rt_update_pmtu() is created by icmp6_dst_alloc() and it is not managed by the fib6 tree, so its rt6i_table == NULL. When __ip6_rt_update_pmtu() creates a RTF_CACHE clone, the newly created clone also has rt6i_table == NULL and it causes the ip6_ins_rt() oops. During pmtu update, we only want to create a RTF_CACHE clone from a rt which is currently managed (or owned) by the fib6 tree. It means either rt->rt6i_node != NULL or rt is a RTF_PCPU clone. It is worth to note that rt6i_table may not be NULL even it is not (yet) managed by the fib6 tree (e.g. addrconf_dst_alloc()). Hence, rt6i_node is a better check instead of rt6i_table. Fixes: 45e4fd26683c ("ipv6: Only create RTF_CACHE routes after encountering pmtu") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reported-by: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-11 19:51:06 +00:00
}
static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
const struct ipv6hdr *iph, u32 mtu,
bool confirm_neigh)
{
const struct in6_addr *daddr, *saddr;
struct rt6_info *rt6 = (struct rt6_info *)dst;
/* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU)
* IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it.
* [see also comment in rt6_mtu_change_route()]
*/
if (iph) {
daddr = &iph->daddr;
saddr = &iph->saddr;
} else if (sk) {
daddr = &sk->sk_v6_daddr;
saddr = &inet6_sk(sk)->saddr;
} else {
daddr = NULL;
saddr = NULL;
}
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
if (confirm_neigh)
dst_confirm_neigh(dst, daddr);
if (mtu < IPV6_MIN_MTU)
return;
if (mtu >= dst_mtu(dst))
return;
ipv6: Avoid creating RTF_CACHE from a rt that is not managed by fib6 tree The original bug report: https://bugzilla.redhat.com/show_bug.cgi?id=1272571 The setup has a IPv4 GRE tunnel running in a IPSec. The bug happens when ndisc starts sending router solicitation at the gre interface. The simplified oops stack is like: __lock_acquire+0x1b2/0x1c30 lock_acquire+0xb9/0x140 _raw_write_lock_bh+0x3f/0x50 __ip6_ins_rt+0x2e/0x60 ip6_ins_rt+0x49/0x50 ~~~~~~~~ __ip6_rt_update_pmtu.part.54+0x145/0x250 ip6_rt_update_pmtu+0x2e/0x40 ~~~~~~~~ ip_tunnel_xmit+0x1f1/0xf40 __gre_xmit+0x7a/0x90 ipgre_xmit+0x15a/0x220 dev_hard_start_xmit+0x2bd/0x480 __dev_queue_xmit+0x696/0x730 dev_queue_xmit+0x10/0x20 neigh_direct_output+0x11/0x20 ip6_finish_output2+0x21f/0x770 ip6_finish_output+0xa7/0x1d0 ip6_output+0x56/0x190 ~~~~~~~~ ndisc_send_skb+0x1d9/0x400 ndisc_send_rs+0x88/0xc0 ~~~~~~~~ The rt passed to ip6_rt_update_pmtu() is created by icmp6_dst_alloc() and it is not managed by the fib6 tree, so its rt6i_table == NULL. When __ip6_rt_update_pmtu() creates a RTF_CACHE clone, the newly created clone also has rt6i_table == NULL and it causes the ip6_ins_rt() oops. During pmtu update, we only want to create a RTF_CACHE clone from a rt which is currently managed (or owned) by the fib6 tree. It means either rt->rt6i_node != NULL or rt is a RTF_PCPU clone. It is worth to note that rt6i_table may not be NULL even it is not (yet) managed by the fib6 tree (e.g. addrconf_dst_alloc()). Hence, rt6i_node is a better check instead of rt6i_table. Fixes: 45e4fd26683c ("ipv6: Only create RTF_CACHE routes after encountering pmtu") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reported-by: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Chris Siebenmann <cks-rhbugzilla@cs.toronto.edu> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-11 19:51:06 +00:00
if (!rt6_cache_allowed_for_pmtu(rt6)) {
rt6_do_update_pmtu(rt6, mtu);
/* update rt6_ex->stamp for cache */
if (rt6->rt6i_flags & RTF_CACHE)
rt6_update_exception_stamp_rt(rt6);
} else if (daddr) {
struct fib6_result res = {};
struct rt6_info *nrt6;
rcu_read_lock();
res.f6i = rcu_dereference(rt6->from);
if (!res.f6i)
goto out_unlock;
res.fib6_flags = res.f6i->fib6_flags;
res.fib6_type = res.f6i->fib6_type;
if (res.f6i->nh) {
struct fib6_nh_match_arg arg = {
.dev = dst->dev,
.gw = &rt6->rt6i_gateway,
};
nexthop_for_each_fib6_nh(res.f6i->nh,
fib6_nh_find_match, &arg);
/* fib6_info uses a nexthop that does not have fib6_nh
* using the dst->dev + gw. Should be impossible.
*/
if (!arg.match)
goto out_unlock;
res.nh = arg.match;
} else {
res.nh = res.f6i->fib6_nh;
}
nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr);
if (nrt6) {
rt6_do_update_pmtu(nrt6, mtu);
if (rt6_insert_exception(nrt6, &res))
dst_release_immediate(&nrt6->dst);
}
out_unlock:
rcu_read_unlock();
}
}
static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
struct sk_buff *skb, u32 mtu,
bool confirm_neigh)
{
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu,
confirm_neigh);
}
void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
int oif, u32 mark, kuid_t uid)
{
const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
struct dst_entry *dst;
struct flowi6 fl6 = {
.flowi6_oif = oif,
.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark),
.daddr = iph->daddr,
.saddr = iph->saddr,
.flowlabel = ip6_flowinfo(iph),
.flowi6_uid = uid,
};
dst = ip6_route_output(net, NULL, &fl6);
if (!dst->error)
net: add bool confirm_neigh parameter for dst_ops.update_pmtu The MTU update code is supposed to be invoked in response to real networking events that update the PMTU. In IPv6 PMTU update function __ip6_rt_update_pmtu() we called dst_confirm_neigh() to update neighbor confirmed time. But for tunnel code, it will call pmtu before xmit, like: - tnl_update_pmtu() - skb_dst_update_pmtu() - ip6_rt_update_pmtu() - __ip6_rt_update_pmtu() - dst_confirm_neigh() If the tunnel remote dst mac address changed and we still do the neigh confirm, we will not be able to update neigh cache and ping6 remote will failed. So for this ip_tunnel_xmit() case, _EVEN_ if the MTU is changed, we should not be invoking dst_confirm_neigh() as we have no evidence of successful two-way communication at this point. On the other hand it is also important to keep the neigh reachability fresh for TCP flows, so we cannot remove this dst_confirm_neigh() call. To fix the issue, we have to add a new bool parameter for dst_ops.update_pmtu to choose whether we should do neigh update or not. I will add the parameter in this patch and set all the callers to true to comply with the previous way, and fix the tunnel code one by one on later patches. v5: No change. v4: No change. v3: Do not remove dst_confirm_neigh, but add a new bool parameter in dst_ops.update_pmtu to control whether we should do neighbor confirm. Also split the big patch to small ones for each area. v2: Remove dst_confirm_neigh in __ip6_rt_update_pmtu. Suggested-by: David Miller <davem@davemloft.net> Reviewed-by: Guillaume Nault <gnault@redhat.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-22 02:51:09 +00:00
__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true);
dst_release(dst);
}
EXPORT_SYMBOL_GPL(ip6_update_pmtu);
void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
{
int oif = sk->sk_bound_dev_if;
ipv6: datagram: Update dst cache of a connected datagram sk during pmtu update There is a case in connected UDP socket such that getsockopt(IPV6_MTU) will return a stale MTU value. The reproducible sequence could be the following: 1. Create a connected UDP socket 2. Send some datagrams out 3. Receive a ICMPV6_PKT_TOOBIG 4. No new outgoing datagrams to trigger the sk_dst_check() logic to update the sk->sk_dst_cache. 5. getsockopt(IPV6_MTU) returns the mtu from the invalid sk->sk_dst_cache instead of the newly created RTF_CACHE clone. This patch updates the sk->sk_dst_cache for a connected datagram sk during pmtu-update code path. Note that the sk->sk_v6_daddr is used to do the route lookup instead of skb->data (i.e. iph). It is because a UDP socket can become connected after sending out some datagrams in un-connected state. or It can be connected multiple times to different destinations. Hence, iph may not be related to where sk is currently connected to. It is done under '!sock_owned_by_user(sk)' condition because the user may make another ip6_datagram_connect() (i.e changing the sk->sk_v6_daddr) while dst lookup is happening in the pmtu-update code path. For the sock_owned_by_user(sk) == true case, the next patch will introduce a release_cb() which will update the sk->sk_dst_cache. Test: Server (Connected UDP Socket): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Route Details: [root@arch-fb-vm1 ~]# ip -6 r show | egrep '2fac' 2fac::/64 dev eth0 proto kernel metric 256 pref medium 2fac:face::/64 via 2fac::face dev eth0 metric 1024 pref medium A simple python code to create a connected UDP socket: import socket import errno HOST = '2fac::1' PORT = 8080 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) s.bind((HOST, PORT)) s.connect(('2fac:face::face', 53)) print("connected") while True: try: data = s.recv(1024) except socket.error as se: if se.errno == errno.EMSGSIZE: pmtu = s.getsockopt(41, 24) print("PMTU:%d" % pmtu) break s.close() Python program output after getting a ICMPV6_PKT_TOOBIG: [root@arch-fb-vm1 ~]# python2 ~/devshare/kernel/tasks/fib6/udp-connect-53-8080.py connected PMTU:1300 Cache routes after recieving TOOBIG: [root@arch-fb-vm1 ~]# ip -6 r show table cache 2fac:face::face via 2fac::face dev eth0 metric 0 cache expires 463sec mtu 1300 pref medium Client (Send the ICMPV6_PKT_TOOBIG): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ scapy is used to generate the TOOBIG message. Here is the scapy script I have used: >>> p=Ether(src='da:75:4d:36:ac:32', dst='52:54:00:12:34:66', type=0x86dd)/IPv6(src='2fac::face', dst='2fac::1')/ICMPv6PacketTooBig(mtu=1300)/IPv6(src='2fac:: 1',dst='2fac:face::face', nh='UDP')/UDP(sport=8080,dport=53) >>> sendp(p, iface='qemubr0') Fixes: 45e4fd26683c ("ipv6: Only create RTF_CACHE routes after encountering pmtu exception") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reported-by: Wei Wang <weiwan@google.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-11 22:29:36 +00:00
struct dst_entry *dst;
if (!oif && skb->dev)
oif = l3mdev_master_ifindex(skb->dev);
ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid);
ipv6: datagram: Update dst cache of a connected datagram sk during pmtu update There is a case in connected UDP socket such that getsockopt(IPV6_MTU) will return a stale MTU value. The reproducible sequence could be the following: 1. Create a connected UDP socket 2. Send some datagrams out 3. Receive a ICMPV6_PKT_TOOBIG 4. No new outgoing datagrams to trigger the sk_dst_check() logic to update the sk->sk_dst_cache. 5. getsockopt(IPV6_MTU) returns the mtu from the invalid sk->sk_dst_cache instead of the newly created RTF_CACHE clone. This patch updates the sk->sk_dst_cache for a connected datagram sk during pmtu-update code path. Note that the sk->sk_v6_daddr is used to do the route lookup instead of skb->data (i.e. iph). It is because a UDP socket can become connected after sending out some datagrams in un-connected state. or It can be connected multiple times to different destinations. Hence, iph may not be related to where sk is currently connected to. It is done under '!sock_owned_by_user(sk)' condition because the user may make another ip6_datagram_connect() (i.e changing the sk->sk_v6_daddr) while dst lookup is happening in the pmtu-update code path. For the sock_owned_by_user(sk) == true case, the next patch will introduce a release_cb() which will update the sk->sk_dst_cache. Test: Server (Connected UDP Socket): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Route Details: [root@arch-fb-vm1 ~]# ip -6 r show | egrep '2fac' 2fac::/64 dev eth0 proto kernel metric 256 pref medium 2fac:face::/64 via 2fac::face dev eth0 metric 1024 pref medium A simple python code to create a connected UDP socket: import socket import errno HOST = '2fac::1' PORT = 8080 s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) s.bind((HOST, PORT)) s.connect(('2fac:face::face', 53)) print("connected") while True: try: data = s.recv(1024) except socket.error as se: if se.errno == errno.EMSGSIZE: pmtu = s.getsockopt(41, 24) print("PMTU:%d" % pmtu) break s.close() Python program output after getting a ICMPV6_PKT_TOOBIG: [root@arch-fb-vm1 ~]# python2 ~/devshare/kernel/tasks/fib6/udp-connect-53-8080.py connected PMTU:1300 Cache routes after recieving TOOBIG: [root@arch-fb-vm1 ~]# ip -6 r show table cache 2fac:face::face via 2fac::face dev eth0 metric 0 cache expires 463sec mtu 1300 pref medium Client (Send the ICMPV6_PKT_TOOBIG): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ scapy is used to generate the TOOBIG message. Here is the scapy script I have used: >>> p=Ether(src='da:75:4d:36:ac:32', dst='52:54:00:12:34:66', type=0x86dd)/IPv6(src='2fac::face', dst='2fac::1')/ICMPv6PacketTooBig(mtu=1300)/IPv6(src='2fac:: 1',dst='2fac:face::face', nh='UDP')/UDP(sport=8080,dport=53) >>> sendp(p, iface='qemubr0') Fixes: 45e4fd26683c ("ipv6: Only create RTF_CACHE routes after encountering pmtu exception") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Reported-by: Wei Wang <weiwan@google.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-11 22:29:36 +00:00
dst = __sk_dst_get(sk);
if (!dst || !dst->obsolete ||
dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
return;
bh_lock_sock(sk);
if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
ip6_datagram_dst_update(sk, false);
bh_unlock_sock(sk);
}
EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
const struct flowi6 *fl6)
{
#ifdef CONFIG_IPV6_SUBTREES
struct ipv6_pinfo *np = inet6_sk(sk);
#endif
ip6_dst_store(sk, dst,
ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
&sk->sk_v6_daddr : NULL,
#ifdef CONFIG_IPV6_SUBTREES
ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
&np->saddr :
#endif
NULL);
}
static bool ip6_redirect_nh_match(const struct fib6_result *res,
struct flowi6 *fl6,
const struct in6_addr *gw,
struct rt6_info **ret)
{
const struct fib6_nh *nh = res->nh;
if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family ||
fl6->flowi6_oif != nh->fib_nh_dev->ifindex)
return false;
/* rt_cache's gateway might be different from its 'parent'
* in the case of an ip redirect.
* So we keep searching in the exception table if the gateway
* is different.
*/
if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) {
struct rt6_info *rt_cache;
rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr);
if (rt_cache &&
ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) {
*ret = rt_cache;
return true;
}
return false;
}
return true;
}
struct fib6_nh_rd_arg {
struct fib6_result *res;
struct flowi6 *fl6;
const struct in6_addr *gw;
struct rt6_info **ret;
};
static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_rd_arg *arg = _arg;
arg->res->nh = nh;
return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret);
}
/* Handle redirects */
struct ip6rd_flowi {
struct flowi6 fl6;
struct in6_addr gateway;
};
ipv6: fib6: avoid indirect calls from fib6_rule_lookup It was reported that a considerable amount of cycles were spent on the expensive indirect calls on fib6_rule_lookup. This patch introduces an inline helper called pol_route_func that uses the indirect_call_wrappers to avoid the indirect calls. This patch saves around 50ns per call. Performance was measured on the receiver by checking the amount of syncookies that server was able to generate under a synflood load. Traffic was generated using trafgen[1] which was pushing around 1Mpps on a single queue. Receiver was using only one rx queue which help to create a bottle neck and make the experiment rx-bounded. These are the syncookies generated over 10s from the different runs: Whithout the patch: TcpExtSyncookiesSent 3553749 0.0 TcpExtSyncookiesSent 3550895 0.0 TcpExtSyncookiesSent 3553845 0.0 TcpExtSyncookiesSent 3541050 0.0 TcpExtSyncookiesSent 3539921 0.0 TcpExtSyncookiesSent 3557659 0.0 TcpExtSyncookiesSent 3526812 0.0 TcpExtSyncookiesSent 3536121 0.0 TcpExtSyncookiesSent 3529963 0.0 TcpExtSyncookiesSent 3536319 0.0 With the patch: TcpExtSyncookiesSent 3611786 0.0 TcpExtSyncookiesSent 3596682 0.0 TcpExtSyncookiesSent 3606878 0.0 TcpExtSyncookiesSent 3599564 0.0 TcpExtSyncookiesSent 3601304 0.0 TcpExtSyncookiesSent 3609249 0.0 TcpExtSyncookiesSent 3617437 0.0 TcpExtSyncookiesSent 3608765 0.0 TcpExtSyncookiesSent 3620205 0.0 TcpExtSyncookiesSent 3601895 0.0 Without the patch the average is 354263 pkt/s or 2822 ns/pkt and with the patch the average is 360738 pkt/s or 2772 ns/pkt which gives an estimate of 50 ns per packet. [1] http://netsniff-ng.org/ Changelog since v1: - Change ordering in the ICW (Paolo Abeni) Cc: Luigi Rizzo <lrizzo@google.com> Cc: Paolo Abeni <pabeni@redhat.com> Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Brian Vazquez <brianvv@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-23 16:42:32 +00:00
INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net,
struct fib6_table *table,
struct flowi6 *fl6,
const struct sk_buff *skb,
int flags)
{
struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
struct rt6_info *ret = NULL;
struct fib6_result res = {};
struct fib6_nh_rd_arg arg = {
.res = &res,
.fl6 = fl6,
.gw = &rdfl->gateway,
.ret = &ret
};
struct fib6_info *rt;
struct fib6_node *fn;
/* Get the "current" route for this destination and
* check if the redirect has come from appropriate router.
*
* RFC 4861 specifies that redirects should only be
* accepted if they come from the nexthop to the target.
* Due to the way the routes are chosen, this notion
* is a bit fuzzy and one might need to check all possible
* routes.
*/
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
restart:
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
for_each_fib6_node_rt_rcu(fn) {
res.f6i = rt;
if (fib6_check_expired(rt))
continue;
if (rt->fib6_flags & RTF_REJECT)
break;
if (unlikely(rt->nh)) {
if (nexthop_is_blackhole(rt->nh))
continue;
/* on match, res->nh is filled in and potentially ret */
if (nexthop_for_each_fib6_nh(rt->nh,
fib6_nh_redirect_match,
&arg))
goto out;
} else {
res.nh = rt->fib6_nh;
if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway,
&ret))
goto out;
}
}
if (!rt)
rt = net->ipv6.fib6_null_entry;
else if (rt->fib6_flags & RTF_REJECT) {
ret = net->ipv6.ip6_null_entry;
goto out;
}
if (rt == net->ipv6.fib6_null_entry) {
fn = fib6_backtrack(fn, &fl6->saddr);
if (fn)
goto restart;
}
res.f6i = rt;
res.nh = rt->fib6_nh;
out:
if (ret) {
ip6_hold_safe(net, &ret);
} else {
res.fib6_flags = res.f6i->fib6_flags;
res.fib6_type = res.f6i->fib6_type;
ret = ip6_create_rt_rcu(&res);
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
trace_fib6_table_lookup(net, &res, table, fl6);
return ret;
};
static struct dst_entry *ip6_route_redirect(struct net *net,
const struct flowi6 *fl6,
const struct sk_buff *skb,
const struct in6_addr *gateway)
{
int flags = RT6_LOOKUP_F_HAS_SADDR;
struct ip6rd_flowi rdfl;
rdfl.fl6 = *fl6;
rdfl.gateway = *gateway;
return fib6_rule_lookup(net, &rdfl.fl6, skb,
flags, __ip6_route_redirect);
}
void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
kuid_t uid)
{
const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
struct dst_entry *dst;
struct flowi6 fl6 = {
.flowi6_iif = LOOPBACK_IFINDEX,
.flowi6_oif = oif,
.flowi6_mark = mark,
.daddr = iph->daddr,
.saddr = iph->saddr,
.flowlabel = ip6_flowinfo(iph),
.flowi6_uid = uid,
};
dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
rt6_do_redirect(dst, NULL, skb);
dst_release(dst);
}
EXPORT_SYMBOL_GPL(ip6_redirect);
void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif)
{
const struct ipv6hdr *iph = ipv6_hdr(skb);
const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
struct dst_entry *dst;
struct flowi6 fl6 = {
.flowi6_iif = LOOPBACK_IFINDEX,
.flowi6_oif = oif,
.daddr = msg->dest,
.saddr = iph->daddr,
.flowi6_uid = sock_net_uid(net, NULL),
};
dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
rt6_do_redirect(dst, NULL, skb);
dst_release(dst);
}
void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
{
ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
sk->sk_uid);
}
EXPORT_SYMBOL_GPL(ip6_sk_redirect);
static unsigned int ip6_default_advmss(const struct dst_entry *dst)
{
struct net_device *dev = dst->dev;
unsigned int mtu = dst_mtu(dst);
struct net *net = dev_net(dev);
mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
/*
* Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
* corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
* IPV6_MAXPLEN is also valid and means: "any MSS,
* rely only on pmtu discovery"
*/
if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
mtu = IPV6_MAXPLEN;
return mtu;
}
INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst)
{
return ip6_dst_mtu_maybe_forward(dst, false);
}
EXPORT_INDIRECT_CALLABLE(ip6_mtu);
/* MTU selection:
* 1. mtu on route is locked - use it
* 2. mtu from nexthop exception
* 3. mtu from egress device
*
* based on ip6_dst_mtu_forward and exception logic of
* rt6_find_cached_rt; called with rcu_read_lock
*/
u32 ip6_mtu_from_fib6(const struct fib6_result *res,
const struct in6_addr *daddr,
const struct in6_addr *saddr)
{
const struct fib6_nh *nh = res->nh;
struct fib6_info *f6i = res->f6i;
struct inet6_dev *idev;
struct rt6_info *rt;
u32 mtu = 0;
if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
mtu = f6i->fib6_pmtu;
if (mtu)
goto out;
}
rt = rt6_find_cached_rt(res, daddr, saddr);
if (unlikely(rt)) {
mtu = dst_metric_raw(&rt->dst, RTAX_MTU);
} else {
struct net_device *dev = nh->fib_nh_dev;
mtu = IPV6_MIN_MTU;
idev = __in6_dev_get(dev);
if (idev && idev->cnf.mtu6 > mtu)
mtu = idev->cnf.mtu6;
}
mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
out:
return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu);
}
struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
struct flowi6 *fl6)
{
struct dst_entry *dst;
struct rt6_info *rt;
struct inet6_dev *idev = in6_dev_get(dev);
struct net *net = dev_net(dev);
if (unlikely(!idev))
return ERR_PTR(-ENODEV);
rt = ip6_dst_alloc(net, dev, 0);
if (unlikely(!rt)) {
in6_dev_put(idev);
dst = ERR_PTR(-ENOMEM);
goto out;
}
rt->dst.input = ip6_input;
rt->dst.output = ip6_output;
rt->rt6i_gateway = fl6->daddr;
rt->rt6i_dst.addr = fl6->daddr;
rt->rt6i_dst.plen = 128;
rt->rt6i_idev = idev;
dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
/* Add this dst into uncached_list so that rt6_disable_ip() can
* do proper release of the net_device
*/
rt6_uncached_list_add(rt);
dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
out:
return dst;
}
static int ip6_dst_gc(struct dst_ops *ops)
{
struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
ipv6: make ip6_rt_gc_expire an atomic_t Reads and Writes to ip6_rt_gc_expire always have been racy, as syzbot reported lately [1] There is a possible risk of under-flow, leading to unexpected high value passed to fib6_run_gc(), although I have not observed this in the field. Hosts hitting ip6_dst_gc() very hard are under pretty bad state anyway. [1] BUG: KCSAN: data-race in ip6_dst_gc / ip6_dst_gc read-write to 0xffff888102110744 of 4 bytes by task 13165 on cpu 1: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 read-write to 0xffff888102110744 of 4 bytes by task 11607 on cpu 0: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 value changed: 0x00000bb3 -> 0x00000ba9 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11607 Comm: kworker/0:21 Not tainted 5.18.0-rc1-syzkaller-00037-g42e7a03d3bad-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220413181333.649424-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-13 18:13:33 +00:00
unsigned int val;
int entries;
entries = dst_entries_get_fast(ops);
if (entries > rt_max_size)
entries = dst_entries_get_slow(ops);
if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
entries <= rt_max_size)
goto out;
ipv6: make ip6_rt_gc_expire an atomic_t Reads and Writes to ip6_rt_gc_expire always have been racy, as syzbot reported lately [1] There is a possible risk of under-flow, leading to unexpected high value passed to fib6_run_gc(), although I have not observed this in the field. Hosts hitting ip6_dst_gc() very hard are under pretty bad state anyway. [1] BUG: KCSAN: data-race in ip6_dst_gc / ip6_dst_gc read-write to 0xffff888102110744 of 4 bytes by task 13165 on cpu 1: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 read-write to 0xffff888102110744 of 4 bytes by task 11607 on cpu 0: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 value changed: 0x00000bb3 -> 0x00000ba9 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11607 Comm: kworker/0:21 Not tainted 5.18.0-rc1-syzkaller-00037-g42e7a03d3bad-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220413181333.649424-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-13 18:13:33 +00:00
fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true);
entries = dst_entries_get_slow(ops);
if (entries < ops->gc_thresh)
ipv6: make ip6_rt_gc_expire an atomic_t Reads and Writes to ip6_rt_gc_expire always have been racy, as syzbot reported lately [1] There is a possible risk of under-flow, leading to unexpected high value passed to fib6_run_gc(), although I have not observed this in the field. Hosts hitting ip6_dst_gc() very hard are under pretty bad state anyway. [1] BUG: KCSAN: data-race in ip6_dst_gc / ip6_dst_gc read-write to 0xffff888102110744 of 4 bytes by task 13165 on cpu 1: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 read-write to 0xffff888102110744 of 4 bytes by task 11607 on cpu 0: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 value changed: 0x00000bb3 -> 0x00000ba9 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11607 Comm: kworker/0:21 Not tainted 5.18.0-rc1-syzkaller-00037-g42e7a03d3bad-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220413181333.649424-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-13 18:13:33 +00:00
atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1);
out:
ipv6: make ip6_rt_gc_expire an atomic_t Reads and Writes to ip6_rt_gc_expire always have been racy, as syzbot reported lately [1] There is a possible risk of under-flow, leading to unexpected high value passed to fib6_run_gc(), although I have not observed this in the field. Hosts hitting ip6_dst_gc() very hard are under pretty bad state anyway. [1] BUG: KCSAN: data-race in ip6_dst_gc / ip6_dst_gc read-write to 0xffff888102110744 of 4 bytes by task 13165 on cpu 1: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 read-write to 0xffff888102110744 of 4 bytes by task 11607 on cpu 0: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 value changed: 0x00000bb3 -> 0x00000ba9 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11607 Comm: kworker/0:21 Not tainted 5.18.0-rc1-syzkaller-00037-g42e7a03d3bad-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220413181333.649424-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-13 18:13:33 +00:00
val = atomic_read(&net->ipv6.ip6_rt_gc_expire);
atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity));
return entries > rt_max_size;
}
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg,
const struct in6_addr *gw_addr, u32 tbid,
int flags, struct fib6_result *res)
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
{
struct flowi6 fl6 = {
.flowi6_oif = cfg->fc_ifindex,
.daddr = *gw_addr,
.saddr = cfg->fc_prefsrc,
};
struct fib6_table *table;
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
int err;
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
table = fib6_get_table(net, tbid);
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
if (!table)
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
return -EINVAL;
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
if (!ipv6_addr_any(&cfg->fc_prefsrc))
flags |= RT6_LOOKUP_F_HAS_SADDR;
flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags);
if (!err && res->f6i != net->ipv6.fib6_null_entry)
fib6_select_path(net, res, &fl6, cfg->fc_ifindex,
cfg->fc_ifindex != 0, NULL, flags);
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
return err;
net: ipv6: Use passed in table for nexthop lookups Similar to 3bfd847203c6 ("net: Use passed in table for nexthop lookups") for IPv4, if the route spec contains a table id use that to lookup the next hop first and fall back to a full lookup if it fails (per the fix 4c9bcd117918b ("net: Fix nexthop lookups")). Example: root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 RTNETLINK answers: No route to host Route add fails even though 2100:1::64 is a reachable next hop: root@kenny:~# ping6 -I red 2100:1::64 ping6: Warning: source address might be selected on device other than red. PING 2100:1::64(2100:1::64) from 2100:1::1 red: 56 data bytes 64 bytes from 2100:1::64: icmp_seq=1 ttl=64 time=1.33 ms With this patch: root@kenny:~# ip -6 ro add table red 2100:3::/64 via 2100:1::64 root@kenny:~# ip -6 ro ls table red local 2100:1::1 dev lo proto none metric 0 pref medium 2100:1::/120 dev eth1 proto kernel metric 256 pref medium local 2100:2::1 dev lo proto none metric 0 pref medium 2100:2::/120 dev eth2 proto kernel metric 256 pref medium 2100:3::/64 via 2100:1::64 dev eth1 metric 1024 pref medium local fe80::e0:f9ff:fe09:3cac dev lo proto none metric 0 pref medium local fe80::e0:f9ff:fe1c:b974 dev lo proto none metric 0 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium ff00::/8 dev red metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium unreachable default dev lo metric 240 error -113 pref medium Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-25 04:26:04 +00:00
}
static int ip6_route_check_nh_onlink(struct net *net,
struct fib6_config *cfg,
const struct net_device *dev,
struct netlink_ext_ack *extack)
{
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
const struct in6_addr *gw_addr = &cfg->fc_gateway;
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
struct fib6_result res = {};
int err;
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res);
if (!err && !(res.fib6_flags & RTF_REJECT) &&
/* ignore match if it is the default route */
!ipv6_addr_any(&res.f6i->fib6_dst.addr) &&
(res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) {
NL_SET_ERR_MSG(extack,
"Nexthop has invalid gateway or device mismatch");
err = -EINVAL;
}
return err;
}
static int ip6_route_check_nh(struct net *net,
struct fib6_config *cfg,
struct net_device **_dev,
struct inet6_dev **idev)
{
const struct in6_addr *gw_addr = &cfg->fc_gateway;
struct net_device *dev = _dev ? *_dev : NULL;
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
int flags = RT6_LOOKUP_F_IFACE;
struct fib6_result res = {};
int err = -EHOSTUNREACH;
if (cfg->fc_table) {
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
err = ip6_nh_lookup_table(net, cfg, gw_addr,
cfg->fc_table, flags, &res);
/* gw_addr can not require a gateway or resolve to a reject
* route. If a device is given, it must match the result.
*/
if (err || res.fib6_flags & RTF_REJECT ||
res.nh->fib_nh_gw_family ||
(dev && dev != res.nh->fib_nh_dev))
err = -EHOSTUNREACH;
}
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
if (err < 0) {
struct flowi6 fl6 = {
.flowi6_oif = cfg->fc_ifindex,
.daddr = *gw_addr,
};
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags);
if (err || res.fib6_flags & RTF_REJECT ||
res.nh->fib_nh_gw_family)
err = -EHOSTUNREACH;
if (err)
return err;
fib6_select_path(net, &res, &fl6, cfg->fc_ifindex,
cfg->fc_ifindex != 0, NULL, flags);
}
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
err = 0;
if (dev) {
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
if (dev != res.nh->fib_nh_dev)
err = -EHOSTUNREACH;
} else {
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
*_dev = dev = res.nh->fib_nh_dev;
dev_hold(dev);
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
*idev = in6_dev_get(dev);
}
return err;
}
static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
struct net_device **_dev, struct inet6_dev **idev,
struct netlink_ext_ack *extack)
{
const struct in6_addr *gw_addr = &cfg->fc_gateway;
int gwa_type = ipv6_addr_type(gw_addr);
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
const struct net_device *dev = *_dev;
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
bool need_addr_check = !dev;
int err = -EINVAL;
/* if gw_addr is local we will fail to detect this in case
* address is still TENTATIVE (DAD in progress). rt6_lookup()
* will return already-added prefix route via interface that
* prefix route was assigned to, which might be non-loopback.
*/
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
if (dev &&
ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
goto out;
}
if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
/* IPv6 strictly inhibits using not link-local
* addresses as nexthop address.
* Otherwise, router will not able to send redirects.
* It is very good, but in some (rare!) circumstances
* (SIT, PtP, NBMA NOARP links) it is handy to allow
* some exceptions. --ANK
* We allow IPv4-mapped nexthops to support RFC4798-type
* addressing
*/
if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
NL_SET_ERR_MSG(extack, "Invalid gateway address");
goto out;
}
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
rcu_read_lock();
if (cfg->fc_flags & RTNH_F_ONLINK)
err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
else
err = ip6_route_check_nh(net, cfg, _dev, idev);
ipv6: Convert gateway validation to use fib6_info Gateway validation does not need a dst_entry, it only needs the fib entry to validate the gateway resolution and egress device. So, convert ip6_nh_lookup_table from ip6_pol_route to fib6_table_lookup and ip6_route_check_nh to use fib6_lookup over rt6_lookup. ip6_pol_route is a call to fib6_table_lookup and if successful a call to fib6_select_path. From there the exception cache is searched for an entry or a dst_entry is created to return to the caller. The exception entry is not relevant for gateway validation, so what matters are the calls to fib6_table_lookup and then fib6_select_path. Similarly, rt6_lookup can be replaced with a call to fib6_lookup with RT6_LOOKUP_F_IFACE set in flags. Again, the exception cache search is not relevant, only the lookup with path selection. The primary difference in the lookup paths is the use of rt6_select with fib6_lookup versus rt6_device_match with rt6_lookup. When you remove complexities in the rt6_select path, e.g., 1. saddr is not set for gateway validation, so RT6_LOOKUP_F_HAS_SADDR is not relevant 2. rt6_check_neigh is not called so that removes the RT6_NUD_FAIL_DO_RR return and round-robin logic. the code paths are believed to be equivalent for the given use case - validate the gateway and optionally given the device. Furthermore, it aligns the validation with onlink code path and the lookup path actually used for rx and tx. Adjust the users, ip6_route_check_nh_onlink and ip6_route_check_nh to handle a fib6_info vs a rt6_info when performing validation checks. Existing selftests fib-onlink-tests.sh and fib_tests.sh are used to verify the changes. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-24 20:44:51 +00:00
rcu_read_unlock();
if (err)
goto out;
}
/* reload in case device was changed */
dev = *_dev;
err = -EINVAL;
if (!dev) {
NL_SET_ERR_MSG(extack, "Egress device not specified");
goto out;
} else if (dev->flags & IFF_LOOPBACK) {
NL_SET_ERR_MSG(extack,
"Egress device can not be loopback device for this route");
goto out;
}
net/ipv6: Change address check to always take a device argument ipv6_chk_addr_and_flags determines if an address is a local address and optionally if it is an address on a specific device. For example, it is called by ip6_route_info_create to determine if a given gateway address is a local address. The address check currently does not consider L3 domains and as a result does not allow a route to be added in one VRF if the nexthop points to an address in a second VRF. e.g., $ ip route add 2001:db8:1::/64 vrf r2 via 2001:db8:102::23 Error: Invalid gateway address. where 2001:db8:102::23 is an address on an interface in vrf r1. ipv6_chk_addr_and_flags needs to allow callers to always pass in a device with a separate argument to not limit the address to the specific device. The device is used used to determine the L3 domain of interest. To that end add an argument to skip the device check and update callers to always pass a device where possible and use the new argument to mean any address in the domain. Update a handful of users of ipv6_chk_addr with a NULL dev argument. This patch handles the change to these callers without adding the domain check. ip6_validate_gw needs to handle 2 cases - one where the device is given as part of the nexthop spec and the other where the device is resolved. There is at least 1 VRF case where deferring the check to only after the route lookup has resolved the device fails with an unintuitive error "RTNETLINK answers: No route to host" as opposed to the preferred "Error: Gateway can not be a local address." The 'no route to host' error is because of the fallback to a full lookup. The check is done twice to avoid this error. Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-13 15:29:37 +00:00
/* if we did not check gw_addr above, do so now that the
* egress device has been resolved.
*/
if (need_addr_check &&
ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
goto out;
}
err = 0;
out:
return err;
}
static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type)
{
if ((flags & RTF_REJECT) ||
(dev && (dev->flags & IFF_LOOPBACK) &&
!(addr_type & IPV6_ADDR_LOOPBACK) &&
!(flags & (RTF_ANYCAST | RTF_LOCAL))))
return true;
return false;
}
int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh,
struct fib6_config *cfg, gfp_t gfp_flags,
struct netlink_ext_ack *extack)
{
struct net_device *dev = NULL;
struct inet6_dev *idev = NULL;
int addr_type;
int err;
fib6_nh->fib_nh_family = AF_INET6;
ipv6: fixes rt6_probe() and fib6_nh->last_probe init While looking at a syzbot KCSAN report [1], I found multiple issues in this code : 1) fib6_nh->last_probe has an initial value of 0. While probably okay on 64bit kernels, this causes an issue on 32bit kernels since the time_after(jiffies, 0 + interval) might be false ~24 days after boot (for HZ=1000) 2) The data-race found by KCSAN I could use READ_ONCE() and WRITE_ONCE(), but we also can take the opportunity of not piling-up too many rt6_probe_deferred() works by using instead cmpxchg() so that only one cpu wins the race. [1] BUG: KCSAN: data-race in find_match / find_match write to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 1: rt6_probe net/ipv6/route.c:663 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x5bd/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 tcp_transmit_skb net/ipv4/tcp_output.c:1185 [inline] tcp_xmit_probe_skb+0x19b/0x1d0 net/ipv4/tcp_output.c:3735 read to 0xffff8880bb7aabe8 of 8 bytes by interrupt on cpu 0: rt6_probe net/ipv6/route.c:657 [inline] find_match net/ipv6/route.c:757 [inline] find_match+0x521/0x790 net/ipv6/route.c:733 __find_rr_leaf+0xe3/0x780 net/ipv6/route.c:831 find_rr_leaf net/ipv6/route.c:852 [inline] rt6_select net/ipv6/route.c:896 [inline] fib6_table_lookup+0x383/0x650 net/ipv6/route.c:2164 ip6_pol_route+0xee/0x5c0 net/ipv6/route.c:2200 ip6_pol_route_output+0x48/0x60 net/ipv6/route.c:2452 fib6_rule_lookup+0x3d6/0x470 net/ipv6/fib6_rules.c:117 ip6_route_output_flags_noref+0x16b/0x230 net/ipv6/route.c:2484 ip6_route_output_flags+0x50/0x1a0 net/ipv6/route.c:2497 ip6_dst_lookup_tail+0x25d/0xc30 net/ipv6/ip6_output.c:1049 ip6_dst_lookup_flow+0x68/0x120 net/ipv6/ip6_output.c:1150 inet6_csk_route_socket+0x2f7/0x420 net/ipv6/inet6_connection_sock.c:106 inet6_csk_xmit+0x91/0x1f0 net/ipv6/inet6_connection_sock.c:121 __tcp_transmit_skb+0xe81/0x1d60 net/ipv4/tcp_output.c:1169 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 18894 Comm: udevd Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Fixes: cc3a86c802f0 ("ipv6: Change rt6_probe to take a fib6_nh") Fixes: f547fac624be ("ipv6: rate-limit probes for neighbourless routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07 17:26:19 +00:00
#ifdef CONFIG_IPV6_ROUTER_PREF
fib6_nh->last_probe = jiffies;
#endif
if (cfg->fc_is_fdb) {
fib6_nh->fib_nh_gw6 = cfg->fc_gateway;
fib6_nh->fib_nh_gw_family = AF_INET6;
return 0;
}
err = -ENODEV;
if (cfg->fc_ifindex) {
dev = dev_get_by_index(net, cfg->fc_ifindex);
if (!dev)
goto out;
idev = in6_dev_get(dev);
if (!idev)
goto out;
}
if (cfg->fc_flags & RTNH_F_ONLINK) {
if (!dev) {
NL_SET_ERR_MSG(extack,
"Nexthop device required for onlink");
goto out;
}
if (!(dev->flags & IFF_UP)) {
NL_SET_ERR_MSG(extack, "Nexthop device is not up");
err = -ENETDOWN;
goto out;
}
fib6_nh->fib_nh_flags |= RTNH_F_ONLINK;
}
fib6_nh->fib_nh_weight = 1;
/* We cannot add true routes via loopback here,
* they would result in kernel looping; promote them to reject routes
*/
addr_type = ipv6_addr_type(&cfg->fc_dst);
if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) {
/* hold loopback dev/idev if we haven't done so. */
if (dev != net->loopback_dev) {
if (dev) {
dev_put(dev);
in6_dev_put(idev);
}
dev = net->loopback_dev;
dev_hold(dev);
idev = in6_dev_get(dev);
if (!idev) {
err = -ENODEV;
goto out;
}
}
goto pcpu_alloc;
}
if (cfg->fc_flags & RTF_GATEWAY) {
err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
if (err)
goto out;
fib6_nh->fib_nh_gw6 = cfg->fc_gateway;
fib6_nh->fib_nh_gw_family = AF_INET6;
}
err = -ENODEV;
if (!dev)
goto out;
if (idev->cnf.disable_ipv6) {
NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
err = -EACCES;
goto out;
}
if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) {
NL_SET_ERR_MSG(extack, "Nexthop device is not up");
err = -ENETDOWN;
goto out;
}
if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
!netif_carrier_ok(dev))
fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN;
err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap,
cfg->fc_encap_type, cfg, gfp_flags, extack);
if (err)
goto out;
pcpu_alloc:
fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags);
if (!fib6_nh->rt6i_pcpu) {
err = -ENOMEM;
goto out;
}
fib6_nh->fib_nh_dev = dev;
netdev_tracker_alloc(dev, &fib6_nh->fib_nh_dev_tracker, gfp_flags);
fib6_nh->fib_nh_oif = dev->ifindex;
err = 0;
out:
if (idev)
in6_dev_put(idev);
if (err) {
lwtstate_put(fib6_nh->fib_nh_lws);
fib6_nh->fib_nh_lws = NULL;
dev_put(dev);
}
return err;
}
void fib6_nh_release(struct fib6_nh *fib6_nh)
{
struct rt6_exception_bucket *bucket;
rcu_read_lock();
fib6_nh_flush_exceptions(fib6_nh, NULL);
bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL);
if (bucket) {
rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL);
kfree(bucket);
}
rcu_read_unlock();
fib6_nh_release_dsts(fib6_nh);
free_percpu(fib6_nh->rt6i_pcpu);
fib_nh_common_release(&fib6_nh->nh_common);
}
void fib6_nh_release_dsts(struct fib6_nh *fib6_nh)
{
int cpu;
if (!fib6_nh->rt6i_pcpu)
return;
for_each_possible_cpu(cpu) {
struct rt6_info *pcpu_rt, **ppcpu_rt;
ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
pcpu_rt = xchg(ppcpu_rt, NULL);
if (pcpu_rt) {
dst_dev_put(&pcpu_rt->dst);
dst_release(&pcpu_rt->dst);
}
}
}
static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
gfp_t gfp_flags,
struct netlink_ext_ack *extack)
{
struct net *net = cfg->fc_nlinfo.nl_net;
struct fib6_info *rt = NULL;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
struct nexthop *nh = NULL;
struct fib6_table *table;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
struct fib6_nh *fib6_nh;
int err = -EINVAL;
int addr_type;
net: ipv6: RTF_PCPU should not be settable from userspace Andrey reported a fault in the IPv6 route code: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4035 Comm: a.out Not tainted 4.11.0-rc7+ #250 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff880069809600 task.stack: ffff880062dc8000 RIP: 0010:ip6_rt_cache_alloc+0xa6/0x560 net/ipv6/route.c:975 RSP: 0018:ffff880062dced30 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff8800670561c0 RCX: 0000000000000006 RDX: 0000000000000003 RSI: ffff880062dcfb28 RDI: 0000000000000018 RBP: ffff880062dced68 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff880062dcfb28 R14: dffffc0000000000 R15: 0000000000000000 FS: 00007feebe37e7c0(0000) GS:ffff88006cb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000205a0fe4 CR3: 000000006b5c9000 CR4: 00000000000006e0 Call Trace: ip6_pol_route+0x1512/0x1f20 net/ipv6/route.c:1128 ip6_pol_route_output+0x4c/0x60 net/ipv6/route.c:1212 ... Andrey's syzkaller program passes rtmsg.rtmsg_flags with the RTF_PCPU bit set. Flags passed to the kernel are blindly copied to the allocated rt6_info by ip6_route_info_create making a newly inserted route appear as though it is a per-cpu route. ip6_rt_cache_alloc sees the flag set and expects rt->dst.from to be set - which it is not since it is not really a per-cpu copy. The subsequent call to __ip6_dst_alloc then generates the fault. Fix by checking for the flag and failing with EINVAL. Fixes: d52d3997f843f ("ipv6: Create percpu rt6_info") Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-19 21:19:43 +00:00
/* RTF_PCPU is an internal flag; can not be set by userspace */
if (cfg->fc_flags & RTF_PCPU) {
NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
net: ipv6: RTF_PCPU should not be settable from userspace Andrey reported a fault in the IPv6 route code: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4035 Comm: a.out Not tainted 4.11.0-rc7+ #250 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff880069809600 task.stack: ffff880062dc8000 RIP: 0010:ip6_rt_cache_alloc+0xa6/0x560 net/ipv6/route.c:975 RSP: 0018:ffff880062dced30 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff8800670561c0 RCX: 0000000000000006 RDX: 0000000000000003 RSI: ffff880062dcfb28 RDI: 0000000000000018 RBP: ffff880062dced68 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff880062dcfb28 R14: dffffc0000000000 R15: 0000000000000000 FS: 00007feebe37e7c0(0000) GS:ffff88006cb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000205a0fe4 CR3: 000000006b5c9000 CR4: 00000000000006e0 Call Trace: ip6_pol_route+0x1512/0x1f20 net/ipv6/route.c:1128 ip6_pol_route_output+0x4c/0x60 net/ipv6/route.c:1212 ... Andrey's syzkaller program passes rtmsg.rtmsg_flags with the RTF_PCPU bit set. Flags passed to the kernel are blindly copied to the allocated rt6_info by ip6_route_info_create making a newly inserted route appear as though it is a per-cpu route. ip6_rt_cache_alloc sees the flag set and expects rt->dst.from to be set - which it is not since it is not really a per-cpu copy. The subsequent call to __ip6_dst_alloc then generates the fault. Fix by checking for the flag and failing with EINVAL. Fixes: d52d3997f843f ("ipv6: Create percpu rt6_info") Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-19 21:19:43 +00:00
goto out;
}
net: ipv6: RTF_PCPU should not be settable from userspace Andrey reported a fault in the IPv6 route code: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4035 Comm: a.out Not tainted 4.11.0-rc7+ #250 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff880069809600 task.stack: ffff880062dc8000 RIP: 0010:ip6_rt_cache_alloc+0xa6/0x560 net/ipv6/route.c:975 RSP: 0018:ffff880062dced30 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff8800670561c0 RCX: 0000000000000006 RDX: 0000000000000003 RSI: ffff880062dcfb28 RDI: 0000000000000018 RBP: ffff880062dced68 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff880062dcfb28 R14: dffffc0000000000 R15: 0000000000000000 FS: 00007feebe37e7c0(0000) GS:ffff88006cb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000205a0fe4 CR3: 000000006b5c9000 CR4: 00000000000006e0 Call Trace: ip6_pol_route+0x1512/0x1f20 net/ipv6/route.c:1128 ip6_pol_route_output+0x4c/0x60 net/ipv6/route.c:1212 ... Andrey's syzkaller program passes rtmsg.rtmsg_flags with the RTF_PCPU bit set. Flags passed to the kernel are blindly copied to the allocated rt6_info by ip6_route_info_create making a newly inserted route appear as though it is a per-cpu route. ip6_rt_cache_alloc sees the flag set and expects rt->dst.from to be set - which it is not since it is not really a per-cpu copy. The subsequent call to __ip6_dst_alloc then generates the fault. Fix by checking for the flag and failing with EINVAL. Fixes: d52d3997f843f ("ipv6: Create percpu rt6_info") Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Tested-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-19 21:19:43 +00:00
ipv6: prevent user from adding cached routes Cached routes should only be created by the system when receiving pmtu discovery or ip redirect msg. Users should not be allowed to create cached routes. Furthermore, after the patch series to move cached routes into exception table, user added cached routes will trigger the following warning in fib6_add(): WARNING: CPU: 0 PID: 2985 at net/ipv6/ip6_fib.c:1137 fib6_add+0x20d9/0x2c10 net/ipv6/ip6_fib.c:1137 Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 2985 Comm: syzkaller320388 Not tainted 4.14.0-rc3+ #74 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 panic+0x1e4/0x417 kernel/panic.c:181 __warn+0x1c4/0x1d9 kernel/panic.c:542 report_bug+0x211/0x2d0 lib/bug.c:183 fixup_bug+0x40/0x90 arch/x86/kernel/traps.c:178 do_trap_no_signal arch/x86/kernel/traps.c:212 [inline] do_trap+0x260/0x390 arch/x86/kernel/traps.c:261 do_error_trap+0x120/0x390 arch/x86/kernel/traps.c:298 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:311 invalid_op+0x18/0x20 arch/x86/entry/entry_64.S:905 RIP: 0010:fib6_add+0x20d9/0x2c10 net/ipv6/ip6_fib.c:1137 RSP: 0018:ffff8801cf09f6a0 EFLAGS: 00010297 RAX: ffff8801ce45e340 RBX: 1ffff10039e13eec RCX: ffff8801d749c814 RDX: 0000000000000000 RSI: ffff8801d749c700 RDI: ffff8801d749c780 RBP: ffff8801cf09fa08 R08: 0000000000000000 R09: ffff8801cf09f360 R10: ffff8801cf09f2d8 R11: 1ffff10039c8befb R12: 0000000000000001 R13: dffffc0000000000 R14: ffff8801d749c700 R15: ffffffff860655c0 __ip6_ins_rt+0x6c/0x90 net/ipv6/route.c:1011 ip6_route_add+0x148/0x1a0 net/ipv6/route.c:2782 ipv6_route_ioctl+0x4d5/0x690 net/ipv6/route.c:3291 inet6_ioctl+0xef/0x1e0 net/ipv6/af_inet6.c:521 sock_do_ioctl+0x65/0xb0 net/socket.c:961 sock_ioctl+0x2c2/0x440 net/socket.c:1058 vfs_ioctl fs/ioctl.c:45 [inline] do_vfs_ioctl+0x1b1/0x1530 fs/ioctl.c:685 SYSC_ioctl fs/ioctl.c:700 [inline] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:691 entry_SYSCALL_64_fastpath+0x1f/0xbe So we fix this by failing the attemp to add cached routes from userspace with returning EINVAL error. Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-28 00:30:12 +00:00
/* RTF_CACHE is an internal flag; can not be set by userspace */
if (cfg->fc_flags & RTF_CACHE) {
NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
goto out;
}
if (cfg->fc_type > RTN_MAX) {
NL_SET_ERR_MSG(extack, "Invalid route type");
goto out;
}
if (cfg->fc_dst_len > 128) {
NL_SET_ERR_MSG(extack, "Invalid prefix length");
goto out;
}
if (cfg->fc_src_len > 128) {
NL_SET_ERR_MSG(extack, "Invalid source address length");
goto out;
}
#ifndef CONFIG_IPV6_SUBTREES
if (cfg->fc_src_len) {
NL_SET_ERR_MSG(extack,
"Specifying source address requires IPV6_SUBTREES to be enabled");
goto out;
}
#endif
if (cfg->fc_nh_id) {
nh = nexthop_find_by_id(net, cfg->fc_nh_id);
if (!nh) {
NL_SET_ERR_MSG(extack, "Nexthop id does not exist");
goto out;
}
err = fib6_check_nexthop(nh, cfg, extack);
if (err)
goto out;
}
err = -ENOBUFS;
if (cfg->fc_nlinfo.nlh &&
!(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
table = fib6_get_table(net, cfg->fc_table);
if (!table) {
pr_warn("NLM_F_CREATE should be specified when creating new route\n");
table = fib6_new_table(net, cfg->fc_table);
}
} else {
table = fib6_new_table(net, cfg->fc_table);
}
if (!table)
goto out;
err = -ENOMEM;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
rt = fib6_info_alloc(gfp_flags, !nh);
if (!rt)
goto out;
rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len,
extack);
if (IS_ERR(rt->fib6_metrics)) {
err = PTR_ERR(rt->fib6_metrics);
/* Do not leave garbage there. */
rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics;
goto out_free;
}
if (cfg->fc_flags & RTF_ADDRCONF)
rt->dst_nocount = true;
if (cfg->fc_flags & RTF_EXPIRES)
fib6_set_expires(rt, jiffies +
clock_t_to_jiffies(cfg->fc_expires));
else
fib6_clean_expires(rt);
if (cfg->fc_protocol == RTPROT_UNSPEC)
cfg->fc_protocol = RTPROT_BOOT;
rt->fib6_protocol = cfg->fc_protocol;
rt->fib6_table = table;
rt->fib6_metric = cfg->fc_metric;
rt->fib6_type = cfg->fc_type ? : RTN_UNICAST;
rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY;
ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
rt->fib6_dst.plen = cfg->fc_dst_len;
ipv6: do not overwrite inetpeer metrics prematurely If an IPv6 host route with metrics exists, an attempt to add a new route for the same target with different metrics fails but rewrites the metrics anyway: 12sp0:~ # ip route add fec0::1 dev eth0 rto_min 1000 12sp0:~ # ip -6 route show fe80::/64 dev eth0 proto kernel metric 256 fec0::1 dev eth0 metric 1024 rto_min lock 1s 12sp0:~ # ip route add fec0::1 dev eth0 rto_min 1500 RTNETLINK answers: File exists 12sp0:~ # ip -6 route show fe80::/64 dev eth0 proto kernel metric 256 fec0::1 dev eth0 metric 1024 rto_min lock 1.5s This is caused by all IPv6 host routes using the metrics in their inetpeer (or the shared default). This also holds for the new route created in ip6_route_add() which shares the metrics with the already existing route and thus ip6_route_add() rewrites the metrics even if the new route ends up not being used at all. Another problem is that old metrics in inetpeer can reappear unexpectedly for a new route, e.g. 12sp0:~ # ip route add fec0::1 dev eth0 rto_min 1000 12sp0:~ # ip route del fec0::1 12sp0:~ # ip route add fec0::1 dev eth0 12sp0:~ # ip route change fec0::1 dev eth0 hoplimit 10 12sp0:~ # ip -6 route show fe80::/64 dev eth0 proto kernel metric 256 fec0::1 dev eth0 metric 1024 hoplimit 10 rto_min lock 1s Resolve the first problem by moving the setting of metrics down into fib6_add_rt2node() to the point we are sure we are inserting the new route into the tree. Second problem is addressed by introducing new flag DST_METRICS_FORCE_OVERWRITE which is set for a new host route in ip6_route_add() and makes ipv6_cow_metrics() always overwrite the metrics in inetpeer (even if they are not "new"); it is reset after that. v5: use a flag in _metrics member rather than one in flags v4: fix a typo making a condition always true (thanks to Hannes Frederic Sowa) v3: rewritten based on David Miller's idea to move setting the metrics (and allocation in non-host case) down to the point we already know the route is to be inserted. Also rebased to net-next as it is quite late in the cycle. Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 12:04:08 +00:00
#ifdef CONFIG_IPV6_SUBTREES
ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
rt->fib6_src.plen = cfg->fc_src_len;
#endif
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (nh) {
if (rt->fib6_src.plen) {
NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing");
ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions Reported by syzbot: HEAD commit: 90c911ad Merge tag 'fixes' of git://git.kernel.org/pub/scm.. git tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master dashboard link: https://syzkaller.appspot.com/bug?extid=123aa35098fd3c000eb7 compiler: Debian clang version 11.0.1-2 ================================================================== BUG: KASAN: slab-out-of-bounds in fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] BUG: KASAN: slab-out-of-bounds in fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 Read of size 8 at addr ffff8880145c78f8 by task syz-executor.4/17760 CPU: 0 PID: 17760 Comm: syz-executor.4 Not tainted 5.12.0-rc8-syzkaller #0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x202/0x31e lib/dump_stack.c:120 print_address_description+0x5f/0x3b0 mm/kasan/report.c:232 __kasan_report mm/kasan/report.c:399 [inline] kasan_report+0x15c/0x200 mm/kasan/report.c:416 fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 fib6_nh_release+0x9a/0x430 net/ipv6/route.c:3536 fib6_info_destroy_rcu+0xcb/0x1c0 net/ipv6/ip6_fib.c:174 rcu_do_batch kernel/rcu/tree.c:2559 [inline] rcu_core+0x8f6/0x1450 kernel/rcu/tree.c:2794 __do_softirq+0x372/0x7a6 kernel/softirq.c:345 invoke_softirq kernel/softirq.c:221 [inline] __irq_exit_rcu+0x22c/0x260 kernel/softirq.c:422 irq_exit_rcu+0x5/0x20 kernel/softirq.c:434 sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1100 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:632 RIP: 0010:lock_acquire+0x1f6/0x720 kernel/locking/lockdep.c:5515 Code: f6 84 24 a1 00 00 00 02 0f 85 8d 02 00 00 f7 c3 00 02 00 00 49 bd 00 00 00 00 00 fc ff df 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 3d 00 00 00 00 00 4b c7 44 3d 09 00 00 00 00 43 c7 44 3d RSP: 0018:ffffc90009e06560 EFLAGS: 00000206 RAX: 1ffff920013c0cc0 RBX: 0000000000000246 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90009e066e0 R08: dffffc0000000000 R09: fffffbfff1f992b1 R10: fffffbfff1f992b1 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 1ffff920013c0cb4 rcu_lock_acquire+0x2a/0x30 include/linux/rcupdate.h:267 rcu_read_lock include/linux/rcupdate.h:656 [inline] ext4_get_group_info+0xea/0x340 fs/ext4/ext4.h:3231 ext4_mb_prefetch+0x123/0x5d0 fs/ext4/mballoc.c:2212 ext4_mb_regular_allocator+0x8a5/0x28f0 fs/ext4/mballoc.c:2379 ext4_mb_new_blocks+0xc6e/0x24f0 fs/ext4/mballoc.c:4982 ext4_ext_map_blocks+0x2be3/0x7210 fs/ext4/extents.c:4238 ext4_map_blocks+0xab3/0x1cb0 fs/ext4/inode.c:638 ext4_getblk+0x187/0x6c0 fs/ext4/inode.c:848 ext4_bread+0x2a/0x1c0 fs/ext4/inode.c:900 ext4_append+0x1a4/0x360 fs/ext4/namei.c:67 ext4_init_new_dir+0x337/0xa10 fs/ext4/namei.c:2768 ext4_mkdir+0x4b8/0xc00 fs/ext4/namei.c:2814 vfs_mkdir+0x45b/0x640 fs/namei.c:3819 ovl_do_mkdir fs/overlayfs/overlayfs.h:161 [inline] ovl_mkdir_real+0x53/0x1a0 fs/overlayfs/dir.c:146 ovl_create_real+0x280/0x490 fs/overlayfs/dir.c:193 ovl_workdir_create+0x425/0x600 fs/overlayfs/super.c:788 ovl_make_workdir+0xed/0x1140 fs/overlayfs/super.c:1355 ovl_get_workdir fs/overlayfs/super.c:1492 [inline] ovl_fill_super+0x39ee/0x5370 fs/overlayfs/super.c:2035 mount_nodev+0x52/0xe0 fs/super.c:1413 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2903 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3233 do_mount fs/namespace.c:3246 [inline] __do_sys_mount fs/namespace.c:3454 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3431 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f68f2b87188 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 000000000056bf60 RCX: 00000000004665f9 RDX: 00000000200000c0 RSI: 0000000020000000 RDI: 000000000040000a RBP: 00000000004bfbb9 R08: 0000000020000100 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 000000000056bf60 R13: 00007ffe19002dff R14: 00007f68f2b87300 R15: 0000000000022000 Allocated by task 17768: kasan_save_stack mm/kasan/common.c:38 [inline] kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:427 [inline] ____kasan_kmalloc+0xc2/0xf0 mm/kasan/common.c:506 kasan_kmalloc include/linux/kasan.h:233 [inline] __kmalloc+0xb4/0x380 mm/slub.c:4055 kmalloc include/linux/slab.h:559 [inline] kzalloc include/linux/slab.h:684 [inline] fib6_info_alloc+0x2c/0xd0 net/ipv6/ip6_fib.c:154 ip6_route_info_create+0x55d/0x1a10 net/ipv6/route.c:3638 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 __call_rcu kernel/rcu/tree.c:3039 [inline] call_rcu+0x1b1/0xa30 kernel/rcu/tree.c:3114 fib6_info_release include/net/ip6_fib.h:337 [inline] ip6_route_info_create+0x10c4/0x1a10 net/ipv6/route.c:3718 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Second to last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 insert_work+0x54/0x400 kernel/workqueue.c:1331 __queue_work+0x981/0xcc0 kernel/workqueue.c:1497 queue_work_on+0x111/0x200 kernel/workqueue.c:1524 queue_work include/linux/workqueue.h:507 [inline] call_usermodehelper_exec+0x283/0x470 kernel/umh.c:433 kobject_uevent_env+0x1349/0x1730 lib/kobject_uevent.c:617 kvm_uevent_notify_change+0x309/0x3b0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4809 kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:877 [inline] kvm_put_kvm+0x9c/0xd10 arch/x86/kvm/../../../virt/kvm/kvm_main.c:920 kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3120 __fput+0x352/0x7b0 fs/file_table.c:280 task_work_run+0x146/0x1c0 kernel/task_work.c:140 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:174 [inline] exit_to_user_mode_prepare+0x10b/0x1e0 kernel/entry/common.c:208 __syscall_exit_to_user_mode_work kernel/entry/common.c:290 [inline] syscall_exit_to_user_mode+0x26/0x70 kernel/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff8880145c7800 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 56 bytes to the right of 192-byte region [ffff8880145c7800, ffff8880145c78c0) The buggy address belongs to the page: page:ffffea00005171c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x145c7 flags: 0xfff00000000200(slab) raw: 00fff00000000200 ffffea00006474c0 0000000200000002 ffff888010c41a00 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880145c7780: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880145c7800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8880145c7880: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff8880145c7900: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880145c7980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ================================================================== In the ip6_route_info_create function, in the case that the nh pointer is not NULL, the fib6_nh in fib6_info has not been allocated. Therefore, when trying to free fib6_info in this error case using fib6_info_release, the function will call fib6_info_destroy_rcu, which it will access fib6_nh_release(f6i->fib6_nh); However, f6i->fib6_nh doesn't have any refcount yet given the lack of allocation causing the reported memory issue above. Therefore, releasing the empty pointer directly instead would be the solution. Fixes: f88d8ea67fbdb ("ipv6: Plumb support for nexthop object in a fib6_info") Fixes: 706ec91916462 ("ipv6: Fix nexthop refcnt leak when creating ipv6 route info") Signed-off-by: Coco Li <lixiaoyan@google.com> Cc: David Ahern <dsahern@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-03 07:32:58 +00:00
goto out_free;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
}
if (!nexthop_get(nh)) {
NL_SET_ERR_MSG(extack, "Nexthop has been deleted");
ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions Reported by syzbot: HEAD commit: 90c911ad Merge tag 'fixes' of git://git.kernel.org/pub/scm.. git tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master dashboard link: https://syzkaller.appspot.com/bug?extid=123aa35098fd3c000eb7 compiler: Debian clang version 11.0.1-2 ================================================================== BUG: KASAN: slab-out-of-bounds in fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] BUG: KASAN: slab-out-of-bounds in fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 Read of size 8 at addr ffff8880145c78f8 by task syz-executor.4/17760 CPU: 0 PID: 17760 Comm: syz-executor.4 Not tainted 5.12.0-rc8-syzkaller #0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x202/0x31e lib/dump_stack.c:120 print_address_description+0x5f/0x3b0 mm/kasan/report.c:232 __kasan_report mm/kasan/report.c:399 [inline] kasan_report+0x15c/0x200 mm/kasan/report.c:416 fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 fib6_nh_release+0x9a/0x430 net/ipv6/route.c:3536 fib6_info_destroy_rcu+0xcb/0x1c0 net/ipv6/ip6_fib.c:174 rcu_do_batch kernel/rcu/tree.c:2559 [inline] rcu_core+0x8f6/0x1450 kernel/rcu/tree.c:2794 __do_softirq+0x372/0x7a6 kernel/softirq.c:345 invoke_softirq kernel/softirq.c:221 [inline] __irq_exit_rcu+0x22c/0x260 kernel/softirq.c:422 irq_exit_rcu+0x5/0x20 kernel/softirq.c:434 sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1100 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:632 RIP: 0010:lock_acquire+0x1f6/0x720 kernel/locking/lockdep.c:5515 Code: f6 84 24 a1 00 00 00 02 0f 85 8d 02 00 00 f7 c3 00 02 00 00 49 bd 00 00 00 00 00 fc ff df 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 3d 00 00 00 00 00 4b c7 44 3d 09 00 00 00 00 43 c7 44 3d RSP: 0018:ffffc90009e06560 EFLAGS: 00000206 RAX: 1ffff920013c0cc0 RBX: 0000000000000246 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90009e066e0 R08: dffffc0000000000 R09: fffffbfff1f992b1 R10: fffffbfff1f992b1 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 1ffff920013c0cb4 rcu_lock_acquire+0x2a/0x30 include/linux/rcupdate.h:267 rcu_read_lock include/linux/rcupdate.h:656 [inline] ext4_get_group_info+0xea/0x340 fs/ext4/ext4.h:3231 ext4_mb_prefetch+0x123/0x5d0 fs/ext4/mballoc.c:2212 ext4_mb_regular_allocator+0x8a5/0x28f0 fs/ext4/mballoc.c:2379 ext4_mb_new_blocks+0xc6e/0x24f0 fs/ext4/mballoc.c:4982 ext4_ext_map_blocks+0x2be3/0x7210 fs/ext4/extents.c:4238 ext4_map_blocks+0xab3/0x1cb0 fs/ext4/inode.c:638 ext4_getblk+0x187/0x6c0 fs/ext4/inode.c:848 ext4_bread+0x2a/0x1c0 fs/ext4/inode.c:900 ext4_append+0x1a4/0x360 fs/ext4/namei.c:67 ext4_init_new_dir+0x337/0xa10 fs/ext4/namei.c:2768 ext4_mkdir+0x4b8/0xc00 fs/ext4/namei.c:2814 vfs_mkdir+0x45b/0x640 fs/namei.c:3819 ovl_do_mkdir fs/overlayfs/overlayfs.h:161 [inline] ovl_mkdir_real+0x53/0x1a0 fs/overlayfs/dir.c:146 ovl_create_real+0x280/0x490 fs/overlayfs/dir.c:193 ovl_workdir_create+0x425/0x600 fs/overlayfs/super.c:788 ovl_make_workdir+0xed/0x1140 fs/overlayfs/super.c:1355 ovl_get_workdir fs/overlayfs/super.c:1492 [inline] ovl_fill_super+0x39ee/0x5370 fs/overlayfs/super.c:2035 mount_nodev+0x52/0xe0 fs/super.c:1413 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2903 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3233 do_mount fs/namespace.c:3246 [inline] __do_sys_mount fs/namespace.c:3454 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3431 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f68f2b87188 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 000000000056bf60 RCX: 00000000004665f9 RDX: 00000000200000c0 RSI: 0000000020000000 RDI: 000000000040000a RBP: 00000000004bfbb9 R08: 0000000020000100 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 000000000056bf60 R13: 00007ffe19002dff R14: 00007f68f2b87300 R15: 0000000000022000 Allocated by task 17768: kasan_save_stack mm/kasan/common.c:38 [inline] kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:427 [inline] ____kasan_kmalloc+0xc2/0xf0 mm/kasan/common.c:506 kasan_kmalloc include/linux/kasan.h:233 [inline] __kmalloc+0xb4/0x380 mm/slub.c:4055 kmalloc include/linux/slab.h:559 [inline] kzalloc include/linux/slab.h:684 [inline] fib6_info_alloc+0x2c/0xd0 net/ipv6/ip6_fib.c:154 ip6_route_info_create+0x55d/0x1a10 net/ipv6/route.c:3638 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 __call_rcu kernel/rcu/tree.c:3039 [inline] call_rcu+0x1b1/0xa30 kernel/rcu/tree.c:3114 fib6_info_release include/net/ip6_fib.h:337 [inline] ip6_route_info_create+0x10c4/0x1a10 net/ipv6/route.c:3718 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Second to last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 insert_work+0x54/0x400 kernel/workqueue.c:1331 __queue_work+0x981/0xcc0 kernel/workqueue.c:1497 queue_work_on+0x111/0x200 kernel/workqueue.c:1524 queue_work include/linux/workqueue.h:507 [inline] call_usermodehelper_exec+0x283/0x470 kernel/umh.c:433 kobject_uevent_env+0x1349/0x1730 lib/kobject_uevent.c:617 kvm_uevent_notify_change+0x309/0x3b0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4809 kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:877 [inline] kvm_put_kvm+0x9c/0xd10 arch/x86/kvm/../../../virt/kvm/kvm_main.c:920 kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3120 __fput+0x352/0x7b0 fs/file_table.c:280 task_work_run+0x146/0x1c0 kernel/task_work.c:140 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:174 [inline] exit_to_user_mode_prepare+0x10b/0x1e0 kernel/entry/common.c:208 __syscall_exit_to_user_mode_work kernel/entry/common.c:290 [inline] syscall_exit_to_user_mode+0x26/0x70 kernel/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff8880145c7800 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 56 bytes to the right of 192-byte region [ffff8880145c7800, ffff8880145c78c0) The buggy address belongs to the page: page:ffffea00005171c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x145c7 flags: 0xfff00000000200(slab) raw: 00fff00000000200 ffffea00006474c0 0000000200000002 ffff888010c41a00 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880145c7780: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880145c7800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8880145c7880: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff8880145c7900: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880145c7980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ================================================================== In the ip6_route_info_create function, in the case that the nh pointer is not NULL, the fib6_nh in fib6_info has not been allocated. Therefore, when trying to free fib6_info in this error case using fib6_info_release, the function will call fib6_info_destroy_rcu, which it will access fib6_nh_release(f6i->fib6_nh); However, f6i->fib6_nh doesn't have any refcount yet given the lack of allocation causing the reported memory issue above. Therefore, releasing the empty pointer directly instead would be the solution. Fixes: f88d8ea67fbdb ("ipv6: Plumb support for nexthop object in a fib6_info") Fixes: 706ec91916462 ("ipv6: Fix nexthop refcnt leak when creating ipv6 route info") Signed-off-by: Coco Li <lixiaoyan@google.com> Cc: David Ahern <dsahern@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-03 07:32:58 +00:00
goto out_free;
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
rt->nh = nh;
fib6_nh = nexthop_fib6_nh(rt->nh);
} else {
err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack);
if (err)
goto out;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
fib6_nh = rt->fib6_nh;
/* We cannot add true routes via loopback here, they would
* result in kernel looping; promote them to reject routes
*/
addr_type = ipv6_addr_type(&cfg->fc_dst);
if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev,
addr_type))
rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP;
}
if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
struct net_device *dev = fib6_nh->fib_nh_dev;
if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
NL_SET_ERR_MSG(extack, "Invalid source address");
err = -EINVAL;
goto out;
}
rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
rt->fib6_prefsrc.plen = 128;
} else
rt->fib6_prefsrc.plen = 0;
return rt;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
out:
fib6_info_release(rt);
return ERR_PTR(err);
ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions Reported by syzbot: HEAD commit: 90c911ad Merge tag 'fixes' of git://git.kernel.org/pub/scm.. git tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master dashboard link: https://syzkaller.appspot.com/bug?extid=123aa35098fd3c000eb7 compiler: Debian clang version 11.0.1-2 ================================================================== BUG: KASAN: slab-out-of-bounds in fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] BUG: KASAN: slab-out-of-bounds in fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 Read of size 8 at addr ffff8880145c78f8 by task syz-executor.4/17760 CPU: 0 PID: 17760 Comm: syz-executor.4 Not tainted 5.12.0-rc8-syzkaller #0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x202/0x31e lib/dump_stack.c:120 print_address_description+0x5f/0x3b0 mm/kasan/report.c:232 __kasan_report mm/kasan/report.c:399 [inline] kasan_report+0x15c/0x200 mm/kasan/report.c:416 fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 fib6_nh_release+0x9a/0x430 net/ipv6/route.c:3536 fib6_info_destroy_rcu+0xcb/0x1c0 net/ipv6/ip6_fib.c:174 rcu_do_batch kernel/rcu/tree.c:2559 [inline] rcu_core+0x8f6/0x1450 kernel/rcu/tree.c:2794 __do_softirq+0x372/0x7a6 kernel/softirq.c:345 invoke_softirq kernel/softirq.c:221 [inline] __irq_exit_rcu+0x22c/0x260 kernel/softirq.c:422 irq_exit_rcu+0x5/0x20 kernel/softirq.c:434 sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1100 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:632 RIP: 0010:lock_acquire+0x1f6/0x720 kernel/locking/lockdep.c:5515 Code: f6 84 24 a1 00 00 00 02 0f 85 8d 02 00 00 f7 c3 00 02 00 00 49 bd 00 00 00 00 00 fc ff df 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 3d 00 00 00 00 00 4b c7 44 3d 09 00 00 00 00 43 c7 44 3d RSP: 0018:ffffc90009e06560 EFLAGS: 00000206 RAX: 1ffff920013c0cc0 RBX: 0000000000000246 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90009e066e0 R08: dffffc0000000000 R09: fffffbfff1f992b1 R10: fffffbfff1f992b1 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 1ffff920013c0cb4 rcu_lock_acquire+0x2a/0x30 include/linux/rcupdate.h:267 rcu_read_lock include/linux/rcupdate.h:656 [inline] ext4_get_group_info+0xea/0x340 fs/ext4/ext4.h:3231 ext4_mb_prefetch+0x123/0x5d0 fs/ext4/mballoc.c:2212 ext4_mb_regular_allocator+0x8a5/0x28f0 fs/ext4/mballoc.c:2379 ext4_mb_new_blocks+0xc6e/0x24f0 fs/ext4/mballoc.c:4982 ext4_ext_map_blocks+0x2be3/0x7210 fs/ext4/extents.c:4238 ext4_map_blocks+0xab3/0x1cb0 fs/ext4/inode.c:638 ext4_getblk+0x187/0x6c0 fs/ext4/inode.c:848 ext4_bread+0x2a/0x1c0 fs/ext4/inode.c:900 ext4_append+0x1a4/0x360 fs/ext4/namei.c:67 ext4_init_new_dir+0x337/0xa10 fs/ext4/namei.c:2768 ext4_mkdir+0x4b8/0xc00 fs/ext4/namei.c:2814 vfs_mkdir+0x45b/0x640 fs/namei.c:3819 ovl_do_mkdir fs/overlayfs/overlayfs.h:161 [inline] ovl_mkdir_real+0x53/0x1a0 fs/overlayfs/dir.c:146 ovl_create_real+0x280/0x490 fs/overlayfs/dir.c:193 ovl_workdir_create+0x425/0x600 fs/overlayfs/super.c:788 ovl_make_workdir+0xed/0x1140 fs/overlayfs/super.c:1355 ovl_get_workdir fs/overlayfs/super.c:1492 [inline] ovl_fill_super+0x39ee/0x5370 fs/overlayfs/super.c:2035 mount_nodev+0x52/0xe0 fs/super.c:1413 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2903 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3233 do_mount fs/namespace.c:3246 [inline] __do_sys_mount fs/namespace.c:3454 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3431 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f68f2b87188 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 000000000056bf60 RCX: 00000000004665f9 RDX: 00000000200000c0 RSI: 0000000020000000 RDI: 000000000040000a RBP: 00000000004bfbb9 R08: 0000000020000100 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 000000000056bf60 R13: 00007ffe19002dff R14: 00007f68f2b87300 R15: 0000000000022000 Allocated by task 17768: kasan_save_stack mm/kasan/common.c:38 [inline] kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:427 [inline] ____kasan_kmalloc+0xc2/0xf0 mm/kasan/common.c:506 kasan_kmalloc include/linux/kasan.h:233 [inline] __kmalloc+0xb4/0x380 mm/slub.c:4055 kmalloc include/linux/slab.h:559 [inline] kzalloc include/linux/slab.h:684 [inline] fib6_info_alloc+0x2c/0xd0 net/ipv6/ip6_fib.c:154 ip6_route_info_create+0x55d/0x1a10 net/ipv6/route.c:3638 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 __call_rcu kernel/rcu/tree.c:3039 [inline] call_rcu+0x1b1/0xa30 kernel/rcu/tree.c:3114 fib6_info_release include/net/ip6_fib.h:337 [inline] ip6_route_info_create+0x10c4/0x1a10 net/ipv6/route.c:3718 ip6_route_add+0x22/0x120 net/ipv6/route.c:3728 inet6_rtm_newroute+0x2cd/0x2260 net/ipv6/route.c:5352 rtnetlink_rcv_msg+0xb34/0xe70 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x1f0/0x460 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x7de/0x9b0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0xaa6/0xe90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg net/socket.c:674 [inline] ____sys_sendmsg+0x5a2/0x900 net/socket.c:2350 ___sys_sendmsg net/socket.c:2404 [inline] __sys_sendmsg+0x319/0x400 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae Second to last potentially related work creation: kasan_save_stack+0x27/0x50 mm/kasan/common.c:38 kasan_record_aux_stack+0xee/0x120 mm/kasan/generic.c:345 insert_work+0x54/0x400 kernel/workqueue.c:1331 __queue_work+0x981/0xcc0 kernel/workqueue.c:1497 queue_work_on+0x111/0x200 kernel/workqueue.c:1524 queue_work include/linux/workqueue.h:507 [inline] call_usermodehelper_exec+0x283/0x470 kernel/umh.c:433 kobject_uevent_env+0x1349/0x1730 lib/kobject_uevent.c:617 kvm_uevent_notify_change+0x309/0x3b0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4809 kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:877 [inline] kvm_put_kvm+0x9c/0xd10 arch/x86/kvm/../../../virt/kvm/kvm_main.c:920 kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3120 __fput+0x352/0x7b0 fs/file_table.c:280 task_work_run+0x146/0x1c0 kernel/task_work.c:140 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:174 [inline] exit_to_user_mode_prepare+0x10b/0x1e0 kernel/entry/common.c:208 __syscall_exit_to_user_mode_work kernel/entry/common.c:290 [inline] syscall_exit_to_user_mode+0x26/0x70 kernel/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff8880145c7800 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 56 bytes to the right of 192-byte region [ffff8880145c7800, ffff8880145c78c0) The buggy address belongs to the page: page:ffffea00005171c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x145c7 flags: 0xfff00000000200(slab) raw: 00fff00000000200 ffffea00006474c0 0000000200000002 ffff888010c41a00 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880145c7780: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880145c7800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8880145c7880: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff8880145c7900: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880145c7980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ================================================================== In the ip6_route_info_create function, in the case that the nh pointer is not NULL, the fib6_nh in fib6_info has not been allocated. Therefore, when trying to free fib6_info in this error case using fib6_info_release, the function will call fib6_info_destroy_rcu, which it will access fib6_nh_release(f6i->fib6_nh); However, f6i->fib6_nh doesn't have any refcount yet given the lack of allocation causing the reported memory issue above. Therefore, releasing the empty pointer directly instead would be the solution. Fixes: f88d8ea67fbdb ("ipv6: Plumb support for nexthop object in a fib6_info") Fixes: 706ec91916462 ("ipv6: Fix nexthop refcnt leak when creating ipv6 route info") Signed-off-by: Coco Li <lixiaoyan@google.com> Cc: David Ahern <dsahern@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-03 07:32:58 +00:00
out_free:
ip_fib_metrics_put(rt->fib6_metrics);
kfree(rt);
return ERR_PTR(err);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
}
int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
struct netlink_ext_ack *extack)
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
{
struct fib6_info *rt;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
int err;
rt = ip6_route_info_create(cfg, gfp_flags, extack);
if (IS_ERR(rt))
return PTR_ERR(rt);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
fib6_info_release(rt);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
return err;
}
static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
{
struct net *net = info->nl_net;
struct fib6_table *table;
int err;
if (rt == net->ipv6.fib6_null_entry) {
err = -ENOENT;
goto out;
}
table = rt->fib6_table;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_lock_bh(&table->tb6_lock);
err = fib6_del(rt, info);
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_unlock_bh(&table->tb6_lock);
out:
fib6_info_release(rt);
return err;
}
int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify)
{
struct nl_info info = {
.nl_net = net,
.skip_notify = skip_notify
};
return __ip6_del_rt(rt, &info);
}
static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
{
struct nl_info *info = &cfg->fc_nlinfo;
struct net *net = info->nl_net;
struct sk_buff *skb = NULL;
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
struct fib6_table *table;
int err = -ENOENT;
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
if (rt == net->ipv6.fib6_null_entry)
goto out_put;
table = rt->fib6_table;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_lock_bh(&table->tb6_lock);
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
struct fib6_info *sibling, *next_sibling;
struct fib6_node *fn;
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
/* prefer to send a single notification with all hops */
skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
if (skb) {
u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
if (rt6_fill_node(net, skb, rt, NULL,
NULL, NULL, 0, RTM_DELROUTE,
info->portid, seq, 0) < 0) {
kfree_skb(skb);
skb = NULL;
} else
info->skip_notify = 1;
}
/* 'rt' points to the first sibling route. If it is not the
* leaf, then we do not need to send a notification. Otherwise,
* we need to check if the last sibling has a next route or not
* and emit a replace or delete notification, respectively.
*/
info->skip_notify_kernel = 1;
fn = rcu_dereference_protected(rt->fib6_node,
lockdep_is_held(&table->tb6_lock));
if (rcu_access_pointer(fn->leaf) == rt) {
struct fib6_info *last_sibling, *replace_rt;
last_sibling = list_last_entry(&rt->fib6_siblings,
struct fib6_info,
fib6_siblings);
replace_rt = rcu_dereference_protected(
last_sibling->fib6_next,
lockdep_is_held(&table->tb6_lock));
if (replace_rt)
call_fib6_entry_notifiers_replace(net,
replace_rt);
else
call_fib6_multipath_entry_notifiers(net,
FIB_EVENT_ENTRY_DEL,
rt, rt->fib6_nsiblings,
NULL);
}
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
list_for_each_entry_safe(sibling, next_sibling,
&rt->fib6_siblings,
fib6_siblings) {
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
err = fib6_del(sibling, info);
if (err)
goto out_unlock;
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
}
}
err = fib6_del(rt, info);
out_unlock:
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
spin_unlock_bh(&table->tb6_lock);
out_put:
fib6_info_release(rt);
if (skb) {
rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
info->nlh, gfp_any());
}
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
return err;
}
static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
{
int rc = -ESRCH;
if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
goto out;
if (cfg->fc_flags & RTF_GATEWAY &&
!ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
goto out;
rc = rt6_remove_exception_rt(rt);
out:
return rc;
}
static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt,
struct fib6_nh *nh)
{
struct fib6_result res = {
.f6i = rt,
.nh = nh,
};
struct rt6_info *rt_cache;
rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src);
if (rt_cache)
return __ip6_del_cached_rt(rt_cache, cfg);
return 0;
}
struct fib6_nh_del_cached_rt_arg {
struct fib6_config *cfg;
struct fib6_info *f6i;
};
static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg)
{
struct fib6_nh_del_cached_rt_arg *arg = _arg;
int rc;
rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh);
return rc != -ESRCH ? rc : 0;
}
static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i)
{
struct fib6_nh_del_cached_rt_arg arg = {
.cfg = cfg,
.f6i = f6i
};
return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg);
}
static int ip6_route_del(struct fib6_config *cfg,
struct netlink_ext_ack *extack)
{
struct fib6_table *table;
struct fib6_info *rt;
struct fib6_node *fn;
int err = -ESRCH;
table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
if (!table) {
NL_SET_ERR_MSG(extack, "FIB table does not exist");
return err;
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
fn = fib6_locate(&table->tb6_root,
&cfg->fc_dst, cfg->fc_dst_len,
&cfg->fc_src, cfg->fc_src_len,
!(cfg->fc_flags & RTF_CACHE));
if (fn) {
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
for_each_fib6_node_rt_rcu(fn) {
struct fib6_nh *nh;
if (rt->nh && cfg->fc_nh_id &&
rt->nh->id != cfg->fc_nh_id)
continue;
if (cfg->fc_flags & RTF_CACHE) {
int rc = 0;
if (rt->nh) {
rc = ip6_del_cached_rt_nh(cfg, rt);
} else if (cfg->fc_nh_id) {
continue;
} else {
nh = rt->fib6_nh;
rc = ip6_del_cached_rt(cfg, rt, nh);
}
if (rc != -ESRCH) {
rcu_read_unlock();
return rc;
}
continue;
}
if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
continue;
if (cfg->fc_protocol &&
cfg->fc_protocol != rt->fib6_protocol)
continue;
if (rt->nh) {
if (!fib6_info_hold_safe(rt))
continue;
rcu_read_unlock();
return __ip6_del_rt(rt, &cfg->fc_nlinfo);
}
if (cfg->fc_nh_id)
continue;
nh = rt->fib6_nh;
if (cfg->fc_ifindex &&
(!nh->fib_nh_dev ||
nh->fib_nh_dev->ifindex != cfg->fc_ifindex))
continue;
if (cfg->fc_flags & RTF_GATEWAY &&
!ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6))
continue;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (!fib6_info_hold_safe(rt))
continue;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
/* if gateway was specified only delete the one hop */
if (cfg->fc_flags & RTF_GATEWAY)
return __ip6_del_rt(rt, &cfg->fc_nlinfo);
return __ip6_del_rt_siblings(rt, cfg);
}
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
return err;
}
static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
{
struct netevent_redirect netevent;
struct rt6_info *rt, *nrt = NULL;
struct fib6_result res = {};
struct ndisc_options ndopts;
struct inet6_dev *in6_dev;
struct neighbour *neigh;
struct rd_msg *msg;
int optlen, on_link;
u8 *lladdr;
optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
optlen -= sizeof(*msg);
if (optlen < 0) {
net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
return;
}
msg = (struct rd_msg *)icmp6_hdr(skb);
if (ipv6_addr_is_multicast(&msg->dest)) {
net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
return;
}
on_link = 0;
if (ipv6_addr_equal(&msg->dest, &msg->target)) {
on_link = 1;
} else if (ipv6_addr_type(&msg->target) !=
(IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
return;
}
in6_dev = __in6_dev_get(skb->dev);
if (!in6_dev)
return;
if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
return;
/* RFC2461 8.1:
* The IP source address of the Redirect MUST be the same as the current
* first-hop router for the specified ICMP Destination Address.
*/
if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
return;
}
lladdr = NULL;
if (ndopts.nd_opts_tgt_lladdr) {
lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
skb->dev);
if (!lladdr) {
net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
return;
}
}
rt = (struct rt6_info *) dst;
if (rt->rt6i_flags & RTF_REJECT) {
net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
return;
}
/* Redirect received -> path was valid.
* Look, redirects are sent only in response to data packets,
* so that this nexthop apparently is reachable. --ANK
*/
dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
if (!neigh)
return;
/*
* We have finally decided to accept it.
*/
ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
NEIGH_UPDATE_F_WEAK_OVERRIDE|
NEIGH_UPDATE_F_OVERRIDE|
(on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
NEIGH_UPDATE_F_ISROUTER)),
NDISC_REDIRECT, &ndopts);
rcu_read_lock();
res.f6i = rcu_dereference(rt->from);
if (!res.f6i)
goto out;
if (res.f6i->nh) {
struct fib6_nh_match_arg arg = {
.dev = dst->dev,
.gw = &rt->rt6i_gateway,
};
nexthop_for_each_fib6_nh(res.f6i->nh,
fib6_nh_find_match, &arg);
/* fib6_info uses a nexthop that does not have fib6_nh
* using the dst->dev. Should be impossible
*/
if (!arg.match)
goto out;
res.nh = arg.match;
} else {
res.nh = res.f6i->fib6_nh;
}
res.fib6_flags = res.f6i->fib6_flags;
res.fib6_type = res.f6i->fib6_type;
nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL);
if (!nrt)
goto out;
nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
if (on_link)
nrt->rt6i_flags &= ~RTF_GATEWAY;
nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
/* rt6_insert_exception() will take care of duplicated exceptions */
if (rt6_insert_exception(nrt, &res)) {
dst_release_immediate(&nrt->dst);
goto out;
}
netevent.old = &rt->dst;
netevent.new = &nrt->dst;
netevent.daddr = &msg->dest;
netevent.neigh = neigh;
call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
out:
rcu_read_unlock();
neigh_release(neigh);
}
#ifdef CONFIG_IPV6_ROUTE_INFO
static struct fib6_info *rt6_get_route_info(struct net *net,
const struct in6_addr *prefix, int prefixlen,
const struct in6_addr *gwaddr,
struct net_device *dev)
{
u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
int ifindex = dev->ifindex;
struct fib6_node *fn;
struct fib6_info *rt = NULL;
struct fib6_table *table;
table = fib6_get_table(net, tb_id);
if (!table)
return NULL;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
if (!fn)
goto out;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
for_each_fib6_node_rt_rcu(fn) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* these routes do not use nexthops */
if (rt->nh)
continue;
if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex)
continue;
if (!(rt->fib6_flags & RTF_ROUTEINFO) ||
!rt->fib6_nh->fib_nh_gw_family)
continue;
if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr))
continue;
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (!fib6_info_hold_safe(rt))
continue;
break;
}
out:
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
return rt;
}
static struct fib6_info *rt6_add_route_info(struct net *net,
const struct in6_addr *prefix, int prefixlen,
const struct in6_addr *gwaddr,
struct net_device *dev,
unsigned int pref)
{
struct fib6_config cfg = {
.fc_metric = IP6_RT_PRIO_USER,
.fc_ifindex = dev->ifindex,
.fc_dst_len = prefixlen,
.fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
RTF_UP | RTF_PREF(pref),
.fc_protocol = RTPROT_RA,
.fc_type = RTN_UNICAST,
.fc_nlinfo.portid = 0,
.fc_nlinfo.nlh = NULL,
.fc_nlinfo.nl_net = net,
};
cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
cfg.fc_dst = *prefix;
cfg.fc_gateway = *gwaddr;
/* We should treat it as a default route if prefix length is 0. */
if (!prefixlen)
cfg.fc_flags |= RTF_DEFAULT;
ip6_route_add(&cfg, GFP_ATOMIC, NULL);
return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
}
#endif
struct fib6_info *rt6_get_dflt_router(struct net *net,
const struct in6_addr *addr,
struct net_device *dev)
{
u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
struct fib6_info *rt;
struct fib6_table *table;
table = fib6_get_table(net, tb_id);
if (!table)
return NULL;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
for_each_fib6_node_rt_rcu(&table->tb6_root) {
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
struct fib6_nh *nh;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* RA routes do not use nexthops */
if (rt->nh)
continue;
nh = rt->fib6_nh;
if (dev == nh->fib_nh_dev &&
((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
ipv6_addr_equal(&nh->fib_nh_gw6, addr))
break;
}
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
if (rt && !fib6_info_hold_safe(rt))
rt = NULL;
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
return rt;
}
struct fib6_info *rt6_add_dflt_router(struct net *net,
const struct in6_addr *gwaddr,
struct net_device *dev,
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
unsigned int pref,
u32 defrtr_usr_metric)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
net: allow user to set metric on default route learned via Router Advertisement For IPv4, default route is learned via DHCPv4 and user is allowed to change metric using config etc/network/interfaces. But for IPv6, default route can be learned via RA, for which, currently a fixed metric value 1024 is used. Ideally, user should be able to configure metric on default route for IPv6 similar to IPv4. This patch adds sysctl for the same. Logs: For IPv4: Config in etc/network/interfaces: auto eth0 iface eth0 inet dhcp metric 4261413864 IPv4 Kernel Route Table: $ ip route list default via 172.21.47.1 dev eth0 metric 4261413864 FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over DHCPv4 default route.] Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, P - PIM, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* 0.0.0.0/0 [20/0] is directly connected, eth0, 00:00:03 K 0.0.0.0/0 [254/1000] via 172.21.47.1, eth0, 6d08h51m i.e. User can prefer Default Router learned via Routing Protocol in IPv4. Similar behavior is not possible for IPv6, without this fix. After fix [for IPv6]: sudo sysctl -w net.ipv6.conf.eth0.net.ipv6.conf.eth0.ra_defrtr_metric=1996489705 IP monitor: [When IPv6 RA is received] default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 pref high Kernel IPv6 routing table $ ip -6 route list default via fe80::be16:65ff:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 21sec hoplimit 64 pref high FRR Table, if a static route is configured: [In real scenario, it is useful to prefer BGP learned default route over IPv6 RA default route.] Codes: K - kernel route, C - connected, S - static, R - RIPng, O - OSPFv3, I - IS-IS, B - BGP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, > - selected route, * - FIB route S>* ::/0 [20/0] is directly connected, eth0, 00:00:06 K ::/0 [119/1001] via fe80::xx16:xxxx:feb3:ce8e, eth0, 6d07h43m If the metric is changed later, the effect will be seen only when next IPv6 RA is received, because the default route must be fully controlled by RA msg. Below metric is changed from 1996489705 to 1996489704. $ sudo sysctl -w net.ipv6.conf.eth0.ra_defrtr_metric=1996489704 net.ipv6.conf.eth0.ra_defrtr_metric = 1996489704 IP monitor: [On next IPv6 RA msg, Kernel deletes prev route and installs new route with updated metric] Deleted default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489705 expires 3sec hoplimit 64 pref high default via fe80::xx16:xxxx:feb3:ce8e dev eth0 proto ra metric 1996489704 pref high Signed-off-by: Praveen Chaudhary <pchaudhary@linkedin.com> Signed-off-by: Zhenggen Xu <zxu@linkedin.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20210125214430.24079-1-pchaudhary@linkedin.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-25 21:44:30 +00:00
.fc_metric = defrtr_usr_metric,
.fc_ifindex = dev->ifindex,
.fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
.fc_protocol = RTPROT_RA,
.fc_type = RTN_UNICAST,
.fc_nlinfo.portid = 0,
.fc_nlinfo.nlh = NULL,
.fc_nlinfo.nl_net = net,
};
cfg.fc_gateway = *gwaddr;
if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
struct fib6_table *table;
table = fib6_get_table(dev_net(dev), cfg.fc_table);
if (table)
table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
}
return rt6_get_dflt_router(net, gwaddr, dev);
}
static void __rt6_purge_dflt_routers(struct net *net,
struct fib6_table *table)
{
struct fib6_info *rt;
restart:
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_lock();
for_each_fib6_node_rt_rcu(&table->tb6_root) {
struct net_device *dev = fib6_info_nh_dev(rt);
struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
ipv6: use fib6_info_hold_safe() when necessary In the code path where only rcu read lock is held, e.g. in the route lookup code path, it is not safe to directly call fib6_info_hold() because the fib6_info may already have been deleted but still exists in the rcu grace period. Holding reference to it could cause double free and crash the kernel. This patch adds a new function fib6_info_hold_safe() and replace fib6_info_hold() in all necessary places. Syzbot reported 3 crash traces because of this. One of them is: 8021q: adding VLAN 0 to HW filter on device team0 IPv6: ADDRCONF(NETDEV_CHANGE): team0: link becomes ready dst_release: dst:(____ptrval____) refcnt:-1 dst_release: dst:(____ptrval____) refcnt:-2 WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 dst_hold include/net/dst.h:239 [inline] WARNING: CPU: 1 PID: 4845 at include/net/dst.h:239 ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 dst_release: dst:(____ptrval____) refcnt:-1 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 4845 Comm: syz-executor493 Not tainted 4.18.0-rc3+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113 panic+0x238/0x4e7 kernel/panic.c:184 dst_release: dst:(____ptrval____) refcnt:-2 dst_release: dst:(____ptrval____) refcnt:-3 __warn.cold.8+0x163/0x1ba kernel/panic.c:536 dst_release: dst:(____ptrval____) refcnt:-4 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1fc/0x4d0 arch/x86/kernel/traps.c:296 dst_release: dst:(____ptrval____) refcnt:-5 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:316 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:dst_hold include/net/dst.h:239 [inline] RIP: 0010:ip6_setup_cork+0xd66/0x1830 net/ipv6/ip6_output.c:1204 Code: c1 ed 03 89 9d 18 ff ff ff 48 b8 00 00 00 00 00 fc ff df 41 c6 44 05 00 f8 e9 2d 01 00 00 4c 8b a5 c8 fe ff ff e8 1a f6 e6 fa <0f> 0b e9 6a fc ff ff e8 0e f6 e6 fa 48 8b 85 d0 fe ff ff 48 8d 78 RSP: 0018:ffff8801a8fcf178 EFLAGS: 00010293 RAX: ffff8801a8eba5c0 RBX: 0000000000000000 RCX: ffffffff869511e6 RDX: 0000000000000000 RSI: ffffffff869515b6 RDI: 0000000000000005 RBP: ffff8801a8fcf2c8 R08: ffff8801a8eba5c0 R09: ffffed0035ac8338 R10: ffffed0035ac8338 R11: ffff8801ad6419c3 R12: ffff8801a8fcf720 R13: ffff8801a8fcf6a0 R14: ffff8801ad6419c0 R15: ffff8801ad641980 ip6_make_skb+0x2c8/0x600 net/ipv6/ip6_output.c:1768 udpv6_sendmsg+0x2c90/0x35f0 net/ipv6/udp.c:1376 inet_sendmsg+0x1a1/0x690 net/ipv4/af_inet.c:798 sock_sendmsg_nosec net/socket.c:641 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:651 ___sys_sendmsg+0x51d/0x930 net/socket.c:2125 __sys_sendmmsg+0x240/0x6f0 net/socket.c:2220 __do_sys_sendmmsg net/socket.c:2249 [inline] __se_sys_sendmmsg net/socket.c:2246 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2246 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x446ba9 Code: e8 cc bb 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 eb 08 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb39a469da8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000006dcc54 RCX: 0000000000446ba9 RDX: 00000000000000b8 RSI: 0000000020001b00 RDI: 0000000000000003 RBP: 00000000006dcc50 R08: 00007fb39a46a700 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 45c828efc7a64843 R13: e6eeb815b9d8a477 R14: 5068caf6f713c6fc R15: 0000000000000001 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 93531c674315 ("net/ipv6: separate handling of FIB entries from dst based routes") Reported-by: syzbot+902e2a1bcd4f7808cef5@syzkaller.appspotmail.com Reported-by: syzbot+8ae62d67f647abeeceb9@syzkaller.appspotmail.com Reported-by: syzbot+3f08feb14086930677d0@syzkaller.appspotmail.com Signed-off-by: Wei Wang <weiwan@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-22 03:56:32 +00:00
(!idev || idev->cnf.accept_ra != 2) &&
fib6_info_hold_safe(rt)) {
rcu_read_unlock();
ip6_del_rt(net, rt, false);
goto restart;
}
}
ipv6: replace rwlock with rcu and spinlock in fib6_table With all the preparation work before, we are now ready to replace rwlock with rcu and spinlock in fib6_table. That means now all fib6_node in fib6_table are protected by rcu. And when freeing fib6_node, call_rcu() is used to wait for the rcu grace period before releasing the memory. When accessing fib6_node, corresponding rcu APIs need to be used. And all previous sessions protected by the write lock will now be protected by the spin lock per table. All previous sessions protected by read lock will now be protected by rcu_read_lock(). A couple of things to note here: 1. As part of the work of replacing rwlock with rcu, the linked list of fn->leaf now has to be rcu protected as well. So both fn->leaf and rt->dst.rt6_next are now __rcu tagged and corresponding rcu APIs are used when manipulating them. 2. For fn->rr_ptr, first of all, it also needs to be rcu protected now and is tagged with __rcu and rcu APIs are used in corresponding places. Secondly, fn->rr_ptr is changed in rt6_select() which is a reader thread. This makes the issue a bit complicated. We think a valid solution for it is to let rt6_select() grab the tb6_lock if it decides to change it. As it is not in the normal operation and only happens when there is no valid neighbor cache for the route, we think the performance impact should be low. 3. fib6_walk_continue() has to be called with tb6_lock held even in the route dumping related functions, e.g. inet6_dump_fib(), fib6_tables_dump() and ipv6_route_seq_ops. It is because fib6_walk_continue() makes modifications to the walker structure, and so are fib6_repair_tree() and fib6_del_route(). In order to do proper syncing between them, we need to let fib6_walk_continue() hold the lock. We may be able to do further improvement on the way we do the tree walk to get rid of the need for holding the spin lock. But not for now. 4. When fib6_del_route() removes a route from the tree, we no longer mark rt->dst.rt6_next to NULL to make simultaneous reader be able to further traverse the list with rcu. However, rt->dst.rt6_next is only valid within this same rcu period. No one should access it later. 5. All the operation of atomic_inc(rt->rt6i_ref) is changed to be performed before we publish this route (either by linking it to fn->leaf or insert it in the list pointed by fn->leaf) just to be safe because as soon as we publish the route, some read thread will be able to access it. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-06 19:06:10 +00:00
rcu_read_unlock();
table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
}
void rt6_purge_dflt_routers(struct net *net)
{
struct fib6_table *table;
struct hlist_head *head;
unsigned int h;
rcu_read_lock();
for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
head = &net->ipv6.fib_table_hash[h];
hlist_for_each_entry_rcu(table, head, tb6_hlist) {
if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
__rt6_purge_dflt_routers(net, table);
}
}
rcu_read_unlock();
}
static void rtmsg_to_fib6_config(struct net *net,
struct in6_rtmsg *rtmsg,
struct fib6_config *cfg)
{
*cfg = (struct fib6_config){
.fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
: RT6_TABLE_MAIN,
.fc_ifindex = rtmsg->rtmsg_ifindex,
.fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER,
.fc_expires = rtmsg->rtmsg_info,
.fc_dst_len = rtmsg->rtmsg_dst_len,
.fc_src_len = rtmsg->rtmsg_src_len,
.fc_flags = rtmsg->rtmsg_flags,
.fc_type = rtmsg->rtmsg_type,
.fc_nlinfo.nl_net = net,
.fc_dst = rtmsg->rtmsg_dst,
.fc_src = rtmsg->rtmsg_src,
.fc_gateway = rtmsg->rtmsg_gateway,
};
}
int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg)
{
struct fib6_config cfg;
int err;
if (cmd != SIOCADDRT && cmd != SIOCDELRT)
return -EINVAL;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
rtmsg_to_fib6_config(net, rtmsg, &cfg);
rtnl_lock();
switch (cmd) {
case SIOCADDRT:
err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
break;
case SIOCDELRT:
err = ip6_route_del(&cfg, NULL);
break;
}
rtnl_unlock();
return err;
}
/*
* Drop the packet on the floor
*/
static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
{
struct dst_entry *dst = skb_dst(skb);
struct net *net = dev_net(dst->dev);
struct inet6_dev *idev;
SKB_DR(reason);
int type;
if (netif_is_l3_master(skb->dev) ||
dst->dev == net->loopback_dev)
idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif));
else
idev = ip6_dst_idev(dst);
switch (ipstats_mib_noroutes) {
case IPSTATS_MIB_INNOROUTES:
type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
if (type == IPV6_ADDR_ANY) {
SKB_DR_SET(reason, IP_INADDRERRORS);
IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS);
break;
}
SKB_DR_SET(reason, IP_INNOROUTES);
fallthrough;
case IPSTATS_MIB_OUTNOROUTES:
SKB_DR_OR(reason, IP_OUTNOROUTES);
IP6_INC_STATS(net, idev, ipstats_mib_noroutes);
break;
}
/* Start over by dropping the dst for l3mdev case */
if (netif_is_l3_master(skb->dev))
skb_dst_drop(skb);
icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
kfree_skb_reason(skb, reason);
return 0;
}
static int ip6_pkt_discard(struct sk_buff *skb)
{
return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
}
static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
skb->dev = skb_dst(skb)->dev;
return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
}
static int ip6_pkt_prohibit(struct sk_buff *skb)
{
return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
}
static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
{
skb->dev = skb_dst(skb)->dev;
return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
}
/*
* Allocate a dst for local (unicast / anycast) address.
*/
struct fib6_info *addrconf_f6i_alloc(struct net *net,
struct inet6_dev *idev,
const struct in6_addr *addr,
bool anycast, gfp_t gfp_flags)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL,
.fc_ifindex = idev->dev->ifindex,
.fc_flags = RTF_UP | RTF_NONEXTHOP,
.fc_dst = *addr,
.fc_dst_len = 128,
.fc_protocol = RTPROT_KERNEL,
.fc_nlinfo.nl_net = net,
.fc_ignore_dev_down = true,
};
struct fib6_info *f6i;
if (anycast) {
cfg.fc_type = RTN_ANYCAST;
cfg.fc_flags |= RTF_ANYCAST;
} else {
cfg.fc_type = RTN_LOCAL;
cfg.fc_flags |= RTF_LOCAL;
}
f6i = ip6_route_info_create(&cfg, gfp_flags, NULL);
if (!IS_ERR(f6i)) {
f6i->dst_nocount = true;
if (!anycast &&
(net->ipv6.devconf_all->disable_policy ||
idev->cnf.disable_policy))
f6i->dst_nopolicy = true;
}
return f6i;
}
/* remove deleted ip from prefsrc entries */
struct arg_dev_net_ip {
struct net_device *dev;
struct net *net;
struct in6_addr *addr;
};
static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
{
struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
struct net *net = ((struct arg_dev_net_ip *)arg)->net;
struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (!rt->nh &&
((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) &&
rt != net->ipv6.fib6_null_entry &&
ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
spin_lock_bh(&rt6_exception_lock);
/* remove prefsrc entry */
rt->fib6_prefsrc.plen = 0;
spin_unlock_bh(&rt6_exception_lock);
}
return 0;
}
void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
{
struct net *net = dev_net(ifp->idev->dev);
struct arg_dev_net_ip adni = {
.dev = ifp->idev->dev,
.net = net,
.addr = &ifp->addr,
};
fib6_clean_all(net, fib6_remove_prefsrc, &adni);
}
#define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT)
/* Remove routers and update dst entries when gateway turn into host. */
static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
{
struct in6_addr *gateway = (struct in6_addr *)arg;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
struct fib6_nh *nh;
/* RA routes do not use nexthops */
if (rt->nh)
return 0;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
nh = rt->fib6_nh;
if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6))
return -1;
/* Further clean up cached routes in exception table.
* This is needed because cached route may have a different
* gateway than its 'parent' in the case of an ip redirect.
*/
fib6_nh_exceptions_clean_tohost(nh, gateway);
return 0;
}
void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
{
fib6_clean_all(net, fib6_clean_tohost, gateway);
}
struct arg_netdev_event {
const struct net_device *dev;
union {
unsigned char nh_flags;
unsigned long event;
};
};
static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
{
struct fib6_info *iter;
struct fib6_node *fn;
fn = rcu_dereference_protected(rt->fib6_node,
lockdep_is_held(&rt->fib6_table->tb6_lock));
iter = rcu_dereference_protected(fn->leaf,
lockdep_is_held(&rt->fib6_table->tb6_lock));
while (iter) {
if (iter->fib6_metric == rt->fib6_metric &&
rt6_qualify_for_ecmp(iter))
return iter;
iter = rcu_dereference_protected(iter->fib6_next,
lockdep_is_held(&rt->fib6_table->tb6_lock));
}
return NULL;
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* only called for fib entries with builtin fib6_nh */
static bool rt6_is_dead(const struct fib6_info *rt)
{
if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD ||
(rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN &&
ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev)))
return true;
return false;
}
static int rt6_multipath_total_weight(const struct fib6_info *rt)
{
struct fib6_info *iter;
int total = 0;
if (!rt6_is_dead(rt))
total += rt->fib6_nh->fib_nh_weight;
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
if (!rt6_is_dead(iter))
total += iter->fib6_nh->fib_nh_weight;
}
return total;
}
static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
{
int upper_bound = -1;
if (!rt6_is_dead(rt)) {
*weight += rt->fib6_nh->fib_nh_weight;
upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
total) - 1;
}
atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound);
}
static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
{
struct fib6_info *iter;
int weight = 0;
rt6_upper_bound_set(rt, &weight, total);
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
rt6_upper_bound_set(iter, &weight, total);
}
void rt6_multipath_rebalance(struct fib6_info *rt)
{
struct fib6_info *first;
int total;
/* In case the entire multipath route was marked for flushing,
* then there is no need to rebalance upon the removal of every
* sibling route.
*/
if (!rt->fib6_nsiblings || rt->should_flush)
return;
/* During lookup routes are evaluated in order, so we need to
* make sure upper bounds are assigned from the first sibling
* onwards.
*/
first = rt6_multipath_first_sibling(rt);
if (WARN_ON_ONCE(!first))
return;
total = rt6_multipath_total_weight(first);
rt6_multipath_upper_bound_set(first, total);
}
static int fib6_ifup(struct fib6_info *rt, void *p_arg)
{
const struct arg_netdev_event *arg = p_arg;
struct net *net = dev_net(arg->dev);
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (rt != net->ipv6.fib6_null_entry && !rt->nh &&
rt->fib6_nh->fib_nh_dev == arg->dev) {
rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags;
fib6_update_sernum_upto_root(net, rt);
rt6_multipath_rebalance(rt);
}
return 0;
}
void rt6_sync_up(struct net_device *dev, unsigned char nh_flags)
{
struct arg_netdev_event arg = {
.dev = dev,
{
.nh_flags = nh_flags,
},
};
if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
arg.nh_flags |= RTNH_F_LINKDOWN;
fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
/* only called for fib entries with inline fib6_nh */
static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
const struct net_device *dev)
{
struct fib6_info *iter;
if (rt->fib6_nh->fib_nh_dev == dev)
return true;
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
if (iter->fib6_nh->fib_nh_dev == dev)
return true;
return false;
}
static void rt6_multipath_flush(struct fib6_info *rt)
{
struct fib6_info *iter;
rt->should_flush = 1;
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
iter->should_flush = 1;
}
static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
const struct net_device *down_dev)
{
struct fib6_info *iter;
unsigned int dead = 0;
if (rt->fib6_nh->fib_nh_dev == down_dev ||
rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD)
dead++;
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
if (iter->fib6_nh->fib_nh_dev == down_dev ||
iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD)
dead++;
return dead;
}
static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
const struct net_device *dev,
unsigned char nh_flags)
{
struct fib6_info *iter;
if (rt->fib6_nh->fib_nh_dev == dev)
rt->fib6_nh->fib_nh_flags |= nh_flags;
list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
if (iter->fib6_nh->fib_nh_dev == dev)
iter->fib6_nh->fib_nh_flags |= nh_flags;
}
net: ipv6: Keep nexthop of multipath route on admin down IPv6 deletes route entries associated with multipath routes on an admin down where IPv4 does not. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 metric 64 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.100.2.254 dev eth2 weight 1 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.4 10.100.2.0/24 dev eth2 proto kernel scope link src 10.100.2.4 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2:: dev red proto none metric 0 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:11::/120 via 2001:db8:1::16 dev eth1 metric 1024 pref medium 2001:db8:11::/120 via 2001:db8:2::17 dev eth2 metric 1024 pref medium ... Set link down: $ ip li set eth1 down IPv4 retains the multihop route but flags eth1 route as dead: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.16 dev eth1 weight 1 dead linkdown nexthop via 10.100.2.16 dev eth2 weight 1 10.100.2.0/24 dev eth2 proto kernel scope link src 10.100.2.4 and IPv6 deletes the route as part of flushing all routes for the device: $ ip -6 ro ls vrf red 2001:db8:2:: dev red proto none metric 0 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:11::/120 via 2001:db8:2::17 dev eth2 metric 1024 pref medium ... Worse, on admin up of the device the multipath route has to be deleted to get this leg of the route re-added. This patch keeps routes that are part of a multipath route if ignore_routes_with_linkdown is set with the dead and linkdown flags enabling consistency between IPv4 and IPv6: $ ip -6 ro ls vrf red 2001:db8:2:: dev red proto none metric 0 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:11::/120 via 2001:db8:1::16 dev eth1 metric 1024 dead linkdown pref medium 2001:db8:11::/120 via 2001:db8:2::17 dev eth2 metric 1024 pref medium ... Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-18 15:40:36 +00:00
/* called with write lock held for table with rt */
static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
{
const struct arg_netdev_event *arg = p_arg;
const struct net_device *dev = arg->dev;
struct net *net = dev_net(dev);
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (rt == net->ipv6.fib6_null_entry || rt->nh)
return 0;
switch (arg->event) {
case NETDEV_UNREGISTER:
return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0;
case NETDEV_DOWN:
if (rt->should_flush)
return -1;
if (!rt->fib6_nsiblings)
return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0;
if (rt6_multipath_uses_dev(rt, dev)) {
unsigned int count;
count = rt6_multipath_dead_count(rt, dev);
if (rt->fib6_nsiblings + 1 == count) {
rt6_multipath_flush(rt);
return -1;
}
rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
RTNH_F_LINKDOWN);
fib6_update_sernum(net, rt);
rt6_multipath_rebalance(rt);
}
return -2;
case NETDEV_CHANGE:
if (rt->fib6_nh->fib_nh_dev != dev ||
rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
break;
rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN;
rt6_multipath_rebalance(rt);
break;
}
return 0;
}
void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
{
struct arg_netdev_event arg = {
.dev = dev,
{
.event = event,
},
};
struct net *net = dev_net(dev);
if (net->ipv6.sysctl.skip_notify_on_dev_down)
fib6_clean_all_skip_notify(net, fib6_ifdown, &arg);
else
fib6_clean_all(net, fib6_ifdown, &arg);
}
void rt6_disable_ip(struct net_device *dev, unsigned long event)
{
rt6_sync_down_dev(dev, event);
rt6_uncached_list_flush_dev(dev);
neigh_ifdown(&nd_tbl, dev);
}
struct rt6_mtu_change_arg {
struct net_device *dev;
unsigned int mtu;
struct fib6_info *f6i;
};
static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg)
{
struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg;
struct fib6_info *f6i = arg->f6i;
/* For administrative MTU increase, there is no way to discover
* IPv6 PMTU increase, so PMTU increase should be updated here.
* Since RFC 1981 doesn't include administrative MTU increase
* update PMTU increase is a MUST. (i.e. jumbo frame)
*/
if (nh->fib_nh_dev == arg->dev) {
struct inet6_dev *idev = __in6_dev_get(arg->dev);
u32 mtu = f6i->fib6_pmtu;
if (mtu >= arg->mtu ||
(mtu < arg->mtu && mtu == idev->cnf.mtu6))
fib6_metric_set(f6i, RTAX_MTU, arg->mtu);
spin_lock_bh(&rt6_exception_lock);
rt6_exceptions_update_pmtu(idev, nh, arg->mtu);
spin_unlock_bh(&rt6_exception_lock);
}
return 0;
}
static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg)
{
struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
struct inet6_dev *idev;
/* In IPv6 pmtu discovery is not optional,
so that RTAX_MTU lock cannot disable it.
We still use this lock to block changes
caused by addrconf/ndisc.
*/
idev = __in6_dev_get(arg->dev);
if (!idev)
return 0;
if (fib6_metric_locked(f6i, RTAX_MTU))
return 0;
arg->f6i = f6i;
if (f6i->nh) {
/* fib6_nh_mtu_change only returns 0, so this is safe */
return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change,
arg);
}
return fib6_nh_mtu_change(f6i->fib6_nh, arg);
}
void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
{
struct rt6_mtu_change_arg arg = {
.dev = dev,
.mtu = mtu,
};
fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
}
static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
[RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 },
[RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
[RTA_PREFSRC] = { .len = sizeof(struct in6_addr) },
[RTA_OIF] = { .type = NLA_U32 },
[RTA_IIF] = { .type = NLA_U32 },
[RTA_PRIORITY] = { .type = NLA_U32 },
[RTA_METRICS] = { .type = NLA_NESTED },
[RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
[RTA_PREF] = { .type = NLA_U8 },
[RTA_ENCAP_TYPE] = { .type = NLA_U16 },
[RTA_ENCAP] = { .type = NLA_NESTED },
[RTA_EXPIRES] = { .type = NLA_U32 },
[RTA_UID] = { .type = NLA_U32 },
[RTA_MARK] = { .type = NLA_U32 },
[RTA_TABLE] = { .type = NLA_U32 },
[RTA_IP_PROTO] = { .type = NLA_U8 },
[RTA_SPORT] = { .type = NLA_U16 },
[RTA_DPORT] = { .type = NLA_U16 },
[RTA_NH_ID] = { .type = NLA_U32 },
};
static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
struct fib6_config *cfg,
struct netlink_ext_ack *extack)
{
struct rtmsg *rtm;
struct nlattr *tb[RTA_MAX+1];
unsigned int pref;
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
rtm_ipv6_policy, extack);
if (err < 0)
goto errout;
err = -EINVAL;
rtm = nlmsg_data(nlh);
if (rtm->rtm_tos) {
NL_SET_ERR_MSG(extack,
"Invalid dsfield (tos): option not available for IPv6");
goto errout;
}
*cfg = (struct fib6_config){
.fc_table = rtm->rtm_table,
.fc_dst_len = rtm->rtm_dst_len,
.fc_src_len = rtm->rtm_src_len,
.fc_flags = RTF_UP,
.fc_protocol = rtm->rtm_protocol,
.fc_type = rtm->rtm_type,
.fc_nlinfo.portid = NETLINK_CB(skb).portid,
.fc_nlinfo.nlh = nlh,
.fc_nlinfo.nl_net = sock_net(skb->sk),
};
if (rtm->rtm_type == RTN_UNREACHABLE ||
rtm->rtm_type == RTN_BLACKHOLE ||
rtm->rtm_type == RTN_PROHIBIT ||
rtm->rtm_type == RTN_THROW)
cfg->fc_flags |= RTF_REJECT;
if (rtm->rtm_type == RTN_LOCAL)
cfg->fc_flags |= RTF_LOCAL;
if (rtm->rtm_flags & RTM_F_CLONED)
cfg->fc_flags |= RTF_CACHE;
cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
if (tb[RTA_NH_ID]) {
if (tb[RTA_GATEWAY] || tb[RTA_OIF] ||
tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) {
NL_SET_ERR_MSG(extack,
"Nexthop specification and nexthop id are mutually exclusive");
goto errout;
}
cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]);
}
if (tb[RTA_GATEWAY]) {
cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
cfg->fc_flags |= RTF_GATEWAY;
}
if (tb[RTA_VIA]) {
NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute");
goto errout;
}
if (tb[RTA_DST]) {
int plen = (rtm->rtm_dst_len + 7) >> 3;
if (nla_len(tb[RTA_DST]) < plen)
goto errout;
nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
}
if (tb[RTA_SRC]) {
int plen = (rtm->rtm_src_len + 7) >> 3;
if (nla_len(tb[RTA_SRC]) < plen)
goto errout;
nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
}
if (tb[RTA_PREFSRC])
cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
if (tb[RTA_OIF])
cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
if (tb[RTA_PRIORITY])
cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
if (tb[RTA_METRICS]) {
cfg->fc_mx = nla_data(tb[RTA_METRICS]);
cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
}
if (tb[RTA_TABLE])
cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
if (tb[RTA_MULTIPATH]) {
cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
lwtunnel: fix autoload of lwt modules Trying to add an mpls encap route when the MPLS modules are not loaded hangs. For example: CONFIG_MPLS=y CONFIG_NET_MPLS_GSO=m CONFIG_MPLS_ROUTING=m CONFIG_MPLS_IPTUNNEL=m $ ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 The ip command hangs: root 880 826 0 21:25 pts/0 00:00:00 ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 $ cat /proc/880/stack [<ffffffff81065a9b>] call_usermodehelper_exec+0xd6/0x134 [<ffffffff81065efc>] __request_module+0x27b/0x30a [<ffffffff814542f6>] lwtunnel_build_state+0xe4/0x178 [<ffffffff814aa1e4>] fib_create_info+0x47f/0xdd4 [<ffffffff814ae451>] fib_table_insert+0x90/0x41f [<ffffffff814a8010>] inet_rtm_newroute+0x4b/0x52 ... modprobe is trying to load rtnl-lwt-MPLS: root 881 5 0 21:25 ? 00:00:00 /sbin/modprobe -q -- rtnl-lwt-MPLS and it hangs after loading mpls_router: $ cat /proc/881/stack [<ffffffff81441537>] rtnl_lock+0x12/0x14 [<ffffffff8142ca2a>] register_netdevice_notifier+0x16/0x179 [<ffffffffa0033025>] mpls_init+0x25/0x1000 [mpls_router] [<ffffffff81000471>] do_one_initcall+0x8e/0x13f [<ffffffff81119961>] do_init_module+0x5a/0x1e5 [<ffffffff810bd070>] load_module+0x13bd/0x17d6 ... The problem is that lwtunnel_build_state is called with rtnl lock held preventing mpls_init from registering. Given the potential references held by the time lwtunnel_build_state it can not drop the rtnl lock to the load module. So, extract the module loading code from lwtunnel_build_state into a new function to validate the encap type. The new function is called while converting the user request into a fib_config which is well before any table, device or fib entries are examined. Fixes: 745041e2aaf1 ("lwtunnel: autoload of lwt modules") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 22:57:36 +00:00
err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
cfg->fc_mp_len, extack);
lwtunnel: fix autoload of lwt modules Trying to add an mpls encap route when the MPLS modules are not loaded hangs. For example: CONFIG_MPLS=y CONFIG_NET_MPLS_GSO=m CONFIG_MPLS_ROUTING=m CONFIG_MPLS_IPTUNNEL=m $ ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 The ip command hangs: root 880 826 0 21:25 pts/0 00:00:00 ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 $ cat /proc/880/stack [<ffffffff81065a9b>] call_usermodehelper_exec+0xd6/0x134 [<ffffffff81065efc>] __request_module+0x27b/0x30a [<ffffffff814542f6>] lwtunnel_build_state+0xe4/0x178 [<ffffffff814aa1e4>] fib_create_info+0x47f/0xdd4 [<ffffffff814ae451>] fib_table_insert+0x90/0x41f [<ffffffff814a8010>] inet_rtm_newroute+0x4b/0x52 ... modprobe is trying to load rtnl-lwt-MPLS: root 881 5 0 21:25 ? 00:00:00 /sbin/modprobe -q -- rtnl-lwt-MPLS and it hangs after loading mpls_router: $ cat /proc/881/stack [<ffffffff81441537>] rtnl_lock+0x12/0x14 [<ffffffff8142ca2a>] register_netdevice_notifier+0x16/0x179 [<ffffffffa0033025>] mpls_init+0x25/0x1000 [mpls_router] [<ffffffff81000471>] do_one_initcall+0x8e/0x13f [<ffffffff81119961>] do_init_module+0x5a/0x1e5 [<ffffffff810bd070>] load_module+0x13bd/0x17d6 ... The problem is that lwtunnel_build_state is called with rtnl lock held preventing mpls_init from registering. Given the potential references held by the time lwtunnel_build_state it can not drop the rtnl lock to the load module. So, extract the module loading code from lwtunnel_build_state into a new function to validate the encap type. The new function is called while converting the user request into a fib_config which is well before any table, device or fib entries are examined. Fixes: 745041e2aaf1 ("lwtunnel: autoload of lwt modules") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 22:57:36 +00:00
if (err < 0)
goto errout;
}
if (tb[RTA_PREF]) {
pref = nla_get_u8(tb[RTA_PREF]);
if (pref != ICMPV6_ROUTER_PREF_LOW &&
pref != ICMPV6_ROUTER_PREF_HIGH)
pref = ICMPV6_ROUTER_PREF_MEDIUM;
cfg->fc_flags |= RTF_PREF(pref);
}
if (tb[RTA_ENCAP])
cfg->fc_encap = tb[RTA_ENCAP];
lwtunnel: fix autoload of lwt modules Trying to add an mpls encap route when the MPLS modules are not loaded hangs. For example: CONFIG_MPLS=y CONFIG_NET_MPLS_GSO=m CONFIG_MPLS_ROUTING=m CONFIG_MPLS_IPTUNNEL=m $ ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 The ip command hangs: root 880 826 0 21:25 pts/0 00:00:00 ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 $ cat /proc/880/stack [<ffffffff81065a9b>] call_usermodehelper_exec+0xd6/0x134 [<ffffffff81065efc>] __request_module+0x27b/0x30a [<ffffffff814542f6>] lwtunnel_build_state+0xe4/0x178 [<ffffffff814aa1e4>] fib_create_info+0x47f/0xdd4 [<ffffffff814ae451>] fib_table_insert+0x90/0x41f [<ffffffff814a8010>] inet_rtm_newroute+0x4b/0x52 ... modprobe is trying to load rtnl-lwt-MPLS: root 881 5 0 21:25 ? 00:00:00 /sbin/modprobe -q -- rtnl-lwt-MPLS and it hangs after loading mpls_router: $ cat /proc/881/stack [<ffffffff81441537>] rtnl_lock+0x12/0x14 [<ffffffff8142ca2a>] register_netdevice_notifier+0x16/0x179 [<ffffffffa0033025>] mpls_init+0x25/0x1000 [mpls_router] [<ffffffff81000471>] do_one_initcall+0x8e/0x13f [<ffffffff81119961>] do_init_module+0x5a/0x1e5 [<ffffffff810bd070>] load_module+0x13bd/0x17d6 ... The problem is that lwtunnel_build_state is called with rtnl lock held preventing mpls_init from registering. Given the potential references held by the time lwtunnel_build_state it can not drop the rtnl lock to the load module. So, extract the module loading code from lwtunnel_build_state into a new function to validate the encap type. The new function is called while converting the user request into a fib_config which is well before any table, device or fib entries are examined. Fixes: 745041e2aaf1 ("lwtunnel: autoload of lwt modules") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 22:57:36 +00:00
if (tb[RTA_ENCAP_TYPE]) {
cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
lwtunnel: fix autoload of lwt modules Trying to add an mpls encap route when the MPLS modules are not loaded hangs. For example: CONFIG_MPLS=y CONFIG_NET_MPLS_GSO=m CONFIG_MPLS_ROUTING=m CONFIG_MPLS_IPTUNNEL=m $ ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 The ip command hangs: root 880 826 0 21:25 pts/0 00:00:00 ip route add 10.10.10.10/32 encap mpls 100 via inet 10.100.1.2 $ cat /proc/880/stack [<ffffffff81065a9b>] call_usermodehelper_exec+0xd6/0x134 [<ffffffff81065efc>] __request_module+0x27b/0x30a [<ffffffff814542f6>] lwtunnel_build_state+0xe4/0x178 [<ffffffff814aa1e4>] fib_create_info+0x47f/0xdd4 [<ffffffff814ae451>] fib_table_insert+0x90/0x41f [<ffffffff814a8010>] inet_rtm_newroute+0x4b/0x52 ... modprobe is trying to load rtnl-lwt-MPLS: root 881 5 0 21:25 ? 00:00:00 /sbin/modprobe -q -- rtnl-lwt-MPLS and it hangs after loading mpls_router: $ cat /proc/881/stack [<ffffffff81441537>] rtnl_lock+0x12/0x14 [<ffffffff8142ca2a>] register_netdevice_notifier+0x16/0x179 [<ffffffffa0033025>] mpls_init+0x25/0x1000 [mpls_router] [<ffffffff81000471>] do_one_initcall+0x8e/0x13f [<ffffffff81119961>] do_init_module+0x5a/0x1e5 [<ffffffff810bd070>] load_module+0x13bd/0x17d6 ... The problem is that lwtunnel_build_state is called with rtnl lock held preventing mpls_init from registering. Given the potential references held by the time lwtunnel_build_state it can not drop the rtnl lock to the load module. So, extract the module loading code from lwtunnel_build_state into a new function to validate the encap type. The new function is called while converting the user request into a fib_config which is well before any table, device or fib entries are examined. Fixes: 745041e2aaf1 ("lwtunnel: autoload of lwt modules") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-17 22:57:36 +00:00
if (err < 0)
goto errout;
}
if (tb[RTA_EXPIRES]) {
unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
if (addrconf_finite_timeout(timeout)) {
cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
cfg->fc_flags |= RTF_EXPIRES;
}
}
err = 0;
errout:
return err;
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
struct rt6_nh {
struct fib6_info *fib6_info;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
struct fib6_config r_cfg;
struct list_head next;
};
static int ip6_route_info_append(struct net *net,
struct list_head *rt6_nh_list,
struct fib6_info *rt,
struct fib6_config *r_cfg)
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
{
struct rt6_nh *nh;
int err = -EEXIST;
list_for_each_entry(nh, rt6_nh_list, next) {
/* check if fib6_info already exists */
if (rt6_duplicate_nexthop(nh->fib6_info, rt))
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
return err;
}
nh = kzalloc(sizeof(*nh), GFP_KERNEL);
if (!nh)
return -ENOMEM;
nh->fib6_info = rt;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
list_add_tail(&nh->next, rt6_nh_list);
return 0;
}
static void ip6_route_mpath_notify(struct fib6_info *rt,
struct fib6_info *rt_last,
struct nl_info *info,
__u16 nlflags)
{
/* if this is an APPEND route, then rt points to the first route
* inserted and rt_last points to last route inserted. Userspace
* wants a consistent dump of the route which starts at the first
* nexthop. Since sibling routes are always added at the end of
* the list, find the first sibling of the last route appended
*/
if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
rt = list_first_entry(&rt_last->fib6_siblings,
struct fib6_info,
fib6_siblings);
}
if (rt)
inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
}
static bool ip6_route_mpath_should_notify(const struct fib6_info *rt)
{
bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
bool should_notify = false;
struct fib6_info *leaf;
struct fib6_node *fn;
rcu_read_lock();
fn = rcu_dereference(rt->fib6_node);
if (!fn)
goto out;
leaf = rcu_dereference(fn->leaf);
if (!leaf)
goto out;
if (rt == leaf ||
(rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric &&
rt6_qualify_for_ecmp(leaf)))
should_notify = true;
out:
rcu_read_unlock();
return should_notify;
}
static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla,
struct netlink_ext_ack *extack)
{
if (nla_len(nla) < sizeof(*gw)) {
NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY");
return -EINVAL;
}
*gw = nla_get_in6_addr(nla);
return 0;
}
static int ip6_route_multipath_add(struct fib6_config *cfg,
struct netlink_ext_ack *extack)
{
struct fib6_info *rt_notif = NULL, *rt_last = NULL;
struct nl_info *info = &cfg->fc_nlinfo;
struct fib6_config r_cfg;
struct rtnexthop *rtnh;
struct fib6_info *rt;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
struct rt6_nh *err_nh;
struct rt6_nh *nh, *nh_safe;
__u16 nlflags;
int remaining;
int attrlen;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
int err = 1;
int nhn = 0;
int replace = (cfg->fc_nlinfo.nlh &&
(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
LIST_HEAD(rt6_nh_list);
nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
nlflags |= NLM_F_APPEND;
remaining = cfg->fc_mp_len;
rtnh = (struct rtnexthop *)cfg->fc_mp;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
/* Parse a Multipath Entry and build a list (rt6_nh_list) of
* fib6_info structs per nexthop
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
*/
while (rtnh_ok(rtnh, remaining)) {
memcpy(&r_cfg, cfg, sizeof(*cfg));
if (rtnh->rtnh_ifindex)
r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
attrlen = rtnh_attrlen(rtnh);
if (attrlen > 0) {
struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
nla = nla_find(attrs, attrlen, RTA_GATEWAY);
if (nla) {
err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla,
extack);
if (err)
goto cleanup;
r_cfg.fc_flags |= RTF_GATEWAY;
}
r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
/* RTA_ENCAP_TYPE length checked in
* lwtunnel_valid_encap_type_attr
*/
nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
if (nla)
r_cfg.fc_encap_type = nla_get_u16(nla);
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
rt = NULL;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
goto cleanup;
}
net/ipv6: Do not allow device only routes via the multipath API Eric reported that reverting the patch that fixed and simplified IPv6 multipath routes means reverting back to invalid userspace notifications. eg., $ ip -6 route add 2001:db8:1::/64 nexthop dev eth0 nexthop dev eth1 only generates a single notification: 2001:db8:1::/64 dev eth0 metric 1024 pref medium While working on a fix for this problem I found another case that is just broken completely - a multipath route with a gateway followed by device followed by gateway: $ ip -6 ro add 2001:db8:103::/64 nexthop via 2001:db8:1::64 nexthop dev dummy2 nexthop via 2001:db8:3::64 In this case the device only route is dropped completely - no notification to userpsace but no addition to the FIB either: $ ip -6 ro ls 2001:db8:1::/64 dev dummy1 proto kernel metric 256 pref medium 2001:db8:2::/64 dev dummy2 proto kernel metric 256 pref medium 2001:db8:3::/64 dev dummy3 proto kernel metric 256 pref medium 2001:db8:103::/64 metric 1024 nexthop via 2001:db8:1::64 dev dummy1 weight 1 nexthop via 2001:db8:3::64 dev dummy3 weight 1 pref medium fe80::/64 dev dummy1 proto kernel metric 256 pref medium fe80::/64 dev dummy2 proto kernel metric 256 pref medium fe80::/64 dev dummy3 proto kernel metric 256 pref medium Really, IPv6 multipath is just FUBAR'ed beyond repair when it comes to device only routes, so do not allow it all. This change will break any scripts relying on the mpath api for insert, but I don't see any other way to handle the permutations. Besides, since the routes are added to the FIB as standalone (non-multipath) routes the kernel is not doing what the user requested, so it might as well tell the user that. Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-15 16:35:19 +00:00
if (!rt6_qualify_for_ecmp(rt)) {
err = -EINVAL;
NL_SET_ERR_MSG(extack,
"Device only routes can not be added for IPv6 using the multipath API.");
fib6_info_release(rt);
goto cleanup;
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1;
err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
rt, &r_cfg);
if (err) {
fib6_info_release(rt);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
goto cleanup;
}
rtnh = rtnh_next(rtnh, &remaining);
}
ipv6: Error when route does not have any valid nexthops When user space sends invalid information in RTA_MULTIPATH, the nexthop list in ip6_route_multipath_add() is empty and 'rt_notif' is set to NULL. The code that emits the in-kernel notifications does not check for this condition, which results in a NULL pointer dereference [1]. Fix this by bailing earlier in the function if the parsed nexthop list is empty. This is consistent with the corresponding IPv4 code. v2: * Check if parsed nexthop list is empty and bail with extack set [1] kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 9190 Comm: syz-executor149 Not tainted 5.2.0-rc5+ #38 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:call_fib6_multipath_entry_notifiers+0xd1/0x1a0 net/ipv6/ip6_fib.c:396 Code: 8b b5 30 ff ff ff 48 c7 85 68 ff ff ff 00 00 00 00 48 c7 85 70 ff ff ff 00 00 00 00 89 45 88 4c 89 e0 48 c1 e8 03 4c 89 65 80 <42> 80 3c 28 00 0f 85 9a 00 00 00 48 b8 00 00 00 00 00 fc ff df 4d RSP: 0018:ffff88809788f2c0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 1ffff11012f11e59 RCX: 00000000ffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88809788f390 R08: ffff88809788f8c0 R09: 000000000000000c R10: ffff88809788f5d8 R11: ffff88809788f527 R12: 0000000000000000 R13: dffffc0000000000 R14: ffff88809788f8c0 R15: ffffffff89541d80 FS: 000055555632c880(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000080 CR3: 000000009ba7c000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ip6_route_multipath_add+0xc55/0x1490 net/ipv6/route.c:5094 inet6_rtm_newroute+0xed/0x180 net/ipv6/route.c:5208 rtnetlink_rcv_msg+0x463/0xb00 net/core/rtnetlink.c:5219 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5237 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8ae/0xd70 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:646 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:665 ___sys_sendmsg+0x803/0x920 net/socket.c:2286 __sys_sendmsg+0x105/0x1d0 net/socket.c:2324 __do_sys_sendmsg net/socket.c:2333 [inline] __se_sys_sendmsg net/socket.c:2331 [inline] __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2331 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4401f9 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffc09fd0028 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 00000000004401f9 RDX: 0000000000000000 RSI: 0000000020000080 RDI: 0000000000000003 RBP: 00000000006ca018 R08: 0000000000000000 R09: 00000000004002c8 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000401a80 R13: 0000000000401b10 R14: 0000000000000000 R15: 0000000000000000 Reported-by: syzbot+382566d339d52cd1a204@syzkaller.appspotmail.com Fixes: ebee3cad835f ("ipv6: Add IPv6 multipath notifications for add / replace") Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-20 09:10:21 +00:00
if (list_empty(&rt6_nh_list)) {
NL_SET_ERR_MSG(extack,
"Invalid nexthop configuration - no valid nexthops");
return -EINVAL;
}
/* for add and replace send one notification with all nexthops.
* Skip the notification in fib6_add_rt2node and send one with
* the full route when done
*/
info->skip_notify = 1;
/* For add and replace, send one notification with all nexthops. For
* append, send one notification with all appended nexthops.
*/
info->skip_notify_kernel = 1;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
err_nh = NULL;
list_for_each_entry(nh, &rt6_nh_list, next) {
err = __ip6_ins_rt(nh->fib6_info, info, extack);
fib6_info_release(nh->fib6_info);
net/ipv6: prevent use after free in ip6_route_mpath_notify syzbot reported a use-after-free: BUG: KASAN: use-after-free in ip6_route_mpath_notify+0xe9/0x100 net/ipv6/route.c:4180 Read of size 4 at addr ffff8801bf789cf0 by task syz-executor756/4555 CPU: 1 PID: 4555 Comm: syz-executor756 Not tainted 4.17.0-rc7+ #78 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load4_noabort+0x14/0x20 mm/kasan/report.c:432 ip6_route_mpath_notify+0xe9/0x100 net/ipv6/route.c:4180 ip6_route_multipath_add+0x615/0x1910 net/ipv6/route.c:4303 inet6_rtm_newroute+0xe3/0x160 net/ipv6/route.c:4391 ... Allocated by task 4555: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553 kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:490 kmem_cache_alloc+0x12e/0x760 mm/slab.c:3554 dst_alloc+0xbb/0x1d0 net/core/dst.c:104 __ip6_dst_alloc+0x35/0xa0 net/ipv6/route.c:361 ip6_dst_alloc+0x29/0xb0 net/ipv6/route.c:376 ip6_route_info_create+0x4d4/0x3a30 net/ipv6/route.c:2834 ip6_route_multipath_add+0xc7e/0x1910 net/ipv6/route.c:4240 inet6_rtm_newroute+0xe3/0x160 net/ipv6/route.c:4391 ... Freed by task 4555: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kmem_cache_free+0x86/0x2d0 mm/slab.c:3756 dst_destroy+0x267/0x3c0 net/core/dst.c:140 dst_release_immediate+0x71/0x9e net/core/dst.c:205 fib6_add+0xa40/0x1650 net/ipv6/ip6_fib.c:1305 __ip6_ins_rt+0x6c/0x90 net/ipv6/route.c:1011 ip6_route_multipath_add+0x513/0x1910 net/ipv6/route.c:4267 inet6_rtm_newroute+0xe3/0x160 net/ipv6/route.c:4391 ... The problem is that rt_last can point to a deleted route if the insert fails. One reproducer is to insert a route and then add a multipath route that has a duplicate nexthop.e.g,: $ ip -6 ro add vrf red 2001:db8:101::/64 nexthop via 2001:db8:1::2 $ ip -6 ro append vrf red 2001:db8:101::/64 nexthop via 2001:db8:1::4 nexthop via 2001:db8:1::2 Fix by not setting rt_last until the it is verified the insert succeeded. Fixes: 3b1137fe7482 ("net: ipv6: Change notifications for multipath add to RTA_MULTIPATH") Cc: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David Ahern <dsahern@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-04 20:41:42 +00:00
if (!err) {
/* save reference to last route successfully inserted */
rt_last = nh->fib6_info;
/* save reference to first route for notification */
if (!rt_notif)
rt_notif = nh->fib6_info;
}
/* nh->fib6_info is used or freed at this point, reset to NULL*/
nh->fib6_info = NULL;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
if (err) {
if (replace && nhn)
NL_SET_ERR_MSG_MOD(extack,
"multipath route replace failed (check consistency of installed routes)");
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
err_nh = nh;
goto add_errout;
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
/* Because each route is added like a single route we remove
* these flags after the first nexthop: if there is a collision,
* we have already failed to add the first nexthop:
* fib6_add_rt2node() has rejected it; when replacing, old
* nexthops have been replaced by first new, the rest should
* be added to it.
*/
if (cfg->fc_nlinfo.nlh) {
cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
NLM_F_REPLACE);
cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE;
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
nhn++;
}
/* An in-kernel notification should only be sent in case the new
* multipath route is added as the first route in the node, or if
* it was appended to it. We pass 'rt_notif' since it is the first
* sibling and might allow us to skip some checks in the replace case.
*/
if (ip6_route_mpath_should_notify(rt_notif)) {
enum fib_event_type fib_event;
if (rt_notif->fib6_nsiblings != nhn - 1)
fib_event = FIB_EVENT_ENTRY_APPEND;
else
fib_event = FIB_EVENT_ENTRY_REPLACE;
err = call_fib6_multipath_entry_notifiers(info->nl_net,
fib_event, rt_notif,
nhn - 1, extack);
if (err) {
/* Delete all the siblings that were just added */
err_nh = NULL;
goto add_errout;
}
}
/* success ... tell user about new route */
ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
goto cleanup;
add_errout:
/* send notification for routes that were added so that
* the delete notifications sent by ip6_route_del are
* coherent
*/
if (rt_notif)
ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
/* Delete routes that were already added */
list_for_each_entry(nh, &rt6_nh_list, next) {
if (err_nh == nh)
break;
ip6_route_del(&nh->r_cfg, extack);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
}
cleanup:
list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
if (nh->fib6_info)
fib6_info_release(nh->fib6_info);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
list_del(&nh->next);
kfree(nh);
}
return err;
}
static int ip6_route_multipath_del(struct fib6_config *cfg,
struct netlink_ext_ack *extack)
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
{
struct fib6_config r_cfg;
struct rtnexthop *rtnh;
int last_err = 0;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
int remaining;
int attrlen;
int err;
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
remaining = cfg->fc_mp_len;
rtnh = (struct rtnexthop *)cfg->fc_mp;
/* Parse a Multipath Entry */
while (rtnh_ok(rtnh, remaining)) {
memcpy(&r_cfg, cfg, sizeof(*cfg));
if (rtnh->rtnh_ifindex)
r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
attrlen = rtnh_attrlen(rtnh);
if (attrlen > 0) {
struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
nla = nla_find(attrs, attrlen, RTA_GATEWAY);
if (nla) {
err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla,
extack);
if (err) {
last_err = err;
goto next_rtnh;
}
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
r_cfg.fc_flags |= RTF_GATEWAY;
}
}
err = ip6_route_del(&r_cfg, extack);
ipv6: fix multipath route replace error recovery Problem: The ecmp route replace support for ipv6 in the kernel, deletes the existing ecmp route too early, ie when it installs the first nexthop. If there is an error in installing the subsequent nexthops, its too late to recover the already deleted existing route leaving the fib in an inconsistent state. This patch reduces the possibility of this by doing the following: a) Changes the existing multipath route add code to a two stage process: build rt6_infos + insert them ip6_route_add rt6_info creation code is moved into ip6_route_info_create. b) This ensures that most errors are caught during building rt6_infos and we fail early c) Separates multipath add and del code. Because add needs the special two stage mode in a) and delete essentially does not care. d) In any event if the code fails during inserting a route again, a warning is printed (This should be unlikely) Before the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show /* previously added ecmp route 3000:1000:1000:1000::2 dissappears from * kernel */ After the patch: $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 /* Try replacing the route with a duplicate nexthop */ $ip -6 route change 3000:1000:1000:1000::2/128 nexthop via fe80::202:ff:fe00:b dev swp49s0 nexthop via fe80::202:ff:fe00:d dev swp49s1 nexthop via fe80::202:ff:fe00:d dev swp49s1 RTNETLINK answers: File exists $ip -6 route show 3000:1000:1000:1000::2 via fe80::202:ff:fe00:b dev swp49s0 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:d dev swp49s1 metric 1024 3000:1000:1000:1000::2 via fe80::202:ff:fe00:f dev swp49s2 metric 1024 Fixes: 27596472473a ("ipv6: fix ECMP route replacement") Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-08 17:53:04 +00:00
if (err)
last_err = err;
next_rtnh:
rtnh = rtnh_next(rtnh, &remaining);
}
return last_err;
}
static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct fib6_config cfg;
int err;
err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
if (err < 0)
return err;
if (cfg.fc_nh_id &&
!nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) {
NL_SET_ERR_MSG(extack, "Nexthop id does not exist");
return -EINVAL;
}
if (cfg.fc_mp)
return ip6_route_multipath_del(&cfg, extack);
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
else {
cfg.fc_delete_all_nh = 1;
return ip6_route_del(&cfg, extack);
net: ipv6: Allow shorthand delete of all nexthops in multipath route IPv4 allows multipath routes to be deleted using just the prefix and length. For example: $ ip ro ls vrf red unreachable default metric 8192 1.1.1.0/24 nexthop via 10.100.1.254 dev eth1 weight 1 nexthop via 10.11.200.2 dev eth11.200 weight 1 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 $ ip ro del 1.1.1.0/24 vrf red $ ip ro ls vrf red unreachable default metric 8192 10.11.200.0/24 dev eth11.200 proto kernel scope link src 10.11.200.3 10.100.1.0/24 dev eth1 proto kernel scope link src 10.100.1.3 The same notation does not work with IPv6 because of how multipath routes are implemented for IPv6. For IPv6 only the first nexthop of a multipath route is deleted if the request contains only a prefix and length. This leads to unnecessary complexity in userspace dealing with IPv6 multipath routes. This patch allows all nexthops to be deleted without specifying each one in the delete request. Internally, this is done by walking the sibling list of the route matching the specifications given (prefix, length, metric, protocol, etc). $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium 2001:db8:200::/120 via 2001:db8:1::2 dev eth1 metric 1024 pref medium 2001:db8:200::/120 via 2001:db8:2::2 dev eth2 metric 1024 pref medium ... $ ip -6 ro del vrf red 2001:db8:200::/120 $ ip -6 ro ls vrf red 2001:db8:1::/120 dev eth1 proto kernel metric 256 pref medium 2001:db8:2::/120 dev eth2 proto kernel metric 256 pref medium ... Because IPv6 allows individual nexthops to be deleted without deleting the entire route, the ip6_route_multipath_del and non-multipath code path (ip6_route_del) have to be discriminated so that all nexthops are only deleted for the latter case. This is done by making the existing fc_type in fib6_config a u16 and then adding a new u16 field with fc_delete_all_nh as the first bit. Suggested-by: Dinesh Dutt <ddutt@cumulusnetworks.com> Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 20:37:08 +00:00
}
}
static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct fib6_config cfg;
int err;
err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
if (err < 0)
return err;
if (cfg.fc_metric == 0)
cfg.fc_metric = IP6_RT_PRIO_USER;
if (cfg.fc_mp)
return ip6_route_multipath_add(&cfg, extack);
else
return ip6_route_add(&cfg, GFP_KERNEL, extack);
}
/* add the overhead of this fib6_nh to nexthop_len */
static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg)
{
int *nexthop_len = arg;
*nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */
+ NLA_ALIGN(sizeof(struct rtnexthop))
+ nla_total_size(16); /* RTA_GATEWAY */
if (nh->fib_nh_lws) {
/* RTA_ENCAP_TYPE */
*nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws);
/* RTA_ENCAP */
*nexthop_len += nla_total_size(2);
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
return 0;
}
static size_t rt6_nlmsg_size(struct fib6_info *f6i)
{
int nexthop_len;
if (f6i->nh) {
nexthop_len = nla_total_size(4); /* RTA_NH_ID */
nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size,
&nexthop_len);
} else {
struct fib6_nh *nh = f6i->fib6_nh;
nexthop_len = 0;
if (f6i->fib6_nsiblings) {
nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */
+ NLA_ALIGN(sizeof(struct rtnexthop))
+ nla_total_size(16) /* RTA_GATEWAY */
+ lwtunnel_get_encap_size(nh->fib_nh_lws);
nexthop_len *= f6i->fib6_nsiblings;
}
nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws);
}
return NLMSG_ALIGN(sizeof(struct rtmsg))
+ nla_total_size(16) /* RTA_SRC */
+ nla_total_size(16) /* RTA_DST */
+ nla_total_size(16) /* RTA_GATEWAY */
+ nla_total_size(16) /* RTA_PREFSRC */
+ nla_total_size(4) /* RTA_TABLE */
+ nla_total_size(4) /* RTA_IIF */
+ nla_total_size(4) /* RTA_OIF */
+ nla_total_size(4) /* RTA_PRIORITY */
+ RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
+ nla_total_size(sizeof(struct rta_cacheinfo))
+ nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
+ nla_total_size(1) /* RTA_PREF */
+ nexthop_len;
}
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh,
unsigned char *flags)
{
if (nexthop_is_multipath(nh)) {
struct nlattr *mp;
mp = nla_nest_start_noflag(skb, RTA_MULTIPATH);
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (!mp)
goto nla_put_failure;
if (nexthop_mpath_fill_node(skb, nh, AF_INET6))
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
goto nla_put_failure;
nla_nest_end(skb, mp);
} else {
struct fib6_nh *fib6_nh;
fib6_nh = nexthop_fib6_nh(nh);
if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6,
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
flags, false) < 0)
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int rt6_fill_node(struct net *net, struct sk_buff *skb,
struct fib6_info *rt, struct dst_entry *dst,
struct in6_addr *dest, struct in6_addr *src,
int iif, int type, u32 portid, u32 seq,
unsigned int flags)
{
struct rt6_info *rt6 = (struct rt6_info *)dst;
struct rt6key *rt6_dst, *rt6_src;
u32 *pmetrics, table, rt6_flags;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
unsigned char nh_flags = 0;
struct nlmsghdr *nlh;
struct rtmsg *rtm;
long expires = 0;
nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
if (!nlh)
return -EMSGSIZE;
if (rt6) {
rt6_dst = &rt6->rt6i_dst;
rt6_src = &rt6->rt6i_src;
rt6_flags = rt6->rt6i_flags;
} else {
rt6_dst = &rt->fib6_dst;
rt6_src = &rt->fib6_src;
rt6_flags = rt->fib6_flags;
}
rtm = nlmsg_data(nlh);
rtm->rtm_family = AF_INET6;
rtm->rtm_dst_len = rt6_dst->plen;
rtm->rtm_src_len = rt6_src->plen;
rtm->rtm_tos = 0;
if (rt->fib6_table)
table = rt->fib6_table->tb6_id;
else
table = RT6_TABLE_UNSPEC;
rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT;
if (nla_put_u32(skb, RTA_TABLE, table))
goto nla_put_failure;
rtm->rtm_type = rt->fib6_type;
rtm->rtm_flags = 0;
rtm->rtm_scope = RT_SCOPE_UNIVERSE;
rtm->rtm_protocol = rt->fib6_protocol;
if (rt6_flags & RTF_CACHE)
rtm->rtm_flags |= RTM_F_CLONED;
if (dest) {
if (nla_put_in6_addr(skb, RTA_DST, dest))
goto nla_put_failure;
rtm->rtm_dst_len = 128;
} else if (rtm->rtm_dst_len)
if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
goto nla_put_failure;
#ifdef CONFIG_IPV6_SUBTREES
if (src) {
if (nla_put_in6_addr(skb, RTA_SRC, src))
goto nla_put_failure;
rtm->rtm_src_len = 128;
} else if (rtm->rtm_src_len &&
nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
goto nla_put_failure;
#endif
if (iif) {
#ifdef CONFIG_IPV6_MROUTE
if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
int err = ip6mr_get_route(net, skb, rtm, portid);
if (err == 0)
return 0;
if (err < 0)
goto nla_put_failure;
} else
#endif
if (nla_put_u32(skb, RTA_IIF, iif))
goto nla_put_failure;
} else if (dest) {
struct in6_addr saddr_buf;
if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
goto nla_put_failure;
}
if (rt->fib6_prefsrc.plen) {
struct in6_addr saddr_buf;
saddr_buf = rt->fib6_prefsrc.addr;
if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
goto nla_put_failure;
}
pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
if (rtnetlink_put_metrics(skb, pmetrics) < 0)
goto nla_put_failure;
if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
goto nla_put_failure;
/* For multipath routes, walk the siblings list and add
* each as a nexthop within RTA_MULTIPATH.
*/
if (rt6) {
if (rt6_flags & RTF_GATEWAY &&
nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
goto nla_put_failure;
if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
goto nla_put_failure;
if (dst->lwtstate &&
lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0)
goto nla_put_failure;
} else if (rt->fib6_nsiblings) {
struct fib6_info *sibling, *next_sibling;
struct nlattr *mp;
mp = nla_nest_start_noflag(skb, RTA_MULTIPATH);
if (!mp)
goto nla_put_failure;
if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common,
rt->fib6_nh->fib_nh_weight, AF_INET6,
0) < 0)
goto nla_put_failure;
list_for_each_entry_safe(sibling, next_sibling,
&rt->fib6_siblings, fib6_siblings) {
if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common,
sibling->fib6_nh->fib_nh_weight,
AF_INET6, 0) < 0)
goto nla_put_failure;
}
nla_nest_end(skb, mp);
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
} else if (rt->nh) {
if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id))
goto nla_put_failure;
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
if (nexthop_is_blackhole(rt->nh))
rtm->rtm_type = RTN_BLACKHOLE;
if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) &&
rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0)
ipv6: Plumb support for nexthop object in a fib6_info Add struct nexthop and nh_list list_head to fib6_info. nh_list is the fib6_info side of the nexthop <-> fib_info relationship. Since a fib6_info referencing a nexthop object can not have 'sibling' entries (the old way of doing multipath routes), the nh_list is a union with fib6_siblings. Add f6i_list list_head to 'struct nexthop' to track fib6_info entries using a nexthop instance. Update __remove_nexthop_fib to walk f6_list and delete fib entries using the nexthop. Add a few nexthop helpers for use when a nexthop is added to fib6_info: - nexthop_fib6_nh - return first fib6_nh in a nexthop object - fib6_info_nh_dev moved to nexthop.h and updated to use nexthop_fib6_nh if the fib6_info references a nexthop object - nexthop_path_fib6_result - similar to ipv4, select a path within a multipath nexthop object. If the nexthop is a blackhole, set fib6_result type to RTN_BLACKHOLE, and set the REJECT flag Update the fib6_info references to check for nh and take a different path as needed: - rt6_qualify_for_ecmp - if a fib entry uses a nexthop object it can NOT be coalesced with other fib entries into a multipath route - rt6_duplicate_nexthop - use nexthop_cmp if either fib6_info references a nexthop - addrconf (host routes), RA's and info entries (anything configured via ndisc) does not use nexthop objects - fib6_info_destroy_rcu - put reference to nexthop object - fib6_purge_rt - drop fib6_info from f6i_list - fib6_select_path - update to use the new nexthop_path_fib6_result when fib entry uses a nexthop object - rt6_device_match - update to catch use of nexthop object as a blackhole and set fib6_type and flags. - ip6_route_info_create - don't add space for fib6_nh if fib entry is going to reference a nexthop object, take a reference to nexthop object, disallow use of source routing - rt6_nlmsg_size - add space for RTA_NH_ID - add rt6_fill_node_nexthop to add nexthop data on a dump As with ipv4, most of the changes push existing code into the else branch of whether the fib entry uses a nexthop object. Update the nexthop code to walk f6i_list on a nexthop deleted to remove fib entries referencing it. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-04 03:19:52 +00:00
goto nla_put_failure;
rtm->rtm_flags |= nh_flags;
} else {
if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6,
&nh_flags, false) < 0)
goto nla_put_failure;
rtm->rtm_flags |= nh_flags;
}
if (rt6_flags & RTF_EXPIRES) {
expires = dst ? dst->expires : rt->expires;
expires -= jiffies;
}
if (!dst) {
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
if (READ_ONCE(rt->offload))
rtm->rtm_flags |= RTM_F_OFFLOAD;
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
if (READ_ONCE(rt->trap))
rtm->rtm_flags |= RTM_F_TRAP;
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
if (READ_ONCE(rt->offload_failed))
rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED;
}
if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
goto nla_put_failure;
if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
goto nla_put_failure;
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg)
{
const struct net_device *dev = arg;
if (nh->fib_nh_dev == dev)
return 1;
return 0;
}
static bool fib6_info_uses_dev(const struct fib6_info *f6i,
const struct net_device *dev)
{
if (f6i->nh) {
struct net_device *_dev = (struct net_device *)dev;
return !!nexthop_for_each_fib6_nh(f6i->nh,
fib6_info_nh_uses_dev,
_dev);
}
if (f6i->fib6_nh->fib_nh_dev == dev)
return true;
if (f6i->fib6_nsiblings) {
struct fib6_info *sibling, *next_sibling;
list_for_each_entry_safe(sibling, next_sibling,
&f6i->fib6_siblings, fib6_siblings) {
if (sibling->fib6_nh->fib_nh_dev == dev)
return true;
}
}
return false;
}
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
struct fib6_nh_exception_dump_walker {
struct rt6_rtnl_dump_arg *dump;
struct fib6_info *rt;
unsigned int flags;
unsigned int skip;
unsigned int count;
};
static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg)
{
struct fib6_nh_exception_dump_walker *w = arg;
struct rt6_rtnl_dump_arg *dump = w->dump;
struct rt6_exception_bucket *bucket;
struct rt6_exception *rt6_ex;
int i, err;
bucket = fib6_nh_get_excptn_bucket(nh, NULL);
if (!bucket)
return 0;
for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
if (w->skip) {
w->skip--;
continue;
}
/* Expiration of entries doesn't bump sernum, insertion
* does. Removal is triggered by insertion, so we can
* rely on the fact that if entries change between two
* partial dumps, this node is scanned again completely,
* see rt6_insert_exception() and fib6_dump_table().
*
* Count expired entries we go through as handled
* entries that we'll skip next time, in case of partial
* node dump. Otherwise, if entries expire meanwhile,
* we'll skip the wrong amount.
*/
if (rt6_check_expired(rt6_ex->rt6i)) {
w->count++;
continue;
}
err = rt6_fill_node(dump->net, dump->skb, w->rt,
&rt6_ex->rt6i->dst, NULL, NULL, 0,
RTM_NEWROUTE,
NETLINK_CB(dump->cb->skb).portid,
dump->cb->nlh->nlmsg_seq, w->flags);
if (err)
return err;
w->count++;
}
bucket++;
}
return 0;
}
/* Return -1 if done with node, number of handled routes on partial dump */
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip)
{
struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
struct fib_dump_filter *filter = &arg->filter;
unsigned int flags = NLM_F_MULTI;
net: ipv6: ignore null_entry on route dumps lkp-robot reported a BUG: [ 10.151226] BUG: unable to handle kernel NULL pointer dereference at 00000198 [ 10.152525] IP: rt6_fill_node+0x164/0x4b8 [ 10.153307] *pdpt = 0000000012ee5001 *pde = 0000000000000000 [ 10.153309] [ 10.154492] Oops: 0000 [#1] [ 10.154987] CPU: 0 PID: 909 Comm: netifd Not tainted 4.10.0-rc4-00722-g41e8c70ee162-dirty #10 [ 10.156482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_083030-gandalf 04/01/2014 [ 10.158254] task: d0deb000 task.stack: d0e0c000 [ 10.159059] EIP: rt6_fill_node+0x164/0x4b8 [ 10.159780] EFLAGS: 00010296 CPU: 0 [ 10.160404] EAX: 00000000 EBX: d10c2358 ECX: c1f7c6cc EDX: c1f6ff44 [ 10.161469] ESI: 00000000 EDI: c2059900 EBP: d0e0dc4c ESP: d0e0dbe4 [ 10.162534] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 0068 [ 10.163482] CR0: 80050033 CR2: 00000198 CR3: 10d94660 CR4: 000006b0 [ 10.164535] Call Trace: [ 10.164993] ? paravirt_sched_clock+0x9/0xd [ 10.165727] ? sched_clock+0x9/0xc [ 10.166329] ? sched_clock_cpu+0x19/0xe9 [ 10.166991] ? lock_release+0x13e/0x36c [ 10.167652] rt6_dump_route+0x4c/0x56 [ 10.168276] fib6_dump_node+0x1d/0x3d [ 10.168913] fib6_walk_continue+0xab/0x167 [ 10.169611] fib6_walk+0x2a/0x40 [ 10.170182] inet6_dump_fib+0xfb/0x1e0 [ 10.170855] netlink_dump+0xcd/0x21f This happens when the loopback device is set down and a ipv6 fib route dump is requested. ip6_null_entry is the root of all ipv6 fib tables making it integrated into the table and hence passed to the ipv6 route dump code. The null_entry route uses the loopback device for dst.dev but may not have rt6i_idev set because of the order in which initializations are done -- ip6_route_net_init is run before addrconf_init has initialized the loopback device. Fixing the initialization order is a much bigger problem with no obvious solution thus far. The BUG is triggered when the loopback is set down and the netif_running check added by a1a22c1206 fails. The fill_node descends to checking rt->rt6i_idev for ignore_routes_with_linkdown and since rt6i_idev is NULL it faults. The null_entry route should not be processed in a dump request. Catch and ignore. This check is done in rt6_dump_route as it is the highest place in the callchain with knowledge of both the route and the network namespace. Fixes: a1a22c1206("net: ipv6: Keep nexthop of multipath route on admin down") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-26 21:54:08 +00:00
struct net *net = arg->net;
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
int count = 0;
net: ipv6: ignore null_entry on route dumps lkp-robot reported a BUG: [ 10.151226] BUG: unable to handle kernel NULL pointer dereference at 00000198 [ 10.152525] IP: rt6_fill_node+0x164/0x4b8 [ 10.153307] *pdpt = 0000000012ee5001 *pde = 0000000000000000 [ 10.153309] [ 10.154492] Oops: 0000 [#1] [ 10.154987] CPU: 0 PID: 909 Comm: netifd Not tainted 4.10.0-rc4-00722-g41e8c70ee162-dirty #10 [ 10.156482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_083030-gandalf 04/01/2014 [ 10.158254] task: d0deb000 task.stack: d0e0c000 [ 10.159059] EIP: rt6_fill_node+0x164/0x4b8 [ 10.159780] EFLAGS: 00010296 CPU: 0 [ 10.160404] EAX: 00000000 EBX: d10c2358 ECX: c1f7c6cc EDX: c1f6ff44 [ 10.161469] ESI: 00000000 EDI: c2059900 EBP: d0e0dc4c ESP: d0e0dbe4 [ 10.162534] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 0068 [ 10.163482] CR0: 80050033 CR2: 00000198 CR3: 10d94660 CR4: 000006b0 [ 10.164535] Call Trace: [ 10.164993] ? paravirt_sched_clock+0x9/0xd [ 10.165727] ? sched_clock+0x9/0xc [ 10.166329] ? sched_clock_cpu+0x19/0xe9 [ 10.166991] ? lock_release+0x13e/0x36c [ 10.167652] rt6_dump_route+0x4c/0x56 [ 10.168276] fib6_dump_node+0x1d/0x3d [ 10.168913] fib6_walk_continue+0xab/0x167 [ 10.169611] fib6_walk+0x2a/0x40 [ 10.170182] inet6_dump_fib+0xfb/0x1e0 [ 10.170855] netlink_dump+0xcd/0x21f This happens when the loopback device is set down and a ipv6 fib route dump is requested. ip6_null_entry is the root of all ipv6 fib tables making it integrated into the table and hence passed to the ipv6 route dump code. The null_entry route uses the loopback device for dst.dev but may not have rt6i_idev set because of the order in which initializations are done -- ip6_route_net_init is run before addrconf_init has initialized the loopback device. Fixing the initialization order is a much bigger problem with no obvious solution thus far. The BUG is triggered when the loopback is set down and the netif_running check added by a1a22c1206 fails. The fill_node descends to checking rt->rt6i_idev for ignore_routes_with_linkdown and since rt6i_idev is NULL it faults. The null_entry route should not be processed in a dump request. Catch and ignore. This check is done in rt6_dump_route as it is the highest place in the callchain with knowledge of both the route and the network namespace. Fixes: a1a22c1206("net: ipv6: Keep nexthop of multipath route on admin down") Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-26 21:54:08 +00:00
if (rt == net->ipv6.fib6_null_entry)
return -1;
if ((filter->flags & RTM_F_PREFIX) &&
!(rt->fib6_flags & RTF_PREFIX_RT)) {
/* success since this is not a prefix route */
return -1;
}
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
if (filter->filter_set &&
((filter->rt_type && rt->fib6_type != filter->rt_type) ||
(filter->dev && !fib6_info_uses_dev(rt, filter->dev)) ||
(filter->protocol && rt->fib6_protocol != filter->protocol))) {
return -1;
}
if (filter->filter_set ||
!filter->dump_routes || !filter->dump_exceptions) {
flags |= NLM_F_DUMP_FILTERED;
}
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
if (filter->dump_routes) {
if (skip) {
skip--;
} else {
if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL,
0, RTM_NEWROUTE,
NETLINK_CB(arg->cb->skb).portid,
arg->cb->nlh->nlmsg_seq, flags)) {
return 0;
}
count++;
}
}
if (filter->dump_exceptions) {
struct fib6_nh_exception_dump_walker w = { .dump = arg,
.rt = rt,
.flags = flags,
.skip = skip,
.count = 0 };
int err;
ipv6: fix suspicious RCU usage in rt6_dump_route() syzbot reminded us that rt6_nh_dump_exceptions() needs to be called with rcu_read_lock() net/ipv6/route.c:1593 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 2 locks held by syz-executor609/8966: #0: 00000000b7dbe288 (rtnl_mutex){+.+.}, at: netlink_dump+0xe7/0xfb0 net/netlink/af_netlink.c:2199 #1: 00000000f2d87c21 (&(&tb->tb6_lock)->rlock){+...}, at: spin_lock_bh include/linux/spinlock.h:343 [inline] #1: 00000000f2d87c21 (&(&tb->tb6_lock)->rlock){+...}, at: fib6_dump_table.isra.0+0x37e/0x570 net/ipv6/ip6_fib.c:533 stack backtrace: CPU: 0 PID: 8966 Comm: syz-executor609 Not tainted 5.2.0-rc5+ #43 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 lockdep_rcu_suspicious+0x153/0x15d kernel/locking/lockdep.c:5250 fib6_nh_get_excptn_bucket+0x18e/0x1b0 net/ipv6/route.c:1593 rt6_nh_dump_exceptions+0x45/0x4d0 net/ipv6/route.c:5541 rt6_dump_route+0x904/0xc50 net/ipv6/route.c:5640 fib6_dump_node+0x168/0x280 net/ipv6/ip6_fib.c:467 fib6_walk_continue+0x4a9/0x8e0 net/ipv6/ip6_fib.c:1986 fib6_walk+0x9d/0x100 net/ipv6/ip6_fib.c:2034 fib6_dump_table.isra.0+0x38a/0x570 net/ipv6/ip6_fib.c:534 inet6_dump_fib+0x93c/0xb00 net/ipv6/ip6_fib.c:624 rtnl_dump_all+0x295/0x490 net/core/rtnetlink.c:3445 netlink_dump+0x558/0xfb0 net/netlink/af_netlink.c:2244 __netlink_dump_start+0x5b1/0x7d0 net/netlink/af_netlink.c:2352 netlink_dump_start include/linux/netlink.h:226 [inline] rtnetlink_rcv_msg+0x73d/0xb00 net/core/rtnetlink.c:5182 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5237 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8ae/0xd70 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:646 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:665 sock_write_iter+0x27c/0x3e0 net/socket.c:994 call_write_iter include/linux/fs.h:1872 [inline] new_sync_write+0x4d3/0x770 fs/read_write.c:483 __vfs_write+0xe1/0x110 fs/read_write.c:496 vfs_write+0x20c/0x580 fs/read_write.c:558 ksys_write+0x14f/0x290 fs/read_write.c:611 __do_sys_write fs/read_write.c:623 [inline] __se_sys_write fs/read_write.c:620 [inline] __x64_sys_write+0x73/0xb0 fs/read_write.c:620 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4401b9 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffc8e134978 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 00000000004401b9 RDX: 000000000000001c RSI: 0000000020000000 RDI: 00 Fixes: 1e47b4837f3b ("ipv6: Dump route exceptions if requested") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Stefano Brivio <sbrivio@redhat.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-26 10:05:28 +00:00
rcu_read_lock();
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
if (rt->nh) {
err = nexthop_for_each_fib6_nh(rt->nh,
rt6_nh_dump_exceptions,
&w);
} else {
err = rt6_nh_dump_exceptions(rt->fib6_nh, &w);
}
ipv6: fix suspicious RCU usage in rt6_dump_route() syzbot reminded us that rt6_nh_dump_exceptions() needs to be called with rcu_read_lock() net/ipv6/route.c:1593 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 2 locks held by syz-executor609/8966: #0: 00000000b7dbe288 (rtnl_mutex){+.+.}, at: netlink_dump+0xe7/0xfb0 net/netlink/af_netlink.c:2199 #1: 00000000f2d87c21 (&(&tb->tb6_lock)->rlock){+...}, at: spin_lock_bh include/linux/spinlock.h:343 [inline] #1: 00000000f2d87c21 (&(&tb->tb6_lock)->rlock){+...}, at: fib6_dump_table.isra.0+0x37e/0x570 net/ipv6/ip6_fib.c:533 stack backtrace: CPU: 0 PID: 8966 Comm: syz-executor609 Not tainted 5.2.0-rc5+ #43 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 lockdep_rcu_suspicious+0x153/0x15d kernel/locking/lockdep.c:5250 fib6_nh_get_excptn_bucket+0x18e/0x1b0 net/ipv6/route.c:1593 rt6_nh_dump_exceptions+0x45/0x4d0 net/ipv6/route.c:5541 rt6_dump_route+0x904/0xc50 net/ipv6/route.c:5640 fib6_dump_node+0x168/0x280 net/ipv6/ip6_fib.c:467 fib6_walk_continue+0x4a9/0x8e0 net/ipv6/ip6_fib.c:1986 fib6_walk+0x9d/0x100 net/ipv6/ip6_fib.c:2034 fib6_dump_table.isra.0+0x38a/0x570 net/ipv6/ip6_fib.c:534 inet6_dump_fib+0x93c/0xb00 net/ipv6/ip6_fib.c:624 rtnl_dump_all+0x295/0x490 net/core/rtnetlink.c:3445 netlink_dump+0x558/0xfb0 net/netlink/af_netlink.c:2244 __netlink_dump_start+0x5b1/0x7d0 net/netlink/af_netlink.c:2352 netlink_dump_start include/linux/netlink.h:226 [inline] rtnetlink_rcv_msg+0x73d/0xb00 net/core/rtnetlink.c:5182 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5237 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8ae/0xd70 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:646 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:665 sock_write_iter+0x27c/0x3e0 net/socket.c:994 call_write_iter include/linux/fs.h:1872 [inline] new_sync_write+0x4d3/0x770 fs/read_write.c:483 __vfs_write+0xe1/0x110 fs/read_write.c:496 vfs_write+0x20c/0x580 fs/read_write.c:558 ksys_write+0x14f/0x290 fs/read_write.c:611 __do_sys_write fs/read_write.c:623 [inline] __se_sys_write fs/read_write.c:620 [inline] __x64_sys_write+0x73/0xb0 fs/read_write.c:620 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x4401b9 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffc8e134978 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 00000000004401b9 RDX: 000000000000001c RSI: 0000000020000000 RDI: 00 Fixes: 1e47b4837f3b ("ipv6: Dump route exceptions if requested") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Stefano Brivio <sbrivio@redhat.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-26 10:05:28 +00:00
rcu_read_unlock();
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
if (err)
return count + w.count;
ipv6: Dump route exceptions if requested Since commit 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache"), route exceptions reside in a separate hash table, and won't be found by walking the FIB, so they won't be dumped to userspace on a RTM_GETROUTE message. This causes 'ip -6 route list cache' and 'ip -6 route flush cache' to have no function anymore: # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 539sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 536sec mtu 1500 pref medium # ip -6 route list cache # ip -6 route flush cache # ip -6 route get fc00:3::1 fc00:3::1 via fc00:1::2 dev veth_A-R1 src fc00:1::1 metric 1024 expires 520sec mtu 1400 pref medium # ip -6 route get fc00:4::1 fc00:4::1 via fc00:2::2 dev veth_A-R2 src fc00:2::1 metric 1024 expires 519sec mtu 1500 pref medium because iproute2 lists cached routes using RTM_GETROUTE, and flushes them by listing all the routes, and deleting them with RTM_DELROUTE one by one. If cached routes are requested using the RTM_F_CLONED flag together with strict checking, or if no strict checking is requested (and hence we can't consistently apply filters), look up exceptions in the hash table associated with the current fib6_info in rt6_dump_route(), and, if present and not expired, add them to the dump. We might be unable to dump all the entries for a given node in a single message, so keep track of how many entries were handled for the current node in fib6_walker, and skip that amount in case we start from the same partially dumped node. When a partial dump restarts, as the starting node might change when 'sernum' changes, we have no guarantee that we need to skip the same amount of in-node entries. Therefore, we need two counters, and we need to zero the in-node counter if the node from which the dump is resumed differs. Note that, with the current version of iproute2, this only fixes the 'ip -6 route list cache': on a flush command, iproute2 doesn't pass RTM_F_CLONED and, due to this inconsistency, 'ip -6 route flush cache' is still unable to fetch the routes to be flushed. This will be addressed in a patch for iproute2. To flush cached routes, a procfs entry could be introduced instead: that's how it works for IPv4. We already have a rt6_flush_exception() function ready to be wired to it. However, this would not solve the issue for listing. Versions of iproute2 and kernel tested: iproute2 kernel 4.14.0 4.15.0 4.19.0 5.0.0 5.1.0 5.1.0, patched 3.18 list + + + + + + flush + + + + + + 4.4 list + + + + + + flush + + + + + + 4.9 list + + + + + + flush + + + + + + 4.14 list + + + + + + flush + + + + + + 4.15 list flush 4.19 list flush 5.0 list flush 5.1 list flush with list + + + + + + fix flush + + + + v7: - Explain usage of "skip" counters in commit message (suggested by David Ahern) v6: - Rebase onto net-next, use recently introduced nexthop walker - Make rt6_nh_dump_exceptions() a separate function (suggested by David Ahern) v5: - Use dump_routes and dump_exceptions from filter, ignore NLM_F_MATCH, update test results (flushing works with iproute2 < 5.0.0 now) v4: - Split NLM_F_MATCH and strict check handling in separate patches - Filter routes using RTM_F_CLONED: if it's not set, only return non-cached routes, and if it's set, only return cached routes: change requested by David Ahern and Martin Lau. This implies that iproute2 needs a separate patch to be able to flush IPv6 cached routes. This is not ideal because we can't fix the breakage caused by 2b760fcf5cfb entirely in kernel. However, two years have passed since then, and this makes it more tolerable v3: - More descriptive comment about expired exceptions in rt6_dump_route() - Swap return values of rt6_dump_route() (suggested by Martin Lau) - Don't zero skip_in_node in case we don't dump anything in a given pass (also suggested by Martin Lau) - Remove check on RTM_F_CLONED altogether: in the current UAPI semantic, it's just a flag to indicate the route was cloned, not to filter on routes v2: Add tracking of number of entries to be skipped in current node after a partial dump. As we restart from the same node, if not all the exceptions for a given node fit in a single message, the dump will not terminate, as suggested by Martin Lau. This is a concrete possibility, setting up a big number of exceptions for the same route actually causes the issue, suggested by David Ahern. Reported-by: Jianlin Shi <jishi@redhat.com> Fixes: 2b760fcf5cfb ("ipv6: hook up exception table to store dst cache") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-21 15:45:27 +00:00
}
return -1;
}
static int inet6_rtm_valid_getroute_req(struct sk_buff *skb,
const struct nlmsghdr *nlh,
struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct rtmsg *rtm;
int i, err;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
NL_SET_ERR_MSG_MOD(extack,
"Invalid header for get route request");
return -EINVAL;
}
if (!netlink_strict_get_check(skb))
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
rtm_ipv6_policy, extack);
rtm = nlmsg_data(nlh);
if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) ||
(rtm->rtm_dst_len && rtm->rtm_dst_len != 128) ||
rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope ||
rtm->rtm_type) {
NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request");
return -EINVAL;
}
if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) {
NL_SET_ERR_MSG_MOD(extack,
"Invalid flags for get route request");
return -EINVAL;
}
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
rtm_ipv6_policy, extack);
if (err)
return err;
if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
(tb[RTA_DST] && !rtm->rtm_dst_len)) {
NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6");
return -EINVAL;
}
for (i = 0; i <= RTA_MAX; i++) {
if (!tb[i])
continue;
switch (i) {
case RTA_SRC:
case RTA_DST:
case RTA_IIF:
case RTA_OIF:
case RTA_MARK:
case RTA_UID:
case RTA_SPORT:
case RTA_DPORT:
case RTA_IP_PROTO:
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request");
return -EINVAL;
}
}
return 0;
}
static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(in_skb->sk);
struct nlattr *tb[RTA_MAX+1];
int err, iif = 0, oif = 0;
struct fib6_info *from;
struct dst_entry *dst;
struct rt6_info *rt;
struct sk_buff *skb;
struct rtmsg *rtm;
struct flowi6 fl6 = {};
bool fibmatch;
err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
if (err < 0)
goto errout;
err = -EINVAL;
rtm = nlmsg_data(nlh);
fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
if (tb[RTA_SRC]) {
if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
goto errout;
fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
}
if (tb[RTA_DST]) {
if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
goto errout;
fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
}
if (tb[RTA_IIF])
iif = nla_get_u32(tb[RTA_IIF]);
if (tb[RTA_OIF])
oif = nla_get_u32(tb[RTA_OIF]);
if (tb[RTA_MARK])
fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
if (tb[RTA_UID])
fl6.flowi6_uid = make_kuid(current_user_ns(),
nla_get_u32(tb[RTA_UID]));
else
fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
if (tb[RTA_SPORT])
fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
if (tb[RTA_DPORT])
fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
if (tb[RTA_IP_PROTO]) {
err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
&fl6.flowi6_proto, AF_INET6,
extack);
if (err)
goto errout;
}
if (iif) {
struct net_device *dev;
int flags = 0;
rcu_read_lock();
dev = dev_get_by_index_rcu(net, iif);
if (!dev) {
rcu_read_unlock();
err = -ENODEV;
goto errout;
}
fl6.flowi6_iif = iif;
if (!ipv6_addr_any(&fl6.saddr))
flags |= RT6_LOOKUP_F_HAS_SADDR;
dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
rcu_read_unlock();
} else {
fl6.flowi6_oif = oif;
ipv6: Honor specified parameters in fibmatch lookup Currently, parameters such as oif and source address are not taken into account during fibmatch lookup. Example (IPv4 for reference) before patch: $ ip -4 route show 192.0.2.0/24 dev dummy0 proto kernel scope link src 192.0.2.1 198.51.100.0/24 dev dummy1 proto kernel scope link src 198.51.100.1 $ ip -6 route show 2001:db8:1::/64 dev dummy0 proto kernel metric 256 pref medium 2001:db8:2::/64 dev dummy1 proto kernel metric 256 pref medium fe80::/64 dev dummy0 proto kernel metric 256 pref medium fe80::/64 dev dummy1 proto kernel metric 256 pref medium $ ip -4 route get fibmatch 192.0.2.2 oif dummy0 192.0.2.0/24 dev dummy0 proto kernel scope link src 192.0.2.1 $ ip -4 route get fibmatch 192.0.2.2 oif dummy1 RTNETLINK answers: No route to host $ ip -6 route get fibmatch 2001:db8:1::2 oif dummy0 2001:db8:1::/64 dev dummy0 proto kernel metric 256 pref medium $ ip -6 route get fibmatch 2001:db8:1::2 oif dummy1 2001:db8:1::/64 dev dummy0 proto kernel metric 256 pref medium After: $ ip -6 route get fibmatch 2001:db8:1::2 oif dummy0 2001:db8:1::/64 dev dummy0 proto kernel metric 256 pref medium $ ip -6 route get fibmatch 2001:db8:1::2 oif dummy1 RTNETLINK answers: Network is unreachable The problem stems from the fact that the necessary route lookup flags are not set based on these parameters. Instead of duplicating the same logic for fibmatch, we can simply resolve the original route from its copy and dump it instead. Fixes: 18c3a61c4264 ("net: ipv6: RTM_GETROUTE: return matched fib result when requested") Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-20 10:28:25 +00:00
dst = ip6_route_output(net, NULL, &fl6);
}
rt = container_of(dst, struct rt6_info, dst);
if (rt->dst.error) {
err = rt->dst.error;
ip6_rt_put(rt);
goto errout;
}
if (rt == net->ipv6.ip6_null_entry) {
err = rt->dst.error;
ip6_rt_put(rt);
goto errout;
}
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb) {
ip6_rt_put(rt);
err = -ENOBUFS;
goto errout;
}
skb_dst_set(skb, &rt->dst);
rcu_read_lock();
from = rcu_dereference(rt->from);
if (from) {
if (fibmatch)
err = rt6_fill_node(net, skb, from, NULL, NULL, NULL,
iif, RTM_NEWROUTE,
NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, 0);
else
err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
&fl6.saddr, iif, RTM_NEWROUTE,
NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, 0);
} else {
err = -ENETUNREACH;
}
rcu_read_unlock();
if (err < 0) {
kfree_skb(skb);
goto errout;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout:
return err;
}
void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
unsigned int nlm_flags)
{
struct sk_buff *skb;
struct net *net = info->nl_net;
u32 seq;
int err;
err = -ENOBUFS;
seq = info->nlh ? info->nlh->nlmsg_seq : 0;
skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
if (!skb)
goto errout;
err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
event, info->portid, seq, nlm_flags);
if (err < 0) {
/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
2009-02-25 07:18:28 +00:00
info->nlh, gfp_any());
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
}
void fib6_rt_update(struct net *net, struct fib6_info *rt,
struct nl_info *info)
{
u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
if (!skb)
goto errout;
err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE);
if (err < 0) {
/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
info->nlh, gfp_any());
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
}
net: ipv6: Emit notification when fib hardware flags are changed After installing a route to the kernel, user space receives an acknowledgment, which means the route was installed in the kernel, but not necessarily in hardware. The asynchronous nature of route installation in hardware can lead to a routing daemon advertising a route before it was actually installed in hardware. This can result in packet loss or mis-routed packets until the route is installed in hardware. It is also possible for a route already installed in hardware to change its action and therefore its flags. For example, a host route that is trapping packets can be "promoted" to perform decapsulation following the installation of an IPinIP/VXLAN tunnel. Emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/RTM_F_TRAP flags are changed. The aim is to provide an indication to user-space (e.g., routing daemons) about the state of the route in hardware. Introduce a sysctl that controls this behavior. Keep the default value at 0 (i.e., do not emit notifications) for several reasons: - Multiple RTM_NEWROUTE notification per-route might confuse existing routing daemons. - Convergence reasons in routing daemons. - The extra notifications will negatively impact the insertion rate. - Not all users are interested in these notifications. Move fib6_info_hw_flags_set() to C file because it is no longer a short function. Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-01 19:47:55 +00:00
void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i,
bool offload, bool trap, bool offload_failed)
net: ipv6: Emit notification when fib hardware flags are changed After installing a route to the kernel, user space receives an acknowledgment, which means the route was installed in the kernel, but not necessarily in hardware. The asynchronous nature of route installation in hardware can lead to a routing daemon advertising a route before it was actually installed in hardware. This can result in packet loss or mis-routed packets until the route is installed in hardware. It is also possible for a route already installed in hardware to change its action and therefore its flags. For example, a host route that is trapping packets can be "promoted" to perform decapsulation following the installation of an IPinIP/VXLAN tunnel. Emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/RTM_F_TRAP flags are changed. The aim is to provide an indication to user-space (e.g., routing daemons) about the state of the route in hardware. Introduce a sysctl that controls this behavior. Keep the default value at 0 (i.e., do not emit notifications) for several reasons: - Multiple RTM_NEWROUTE notification per-route might confuse existing routing daemons. - Convergence reasons in routing daemons. - The extra notifications will negatively impact the insertion rate. - Not all users are interested in these notifications. Move fib6_info_hw_flags_set() to C file because it is no longer a short function. Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-01 19:47:55 +00:00
{
struct sk_buff *skb;
int err;
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
if (READ_ONCE(f6i->offload) == offload &&
READ_ONCE(f6i->trap) == trap &&
READ_ONCE(f6i->offload_failed) == offload_failed)
net: ipv6: Emit notification when fib hardware flags are changed After installing a route to the kernel, user space receives an acknowledgment, which means the route was installed in the kernel, but not necessarily in hardware. The asynchronous nature of route installation in hardware can lead to a routing daemon advertising a route before it was actually installed in hardware. This can result in packet loss or mis-routed packets until the route is installed in hardware. It is also possible for a route already installed in hardware to change its action and therefore its flags. For example, a host route that is trapping packets can be "promoted" to perform decapsulation following the installation of an IPinIP/VXLAN tunnel. Emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/RTM_F_TRAP flags are changed. The aim is to provide an indication to user-space (e.g., routing daemons) about the state of the route in hardware. Introduce a sysctl that controls this behavior. Keep the default value at 0 (i.e., do not emit notifications) for several reasons: - Multiple RTM_NEWROUTE notification per-route might confuse existing routing daemons. - Convergence reasons in routing daemons. - The extra notifications will negatively impact the insertion rate. - Not all users are interested in these notifications. Move fib6_info_hw_flags_set() to C file because it is no longer a short function. Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-01 19:47:55 +00:00
return;
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
WRITE_ONCE(f6i->offload, offload);
WRITE_ONCE(f6i->trap, trap);
/* 2 means send notifications only if offload_failed was changed. */
if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 &&
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
READ_ONCE(f6i->offload_failed) == offload_failed)
return;
ipv6: fix data-race in fib6_info_hw_flags_set / fib6_purge_rt Because fib6_info_hw_flags_set() is called without any synchronization, all accesses to gi6->offload, fi->trap and fi->offload_failed need some basic protection like READ_ONCE()/WRITE_ONCE(). BUG: KCSAN: data-race in fib6_info_hw_flags_set / fib6_purge_rt read to 0xffff8881087d5886 of 1 bytes by task 13953 on cpu 0: fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1007 [inline] fib6_purge_rt+0x4f/0x580 net/ipv6/ip6_fib.c:1033 fib6_del_route net/ipv6/ip6_fib.c:1983 [inline] fib6_del+0x696/0x890 net/ipv6/ip6_fib.c:2028 __ip6_del_rt net/ipv6/route.c:3876 [inline] ip6_del_rt+0x83/0x140 net/ipv6/route.c:3891 __ipv6_dev_ac_dec+0x2b5/0x370 net/ipv6/anycast.c:374 ipv6_dev_ac_dec net/ipv6/anycast.c:387 [inline] __ipv6_sock_ac_close+0x141/0x200 net/ipv6/anycast.c:207 ipv6_sock_ac_close+0x79/0x90 net/ipv6/anycast.c:220 inet6_release+0x32/0x50 net/ipv6/af_inet6.c:476 __sock_release net/socket.c:650 [inline] sock_close+0x6c/0x150 net/socket.c:1318 __fput+0x295/0x520 fs/file_table.c:280 ____fput+0x11/0x20 fs/file_table.c:313 task_work_run+0x8e/0x110 kernel/task_work.c:164 tracehook_notify_resume include/linux/tracehook.h:189 [inline] exit_to_user_mode_loop kernel/entry/common.c:175 [inline] exit_to_user_mode_prepare+0x160/0x190 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300 do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881087d5886 of 1 bytes by task 1912 on cpu 1: fib6_info_hw_flags_set+0x155/0x3b0 net/ipv6/route.c:6230 nsim_fib6_rt_hw_flags_set drivers/net/netdevsim/fib.c:668 [inline] nsim_fib6_rt_add drivers/net/netdevsim/fib.c:691 [inline] nsim_fib6_rt_insert drivers/net/netdevsim/fib.c:756 [inline] nsim_fib6_event drivers/net/netdevsim/fib.c:853 [inline] nsim_fib_event drivers/net/netdevsim/fib.c:886 [inline] nsim_fib_event_work+0x284f/0x2cf0 drivers/net/netdevsim/fib.c:1477 process_one_work+0x3f6/0x960 kernel/workqueue.c:2307 worker_thread+0x616/0xa70 kernel/workqueue.c:2454 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x22 -> 0x2a Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 1912 Comm: kworker/1:3 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events nsim_fib_event_work Fixes: 0c5fcf9e249e ("IPv6: Add "offload failed" indication to routes") Fixes: bb3c4ab93e44 ("ipv6: Add "offload" and "trap" indications to routes") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Amit Cohen <amcohen@nvidia.com> Cc: Ido Schimmel <idosch@nvidia.com> Reported-by: syzbot <syzkaller@googlegroups.com> Link: https://lore.kernel.org/r/20220216173217.3792411-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16 17:32:17 +00:00
WRITE_ONCE(f6i->offload_failed, offload_failed);
net: ipv6: Emit notification when fib hardware flags are changed After installing a route to the kernel, user space receives an acknowledgment, which means the route was installed in the kernel, but not necessarily in hardware. The asynchronous nature of route installation in hardware can lead to a routing daemon advertising a route before it was actually installed in hardware. This can result in packet loss or mis-routed packets until the route is installed in hardware. It is also possible for a route already installed in hardware to change its action and therefore its flags. For example, a host route that is trapping packets can be "promoted" to perform decapsulation following the installation of an IPinIP/VXLAN tunnel. Emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/RTM_F_TRAP flags are changed. The aim is to provide an indication to user-space (e.g., routing daemons) about the state of the route in hardware. Introduce a sysctl that controls this behavior. Keep the default value at 0 (i.e., do not emit notifications) for several reasons: - Multiple RTM_NEWROUTE notification per-route might confuse existing routing daemons. - Convergence reasons in routing daemons. - The extra notifications will negatively impact the insertion rate. - Not all users are interested in these notifications. Move fib6_info_hw_flags_set() to C file because it is no longer a short function. Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-01 19:47:55 +00:00
if (!rcu_access_pointer(f6i->fib6_node))
/* The route was removed from the tree, do not send
* notification.
net: ipv6: Emit notification when fib hardware flags are changed After installing a route to the kernel, user space receives an acknowledgment, which means the route was installed in the kernel, but not necessarily in hardware. The asynchronous nature of route installation in hardware can lead to a routing daemon advertising a route before it was actually installed in hardware. This can result in packet loss or mis-routed packets until the route is installed in hardware. It is also possible for a route already installed in hardware to change its action and therefore its flags. For example, a host route that is trapping packets can be "promoted" to perform decapsulation following the installation of an IPinIP/VXLAN tunnel. Emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/RTM_F_TRAP flags are changed. The aim is to provide an indication to user-space (e.g., routing daemons) about the state of the route in hardware. Introduce a sysctl that controls this behavior. Keep the default value at 0 (i.e., do not emit notifications) for several reasons: - Multiple RTM_NEWROUTE notification per-route might confuse existing routing daemons. - Convergence reasons in routing daemons. - The extra notifications will negatively impact the insertion rate. - Not all users are interested in these notifications. Move fib6_info_hw_flags_set() to C file because it is no longer a short function. Signed-off-by: Amit Cohen <amcohen@nvidia.com> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-01 19:47:55 +00:00
*/
return;
if (!net->ipv6.sysctl.fib_notify_on_flag_change)
return;
skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL);
if (!skb) {
err = -ENOBUFS;
goto errout;
}
err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0,
0, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
}
EXPORT_SYMBOL(fib6_info_hw_flags_set);
static int ip6_route_dev_notify(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
if (!(dev->flags & IFF_LOOPBACK))
return NOTIFY_OK;
if (event == NETDEV_REGISTER) {
net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev;
net->ipv6.ip6_null_entry->dst.dev = dev;
net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
net->ipv6.ip6_prohibit_entry->dst.dev = dev;
net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
#endif
} else if (event == NETDEV_UNREGISTER &&
dev->reg_state != NETREG_UNREGISTERED) {
/* NETDEV_UNREGISTER could be fired for multiple times by
* netdev_wait_allrefs(). Make sure we only call this once.
*/
ipv6: fix NULL dereference in ip6_route_dev_notify() Based on a syzkaller report [1], I found that a per cpu allocation failure in snmp6_alloc_dev() would then lead to NULL dereference in ip6_route_dev_notify(). It seems this is a very old bug, thus no Fixes tag in this submission. Let's add in6_dev_put_clear() helper, as we will probably use it elsewhere (once available/present in net-next) [1] kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 1 PID: 17294 Comm: syz-executor6 Not tainted 4.13.0-rc2+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 task: ffff88019f456680 task.stack: ffff8801c6e58000 RIP: 0010:__read_once_size include/linux/compiler.h:250 [inline] RIP: 0010:atomic_read arch/x86/include/asm/atomic.h:26 [inline] RIP: 0010:refcount_sub_and_test+0x7d/0x1b0 lib/refcount.c:178 RSP: 0018:ffff8801c6e5f1b0 EFLAGS: 00010202 RAX: 0000000000000037 RBX: dffffc0000000000 RCX: ffffc90005d25000 RDX: ffff8801c6e5f218 RSI: ffffffff82342bbf RDI: 0000000000000001 RBP: ffff8801c6e5f240 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 1ffff10038dcbe37 R13: 0000000000000006 R14: 0000000000000001 R15: 00000000000001b8 FS: 00007f21e0429700(0000) GS:ffff8801dc100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001ddbc22000 CR3: 00000001d632b000 CR4: 00000000001426e0 DR0: 0000000020000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000600 Call Trace: refcount_dec_and_test+0x1a/0x20 lib/refcount.c:211 in6_dev_put include/net/addrconf.h:335 [inline] ip6_route_dev_notify+0x1c9/0x4a0 net/ipv6/route.c:3732 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x51/0x90 net/core/dev.c:1678 call_netdevice_notifiers net/core/dev.c:1694 [inline] rollback_registered_many+0x91c/0xe80 net/core/dev.c:7107 rollback_registered+0x1be/0x3c0 net/core/dev.c:7149 register_netdevice+0xbcd/0xee0 net/core/dev.c:7587 register_netdev+0x1a/0x30 net/core/dev.c:7669 loopback_net_init+0x76/0x160 drivers/net/loopback.c:214 ops_init+0x10a/0x570 net/core/net_namespace.c:118 setup_net+0x313/0x710 net/core/net_namespace.c:294 copy_net_ns+0x27c/0x580 net/core/net_namespace.c:418 create_new_namespaces+0x425/0x880 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xae/0x1e0 kernel/nsproxy.c:206 SYSC_unshare kernel/fork.c:2347 [inline] SyS_unshare+0x653/0xfa0 kernel/fork.c:2297 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x4512c9 RSP: 002b:00007f21e0428c08 EFLAGS: 00000216 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 0000000000718150 RCX: 00000000004512c9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000062020200 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000216 R12: 00000000004b973d R13: 00000000ffffffff R14: 000000002001d000 R15: 00000000000002dd Code: 50 2b 34 82 c7 00 f1 f1 f1 f1 c7 40 04 04 f2 f2 f2 c7 40 08 f3 f3 f3 f3 e8 a1 43 39 ff 4c 89 f8 48 8b 95 70 ff ff ff 48 c1 e8 03 <0f> b6 0c 18 4c 89 f8 83 e0 07 83 c0 03 38 c8 7c 08 84 c9 0f 85 RIP: __read_once_size include/linux/compiler.h:250 [inline] RSP: ffff8801c6e5f1b0 RIP: atomic_read arch/x86/include/asm/atomic.h:26 [inline] RSP: ffff8801c6e5f1b0 RIP: refcount_sub_and_test+0x7d/0x1b0 lib/refcount.c:178 RSP: ffff8801c6e5f1b0 ---[ end trace e441d046c6410d31 ]--- Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-15 11:09:51 +00:00
in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
ipv6: fix NULL dereference in ip6_route_dev_notify() Based on a syzkaller report [1], I found that a per cpu allocation failure in snmp6_alloc_dev() would then lead to NULL dereference in ip6_route_dev_notify(). It seems this is a very old bug, thus no Fixes tag in this submission. Let's add in6_dev_put_clear() helper, as we will probably use it elsewhere (once available/present in net-next) [1] kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 1 PID: 17294 Comm: syz-executor6 Not tainted 4.13.0-rc2+ #10 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 task: ffff88019f456680 task.stack: ffff8801c6e58000 RIP: 0010:__read_once_size include/linux/compiler.h:250 [inline] RIP: 0010:atomic_read arch/x86/include/asm/atomic.h:26 [inline] RIP: 0010:refcount_sub_and_test+0x7d/0x1b0 lib/refcount.c:178 RSP: 0018:ffff8801c6e5f1b0 EFLAGS: 00010202 RAX: 0000000000000037 RBX: dffffc0000000000 RCX: ffffc90005d25000 RDX: ffff8801c6e5f218 RSI: ffffffff82342bbf RDI: 0000000000000001 RBP: ffff8801c6e5f240 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 1ffff10038dcbe37 R13: 0000000000000006 R14: 0000000000000001 R15: 00000000000001b8 FS: 00007f21e0429700(0000) GS:ffff8801dc100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001ddbc22000 CR3: 00000001d632b000 CR4: 00000000001426e0 DR0: 0000000020000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000600 Call Trace: refcount_dec_and_test+0x1a/0x20 lib/refcount.c:211 in6_dev_put include/net/addrconf.h:335 [inline] ip6_route_dev_notify+0x1c9/0x4a0 net/ipv6/route.c:3732 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93 __raw_notifier_call_chain kernel/notifier.c:394 [inline] raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401 call_netdevice_notifiers_info+0x51/0x90 net/core/dev.c:1678 call_netdevice_notifiers net/core/dev.c:1694 [inline] rollback_registered_many+0x91c/0xe80 net/core/dev.c:7107 rollback_registered+0x1be/0x3c0 net/core/dev.c:7149 register_netdevice+0xbcd/0xee0 net/core/dev.c:7587 register_netdev+0x1a/0x30 net/core/dev.c:7669 loopback_net_init+0x76/0x160 drivers/net/loopback.c:214 ops_init+0x10a/0x570 net/core/net_namespace.c:118 setup_net+0x313/0x710 net/core/net_namespace.c:294 copy_net_ns+0x27c/0x580 net/core/net_namespace.c:418 create_new_namespaces+0x425/0x880 kernel/nsproxy.c:107 unshare_nsproxy_namespaces+0xae/0x1e0 kernel/nsproxy.c:206 SYSC_unshare kernel/fork.c:2347 [inline] SyS_unshare+0x653/0xfa0 kernel/fork.c:2297 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x4512c9 RSP: 002b:00007f21e0428c08 EFLAGS: 00000216 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 0000000000718150 RCX: 00000000004512c9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000062020200 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000216 R12: 00000000004b973d R13: 00000000ffffffff R14: 000000002001d000 R15: 00000000000002dd Code: 50 2b 34 82 c7 00 f1 f1 f1 f1 c7 40 04 04 f2 f2 f2 c7 40 08 f3 f3 f3 f3 e8 a1 43 39 ff 4c 89 f8 48 8b 95 70 ff ff ff 48 c1 e8 03 <0f> b6 0c 18 4c 89 f8 83 e0 07 83 c0 03 38 c8 7c 08 84 c9 0f 85 RIP: __read_once_size include/linux/compiler.h:250 [inline] RSP: ffff8801c6e5f1b0 RIP: atomic_read arch/x86/include/asm/atomic.h:26 [inline] RSP: ffff8801c6e5f1b0 RIP: refcount_sub_and_test+0x7d/0x1b0 lib/refcount.c:178 RSP: ffff8801c6e5f1b0 ---[ end trace e441d046c6410d31 ]--- Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-15 11:09:51 +00:00
in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
#endif
}
return NOTIFY_OK;
}
/*
* /proc
*/
#ifdef CONFIG_PROC_FS
static int rt6_stats_seq_show(struct seq_file *seq, void *v)
{
struct net *net = (struct net *)seq->private;
seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
net->ipv6.rt6_stats->fib_nodes,
net->ipv6.rt6_stats->fib_route_nodes,
atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
net->ipv6.rt6_stats->fib_rt_entries,
net->ipv6.rt6_stats->fib_rt_cache,
dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
net->ipv6.rt6_stats->fib_discarded_routes);
return 0;
}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SYSCTL
static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct net *net;
int delay;
int ret;
if (!write)
return -EINVAL;
net = (struct net *)ctl->extra1;
delay = net->ipv6.sysctl.flush_delay;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (ret)
return ret;
fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
return 0;
}
static struct ctl_table ipv6_route_table_template[] = {
{
.procname = "max_size",
.data = &init_net.ipv6.sysctl.ip6_rt_max_size,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "gc_thresh",
.data = &ip6_dst_ops_template.gc_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "flush",
.data = &init_net.ipv6.sysctl.flush_delay,
.maxlen = sizeof(int),
.mode = 0200,
.proc_handler = ipv6_sysctl_rtcache_flush
},
{
.procname = "gc_min_interval",
.data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "gc_timeout",
.data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "gc_interval",
.data = &init_net.ipv6.sysctl.ip6_rt_gc_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "gc_elasticity",
.data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "mtu_expires",
.data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "min_adv_mss",
.data = &init_net.ipv6.sysctl.ip6_rt_min_advmss,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "gc_min_interval_ms",
.data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{
.procname = "skip_notify_on_dev_down",
.data = &init_net.ipv6.sysctl.skip_notify_on_dev_down,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
proc/sysctl: add shared variables for range check In the sysctl code the proc_dointvec_minmax() function is often used to validate the user supplied value between an allowed range. This function uses the extra1 and extra2 members from struct ctl_table as minimum and maximum allowed value. On sysctl handler declaration, in every source file there are some readonly variables containing just an integer which address is assigned to the extra1 and extra2 members, so the sysctl range is enforced. The special values 0, 1 and INT_MAX are very often used as range boundary, leading duplication of variables like zero=0, one=1, int_max=INT_MAX in different source files: $ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l 248 Add a const int array containing the most commonly used values, some macros to refer more easily to the correct array member, and use them instead of creating a local one for every object file. This is the bloat-o-meter output comparing the old and new binary compiled with the default Fedora config: # scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164) Data old new delta sysctl_vals - 12 +12 __kstrtab_sysctl_vals - 12 +12 max 14 10 -4 int_max 16 - -16 one 68 - -68 zero 128 28 -100 Total: Before=20583249, After=20583085, chg -0.00% [mcroce@redhat.com: tipc: remove two unused variables] Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com [akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c] [arnd@arndb.de: proc/sysctl: make firmware loader table conditional] Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de [akpm@linux-foundation.org: fix fs/eventpoll.c] Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com Signed-off-by: Matteo Croce <mcroce@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 22:58:50 +00:00
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
{
struct ctl_table *table;
table = kmemdup(ipv6_route_table_template,
sizeof(ipv6_route_table_template),
GFP_KERNEL);
if (table) {
table[0].data = &net->ipv6.sysctl.ip6_rt_max_size;
table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
table[2].data = &net->ipv6.sysctl.flush_delay;
table[2].extra1 = net;
table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down;
/* Don't export sysctls to unprivileged users */
if (net->user_ns != &init_user_ns)
table[1].procname = NULL;
}
return table;
}
#endif
static int __net_init ip6_route_net_init(struct net *net)
{
int ret = -ENOMEM;
memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
sizeof(net->ipv6.ip6_dst_ops));
if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
goto out_ip6_dst_ops;
net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true);
if (!net->ipv6.fib6_null_entry)
goto out_ip6_dst_entries;
memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template,
sizeof(*net->ipv6.fib6_null_entry));
net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
sizeof(*net->ipv6.ip6_null_entry),
GFP_KERNEL);
if (!net->ipv6.ip6_null_entry)
goto out_fib6_null_entry;
net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
net: Implement read-only protection and COW'ing of metrics. Routing metrics are now copy-on-write. Initially a route entry points it's metrics at a read-only location. If a routing table entry exists, it will point there. Else it will point at the all zero metric place-holder called 'dst_default_metrics'. The writeability state of the metrics is stored in the low bits of the metrics pointer, we have two bits left to spare if we want to store more states. For the initial implementation, COW is implemented simply via kmalloc. However future enhancements will change this to place the writable metrics somewhere else, in order to increase sharing. Very likely this "somewhere else" will be the inetpeer cache. Note also that this means that metrics updates may transiently fail if we cannot COW the metrics successfully. But even by itself, this patch should decrease memory usage and increase cache locality especially for routing workloads. In those cases the read-only metric copies stay in place and never get written to. TCP workloads where metrics get updated, and those rare cases where PMTU triggers occur, will take a very slight performance hit. But that hit will be alleviated when the long-term writable metrics move to a more sharable location. Since the metrics storage went from a u32 array of RTAX_MAX entries to what is essentially a pointer, some retooling of the dst_entry layout was necessary. Most importantly, we need to preserve the alignment of the reference count so that it doesn't share cache lines with the read-mostly state, as per Eric Dumazet's alignment assertion checks. The only non-trivial bit here is the move of the 'flags' member into the writeable cacheline. This is OK since we are always accessing the flags around the same moment when we made a modification to the reference count. Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-27 04:51:05 +00:00
dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
ip6_template_metrics, true);
INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
net: ipv6: avoid overhead when no custom FIB rules are installed If the user hasn't installed any custom rules, don't go through the whole FIB rules layer. This is pretty similar to f4530fa574df (ipv4: Avoid overhead when no custom FIB rules are installed). Using a micro-benchmark module [1], timing ip6_route_output() with get_cycles(), with 40,000 routes in the main routing table, before this patch: min=606 max=12911 count=627 average=1959 95th=4903 90th=3747 50th=1602 mad=821 table=254 avgdepth=21.8 maxdepth=39 value │ ┊ count 600 │▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ 199 880 │▒▒▒░░░░░░░░░░░░░░░░ 43 1160 │▒▒▒░░░░░░░░░░░░░░░░░░░░ 48 1440 │▒▒▒░░░░░░░░░░░░░░░░░░░░░░░ 43 1720 │▒▒▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░ 59 2000 │▒▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 50 2280 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 26 2560 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 31 2840 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 28 3120 │▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 17 3400 │▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 17 3680 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8 3960 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 11 4240 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 6 4520 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 6 4800 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 9 After: min=544 max=11687 count=627 average=1776 95th=4546 90th=3585 50th=1227 mad=565 table=254 avgdepth=21.8 maxdepth=39 value │ ┊ count 540 │▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ 201 800 │▒▒▒▒▒░░░░░░░░░░░░░░░░ 63 1060 │▒▒▒▒▒░░░░░░░░░░░░░░░░░░░░░ 68 1320 │▒▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░ 39 1580 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 32 1840 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 32 2100 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 34 2360 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 33 2620 │▒▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 26 2880 │▒░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 22 3140 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 9 3400 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8 3660 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 9 3920 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8 4180 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8 4440 │░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8 At the frequency of the host during the bench (~ 3.7 GHz), this is about a 100 ns difference on the median value. A next step would be to collapse local and main tables, as in 0ddcf43d5d4a (ipv4: FIB Local/MAIN table collapse). [1]: https://github.com/vincentbernat/network-lab/blob/master/lab-routes-ipv6/kbench_mod.c Signed-off-by: Vincent Bernat <vincent@bernat.im> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-08 18:23:49 +00:00
net->ipv6.fib6_has_custom_rules = false;
net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
sizeof(*net->ipv6.ip6_prohibit_entry),
GFP_KERNEL);
if (!net->ipv6.ip6_prohibit_entry)
goto out_ip6_null_entry;
net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
net: Implement read-only protection and COW'ing of metrics. Routing metrics are now copy-on-write. Initially a route entry points it's metrics at a read-only location. If a routing table entry exists, it will point there. Else it will point at the all zero metric place-holder called 'dst_default_metrics'. The writeability state of the metrics is stored in the low bits of the metrics pointer, we have two bits left to spare if we want to store more states. For the initial implementation, COW is implemented simply via kmalloc. However future enhancements will change this to place the writable metrics somewhere else, in order to increase sharing. Very likely this "somewhere else" will be the inetpeer cache. Note also that this means that metrics updates may transiently fail if we cannot COW the metrics successfully. But even by itself, this patch should decrease memory usage and increase cache locality especially for routing workloads. In those cases the read-only metric copies stay in place and never get written to. TCP workloads where metrics get updated, and those rare cases where PMTU triggers occur, will take a very slight performance hit. But that hit will be alleviated when the long-term writable metrics move to a more sharable location. Since the metrics storage went from a u32 array of RTAX_MAX entries to what is essentially a pointer, some retooling of the dst_entry layout was necessary. Most importantly, we need to preserve the alignment of the reference count so that it doesn't share cache lines with the read-mostly state, as per Eric Dumazet's alignment assertion checks. The only non-trivial bit here is the move of the 'flags' member into the writeable cacheline. This is OK since we are always accessing the flags around the same moment when we made a modification to the reference count. Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-27 04:51:05 +00:00
dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
ip6_template_metrics, true);
INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached);
net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
sizeof(*net->ipv6.ip6_blk_hole_entry),
GFP_KERNEL);
if (!net->ipv6.ip6_blk_hole_entry)
goto out_ip6_prohibit_entry;
net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
net: Implement read-only protection and COW'ing of metrics. Routing metrics are now copy-on-write. Initially a route entry points it's metrics at a read-only location. If a routing table entry exists, it will point there. Else it will point at the all zero metric place-holder called 'dst_default_metrics'. The writeability state of the metrics is stored in the low bits of the metrics pointer, we have two bits left to spare if we want to store more states. For the initial implementation, COW is implemented simply via kmalloc. However future enhancements will change this to place the writable metrics somewhere else, in order to increase sharing. Very likely this "somewhere else" will be the inetpeer cache. Note also that this means that metrics updates may transiently fail if we cannot COW the metrics successfully. But even by itself, this patch should decrease memory usage and increase cache locality especially for routing workloads. In those cases the read-only metric copies stay in place and never get written to. TCP workloads where metrics get updated, and those rare cases where PMTU triggers occur, will take a very slight performance hit. But that hit will be alleviated when the long-term writable metrics move to a more sharable location. Since the metrics storage went from a u32 array of RTAX_MAX entries to what is essentially a pointer, some retooling of the dst_entry layout was necessary. Most importantly, we need to preserve the alignment of the reference count so that it doesn't share cache lines with the read-mostly state, as per Eric Dumazet's alignment assertion checks. The only non-trivial bit here is the move of the 'flags' member into the writeable cacheline. This is OK since we are always accessing the flags around the same moment when we made a modification to the reference count. Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-27 04:51:05 +00:00
dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
ip6_template_metrics, true);
INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached);
#ifdef CONFIG_IPV6_SUBTREES
net->ipv6.fib6_routes_require_src = 0;
#endif
#endif
net->ipv6.sysctl.flush_delay = 0;
net->ipv6.sysctl.ip6_rt_max_size = 4096;
net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
net->ipv6.sysctl.skip_notify_on_dev_down = 0;
ipv6: make ip6_rt_gc_expire an atomic_t Reads and Writes to ip6_rt_gc_expire always have been racy, as syzbot reported lately [1] There is a possible risk of under-flow, leading to unexpected high value passed to fib6_run_gc(), although I have not observed this in the field. Hosts hitting ip6_dst_gc() very hard are under pretty bad state anyway. [1] BUG: KCSAN: data-race in ip6_dst_gc / ip6_dst_gc read-write to 0xffff888102110744 of 4 bytes by task 13165 on cpu 1: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 read-write to 0xffff888102110744 of 4 bytes by task 11607 on cpu 0: ip6_dst_gc+0x1f3/0x220 net/ipv6/route.c:3311 dst_alloc+0x9b/0x160 net/core/dst.c:86 ip6_dst_alloc net/ipv6/route.c:344 [inline] icmp6_dst_alloc+0xb2/0x360 net/ipv6/route.c:3261 mld_sendpack+0x2b9/0x580 net/ipv6/mcast.c:1807 mld_send_cr net/ipv6/mcast.c:2119 [inline] mld_ifc_work+0x576/0x800 net/ipv6/mcast.c:2651 process_one_work+0x3d3/0x720 kernel/workqueue.c:2289 worker_thread+0x618/0xa70 kernel/workqueue.c:2436 kthread+0x1a9/0x1e0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 value changed: 0x00000bb3 -> 0x00000ba9 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11607 Comm: kworker/0:21 Not tainted 5.18.0-rc1-syzkaller-00037-g42e7a03d3bad-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: mld mld_ifc_work Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220413181333.649424-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-13 18:13:33 +00:00
atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ);
ret = 0;
out:
return ret;
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
out_ip6_prohibit_entry:
kfree(net->ipv6.ip6_prohibit_entry);
out_ip6_null_entry:
kfree(net->ipv6.ip6_null_entry);
#endif
out_fib6_null_entry:
kfree(net->ipv6.fib6_null_entry);
out_ip6_dst_entries:
dst_entries_destroy(&net->ipv6.ip6_dst_ops);
out_ip6_dst_ops:
goto out;
}
static void __net_exit ip6_route_net_exit(struct net *net)
{
kfree(net->ipv6.fib6_null_entry);
kfree(net->ipv6.ip6_null_entry);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
kfree(net->ipv6.ip6_prohibit_entry);
kfree(net->ipv6.ip6_blk_hole_entry);
#endif
dst_entries_destroy(&net->ipv6.ip6_dst_ops);
}
static int __net_init ip6_route_net_init_late(struct net *net)
{
#ifdef CONFIG_PROC_FS
if (!proc_create_net("ipv6_route", 0, net->proc_net,
&ipv6_route_seq_ops,
sizeof(struct ipv6_route_iter)))
return -ENOMEM;
if (!proc_create_net_single("rt6_stats", 0444, net->proc_net,
rt6_stats_seq_show, NULL)) {
remove_proc_entry("ipv6_route", net->proc_net);
return -ENOMEM;
}
#endif
return 0;
}
static void __net_exit ip6_route_net_exit_late(struct net *net)
{
#ifdef CONFIG_PROC_FS
remove_proc_entry("ipv6_route", net->proc_net);
remove_proc_entry("rt6_stats", net->proc_net);
#endif
}
static struct pernet_operations ip6_route_net_ops = {
.init = ip6_route_net_init,
.exit = ip6_route_net_exit,
};
static int __net_init ipv6_inetpeer_init(struct net *net)
{
struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
if (!bp)
return -ENOMEM;
inet_peer_base_init(bp);
net->ipv6.peers = bp;
return 0;
}
static void __net_exit ipv6_inetpeer_exit(struct net *net)
{
struct inet_peer_base *bp = net->ipv6.peers;
net->ipv6.peers = NULL;
inetpeer_invalidate_tree(bp);
kfree(bp);
}
static struct pernet_operations ipv6_inetpeer_ops = {
.init = ipv6_inetpeer_init,
.exit = ipv6_inetpeer_exit,
};
static struct pernet_operations ip6_route_net_late_ops = {
.init = ip6_route_net_init_late,
.exit = ip6_route_net_exit_late,
};
static struct notifier_block ip6_route_dev_notifier = {
.notifier_call = ip6_route_dev_notify,
.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
};
void __init ip6_route_init_special_entries(void)
{
/* Registering of the loopback is done before this portion of code,
* the loopback reference in rt6_info will not be taken, do it
* manually for init_net */
init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev;
init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
#endif
}
#if IS_BUILTIN(CONFIG_IPV6)
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt)
BTF_ID_LIST(btf_fib6_info_id)
BTF_ID(struct, fib6_info)
static const struct bpf_iter_seq_info ipv6_route_seq_info = {
.seq_ops = &ipv6_route_seq_ops,
.init_seq_private = bpf_iter_init_seq_net,
.fini_seq_private = bpf_iter_fini_seq_net,
.seq_priv_size = sizeof(struct ipv6_route_iter),
};
static struct bpf_iter_reg ipv6_route_reg_info = {
.target = "ipv6_route",
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__ipv6_route, rt),
PTR_TO_BTF_ID_OR_NULL },
},
.seq_info = &ipv6_route_seq_info,
};
static int __init bpf_iter_register(void)
{
ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id;
return bpf_iter_reg_target(&ipv6_route_reg_info);
}
static void bpf_iter_unregister(void)
{
bpf_iter_unreg_target(&ipv6_route_reg_info);
}
#endif
#endif
int __init ip6_route_init(void)
{
int ret;
int cpu;
ret = -ENOMEM;
ip6_dst_ops_template.kmem_cachep =
kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
memcg: enable accounting for IP address and routing-related objects An netadmin inside container can use 'ip a a' and 'ip r a' to assign a large number of ipv4/ipv6 addresses and routing entries and force kernel to allocate megabytes of unaccounted memory for long-lived per-netdevice related kernel objects: 'struct in_ifaddr', 'struct inet6_ifaddr', 'struct fib6_node', 'struct rt6_info', 'struct fib_rules' and ip_fib caches. These objects can be manually removed, though usually they lives in memory till destroy of its net namespace. It makes sense to account for them to restrict the host's memory consumption from inside the memcg-limited container. One of such objects is the 'struct fib6_node' mostly allocated in net/ipv6/route.c::__ip6_ins_rt() inside the lock_bh()/unlock_bh() section: write_lock_bh(&table->tb6_lock); err = fib6_add(&table->tb6_root, rt, info, mxc); write_unlock_bh(&table->tb6_lock); In this case it is not enough to simply add SLAB_ACCOUNT to corresponding kmem cache. The proper memory cgroup still cannot be found due to the incorrect 'in_interrupt()' check used in memcg_kmem_bypass(). Obsoleted in_interrupt() does not describe real execution context properly. >From include/linux/preempt.h: The following macros are deprecated and should not be used in new code: in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled To verify the current execution context new macro should be used instead: in_task() - We're in task context Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-19 10:44:31 +00:00
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
if (!ip6_dst_ops_template.kmem_cachep)
goto out;
ret = dst_entries_init(&ip6_dst_blackhole_ops);
if (ret)
goto out_kmem_cache;
ret = register_pernet_subsys(&ipv6_inetpeer_ops);
if (ret)
goto out_dst_entries;
ret = register_pernet_subsys(&ip6_route_net_ops);
if (ret)
goto out_register_inetpeer;
XFRM,IPv6: initialize ip6_dst_blackhole_ops.kmem_cachep ip6_dst_blackhole_ops.kmem_cachep is not expected to be NULL (i.e. to be initialized) when dst_alloc() is called from ip6_dst_blackhole(). Otherwise, it results in the following (xfrm_larval_drop is now set to 1 by default): [ 78.697642] Unable to handle kernel paging request for data at address 0x0000004c [ 78.703449] Faulting instruction address: 0xc0097f54 [ 78.786896] Oops: Kernel access of bad area, sig: 11 [#1] [ 78.792791] PowerMac [ 78.798383] Modules linked in: btusb usbhid bluetooth b43 mac80211 cfg80211 ehci_hcd ohci_hcd sungem sungem_phy usbcore ssb [ 78.804263] NIP: c0097f54 LR: c0334a28 CTR: c002d430 [ 78.809997] REGS: eef19ad0 TRAP: 0300 Not tainted (2.6.27-rc5) [ 78.815743] MSR: 00001032 <ME,IR,DR> CR: 22242482 XER: 20000000 [ 78.821550] DAR: 0000004c, DSISR: 40000000 [ 78.827278] TASK = eef0df40[3035] 'mip6d' THREAD: eef18000 [ 78.827408] GPR00: 00001032 eef19b80 eef0df40 00000000 00008020 eef19c30 00000001 00000000 [ 78.833249] GPR08: eee5101c c05a5c10 ef9ad500 00000000 24242422 1005787c 00000000 1004f960 [ 78.839151] GPR16: 00000000 10024e90 10050040 48030018 0fe44150 00000000 00000000 eef19c30 [ 78.845046] GPR24: eef19e44 00000000 eef19bf8 efb37c14 eef19bf8 00008020 00009032 c0596064 [ 78.856671] NIP [c0097f54] kmem_cache_alloc+0x20/0x94 [ 78.862581] LR [c0334a28] dst_alloc+0x40/0xc4 [ 78.868451] Call Trace: [ 78.874252] [eef19b80] [c03c1810] ip6_dst_lookup_tail+0x1c8/0x1dc (unreliable) [ 78.880222] [eef19ba0] [c0334a28] dst_alloc+0x40/0xc4 [ 78.886164] [eef19bb0] [c03cd698] ip6_dst_blackhole+0x28/0x1cc [ 78.892090] [eef19be0] [c03d9be8] rawv6_sendmsg+0x75c/0xc88 [ 78.897999] [eef19cb0] [c038bca4] inet_sendmsg+0x4c/0x78 [ 78.903907] [eef19cd0] [c03207c8] sock_sendmsg+0xac/0xe4 [ 78.909734] [eef19db0] [c03209e4] sys_sendmsg+0x1e4/0x2a0 [ 78.915540] [eef19f00] [c03220a8] sys_socketcall+0xfc/0x210 [ 78.921406] [eef19f40] [c0014b3c] ret_from_syscall+0x0/0x38 [ 78.927295] --- Exception: c01 at 0xfe2d730 [ 78.927297] LR = 0xfe2d71c [ 78.939019] Instruction dump: [ 78.944835] 91640018 9144001c 900a0000 4bffff44 9421ffe0 7c0802a6 bf810010 7c9d2378 [ 78.950694] 90010024 7fc000a6 57c0045e 7c000124 <83e3004c> 8383005c 2f9f0000 419e0050 [ 78.956464] ---[ end trace 05fa1ed7972487a1 ]--- As commented by Benjamin Thery, the bug was introduced by f2fc6a54585a1be6669613a31fbaba2ecbadcd36, while adding network namespaces support to ipv6 routes. Signed-off-by: Arnaud Ebalard <arno@natisbad.org> Acked-by: Benjamin Thery <benjamin.thery@bull.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-01 09:37:56 +00:00
ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
ret = fib6_init();
if (ret)
goto out_register_subsys;
ret = xfrm6_init();
if (ret)
goto out_fib6_init;
ret = fib6_rules_init();
if (ret)
goto xfrm6_init;
ret = register_pernet_subsys(&ip6_route_net_late_ops);
if (ret)
goto fib6_rules_init;
ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
inet6_rtm_newroute, NULL, 0);
if (ret < 0)
goto out_register_late_subsys;
ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
inet6_rtm_delroute, NULL, 0);
if (ret < 0)
goto out_register_late_subsys;
ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
inet6_rtm_getroute, NULL,
RTNL_FLAG_DOIT_UNLOCKED);
if (ret < 0)
goto out_register_late_subsys;
ret = register_netdevice_notifier(&ip6_route_dev_notifier);
if (ret)
goto out_register_late_subsys;
#if IS_BUILTIN(CONFIG_IPV6)
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
ret = bpf_iter_register();
if (ret)
goto out_register_late_subsys;
#endif
#endif
for_each_possible_cpu(cpu) {
struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
INIT_LIST_HEAD(&ul->head);
INIT_LIST_HEAD(&ul->quarantine);
spin_lock_init(&ul->lock);
}
out:
return ret;
out_register_late_subsys:
rtnl_unregister_all(PF_INET6);
unregister_pernet_subsys(&ip6_route_net_late_ops);
fib6_rules_init:
fib6_rules_cleanup();
xfrm6_init:
xfrm6_fini();
out_fib6_init:
fib6_gc_cleanup();
out_register_subsys:
unregister_pernet_subsys(&ip6_route_net_ops);
out_register_inetpeer:
unregister_pernet_subsys(&ipv6_inetpeer_ops);
out_dst_entries:
dst_entries_destroy(&ip6_dst_blackhole_ops);
out_kmem_cache:
kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
goto out;
}
void ip6_route_cleanup(void)
{
#if IS_BUILTIN(CONFIG_IPV6)
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
bpf_iter_unregister();
#endif
#endif
unregister_netdevice_notifier(&ip6_route_dev_notifier);
unregister_pernet_subsys(&ip6_route_net_late_ops);
fib6_rules_cleanup();
xfrm6_fini();
fib6_gc_cleanup();
unregister_pernet_subsys(&ipv6_inetpeer_ops);
unregister_pernet_subsys(&ip6_route_net_ops);
dst_entries_destroy(&ip6_dst_blackhole_ops);
kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
}