edk2-msm8916/MSM8916Pkg/Library/PlatformBootManagerLib/PlatformBm.c
Ivaylo Ivanov 7e44ba1051 MSM8916Pkg: implement more libreries and drivers
Added MemoryPeiLib, PlatformPeiLib, PlatformBootManagerLib,
KeypadDxe, GenericKeypadDeviceDxe.

Signed-off-by: Ivaylo Ivanov <ivo.ivanov@null.net>
Cc: fxsheep <sunxiaoyang2003@gmail.com>
2021-09-02 11:16:33 +03:00

692 lines
18 KiB
C

/** @file
Implementation for PlatformBootManagerLib library class interfaces.
Copyright (C) 2015-2016, Red Hat, Inc.
Copyright (c) 2014, ARM Ltd. All rights reserved.
Copyright (c) 2004 - 2016, Intel Corporation. All rights reserved.
Copyright (c) 2016, Linaro Ltd. All rights reserved.
Copyright (c), 2017, Andrei Warkentin <andrey.warkentin@gmail.com>
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/BootLogoLib.h>
#include <Library/CapsuleLib.h>
#include <Library/DevicePathLib.h>
#include <Library/HobLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootManagerLib.h>
#include <Library/UefiLib.h>
#include <Library/PrintLib.h>
#include <Protocol/DevicePath.h>
#include <Protocol/EsrtManagement.h>
#include <Protocol/GraphicsOutput.h>
#include <Protocol/LoadedImage.h>
#include <Guid/EventGroup.h>
#include <Guid/TtyTerm.h>
#include <Configuration/BootDevices.h>
#include "PlatformBm.h"
#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }
#pragma pack (1)
typedef struct {
VENDOR_DEVICE_PATH SerialDxe;
UART_DEVICE_PATH Uart;
VENDOR_DEFINED_DEVICE_PATH TermType;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_SERIAL_CONSOLE;
#pragma pack ()
typedef struct {
VENDOR_DEVICE_PATH Custom;
USB_DEVICE_PATH Hub;
USB_DEVICE_PATH Dev;
EFI_DEVICE_PATH_PROTOCOL EndDevicePath;
} PLATFORM_USB_DEV;
#define DW_USB_DXE_FILE_GUID { \
0x4bf1704c, 0x03f4, 0x46d5, \
{ 0xbc, 0xa6, 0x82, 0xfa, 0x58, 0x0b, 0xad, 0xfd } \
}
STATIC PLATFORM_USB_DEV mUsbHubPort = {
//
// VENDOR_DEVICE_PATH DwUsbHostDxe
//
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
DW_USB_DXE_FILE_GUID
},
//
// USB_DEVICE_PATH Hub
//
{
{ MESSAGING_DEVICE_PATH, MSG_USB_DP, DP_NODE_LEN (USB_DEVICE_PATH) },
0, 0
},
//
// USB_DEVICE_PATH Dev
//
{
{ MESSAGING_DEVICE_PATH, MSG_USB_DP, DP_NODE_LEN (USB_DEVICE_PATH) },
1, 0
},
//
// EFI_DEVICE_PATH_PROTOCOL End
//
{
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
}
};
#define SERIAL_DXE_FILE_GUID { \
0xD3987D4B, 0x971A, 0x435F, \
{ 0x8C, 0xAF, 0x49, 0x67, 0xEB, 0x62, 0x72, 0x41 } \
}
STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
//
// VENDOR_DEVICE_PATH SerialDxe
//
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
SERIAL_DXE_FILE_GUID
},
//
// UART_DEVICE_PATH Uart
//
{
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
},
//
// VENDOR_DEFINED_DEVICE_PATH TermType
//
{
{
MESSAGING_DEVICE_PATH, MSG_VENDOR_DP,
DP_NODE_LEN (VENDOR_DEFINED_DEVICE_PATH)
}
//
// Guid to be filled in dynamically
//
},
//
// EFI_DEVICE_PATH_PROTOCOL End
//
{
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
}
};
#pragma pack (1)
typedef struct {
USB_CLASS_DEVICE_PATH Keyboard;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_USB_KEYBOARD;
#pragma pack ()
STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
//
// USB_CLASS_DEVICE_PATH Keyboard
//
{
{
MESSAGING_DEVICE_PATH, MSG_USB_CLASS_DP,
DP_NODE_LEN (USB_CLASS_DEVICE_PATH)
},
0xFFFF, // VendorId: any
0xFFFF, // ProductId: any
3, // DeviceClass: HID
1, // DeviceSubClass: boot
1 // DeviceProtocol: keyboard
},
//
// EFI_DEVICE_PATH_PROTOCOL End
//
{
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
}
};
/**
Check if the handle satisfies a particular condition.
@param[in] Handle The handle to check.
@param[in] ReportText A caller-allocated string passed in for reporting
purposes. It must never be NULL.
@retval TRUE The condition is satisfied.
@retval FALSE Otherwise. This includes the case when the condition could not
be fully evaluated due to an error.
**/
typedef
BOOLEAN
(EFIAPI *FILTER_FUNCTION) (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
/**
Process a handle.
@param[in] Handle The handle to process.
@param[in] ReportText A caller-allocated string passed in for reporting
purposes. It must never be NULL.
**/
typedef
VOID
(EFIAPI *CALLBACK_FUNCTION) (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
/**
Locate all handles that carry the specified protocol, filter them with a
callback function, and pass each handle that passes the filter to another
callback.
@param[in] ProtocolGuid The protocol to look for.
@param[in] Filter The filter function to pass each handle to. If this
parameter is NULL, then all handles are processed.
@param[in] Process The callback function to pass each handle to that
clears the filter.
**/
STATIC
VOID
FilterAndProcess (
IN EFI_GUID *ProtocolGuid,
IN FILTER_FUNCTION Filter OPTIONAL,
IN CALLBACK_FUNCTION Process
)
{
EFI_STATUS Status;
EFI_HANDLE *Handles;
UINTN NoHandles;
UINTN Idx;
Status = gBS->LocateHandleBuffer (ByProtocol, ProtocolGuid,
NULL /* SearchKey */, &NoHandles, &Handles);
if (EFI_ERROR (Status)) {
//
// This is not an error, just an informative condition.
//
DEBUG ((EFI_D_VERBOSE, "%a: %g: %r\n", __FUNCTION__, ProtocolGuid,
Status));
return;
}
ASSERT (NoHandles > 0);
for (Idx = 0; Idx < NoHandles; ++Idx) {
CHAR16 *DevicePathText;
STATIC CHAR16 Fallback[] = L"<device path unavailable>";
//
// The ConvertDevicePathToText() function handles NULL input transparently.
//
DevicePathText = ConvertDevicePathToText (
DevicePathFromHandle (Handles[Idx]),
FALSE, // DisplayOnly
FALSE // AllowShortcuts
);
if (DevicePathText == NULL) {
DevicePathText = Fallback;
}
if (Filter == NULL || Filter (Handles[Idx], DevicePathText)) {
Process (Handles[Idx], DevicePathText);
}
if (DevicePathText != Fallback) {
FreePool (DevicePathText);
}
}
gBS->FreePool (Handles);
}
/**
This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the
handle, and adds it to ConOut and ErrOut.
**/
STATIC
VOID
EFIAPI
AddOutput (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = DevicePathFromHandle (Handle);
if (DevicePath == NULL) {
DEBUG ((EFI_D_ERROR, "%a: %s: handle %p: device path not found\n",
__FUNCTION__, ReportText, Handle));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: adding to ConOut: %r\n", __FUNCTION__,
ReportText, Status));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: adding to ErrOut: %r\n", __FUNCTION__,
ReportText, Status));
return;
}
DEBUG ((EFI_D_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__,
ReportText));
}
STATIC
VOID
EFIAPI
AddInput (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = DevicePathFromHandle (Handle);
if (DevicePath == NULL) {
DEBUG ((EFI_D_ERROR, "%a: %s: handle %p: device path not found\n",
__FUNCTION__, ReportText, Handle));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: adding to ConIn: %r\n", __FUNCTION__,
ReportText, Status));
return;
}
DEBUG ((EFI_D_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__,
ReportText));
}
STATIC
INTN
PlatformRegisterBootOption (
EFI_DEVICE_PATH_PROTOCOL *DevicePath,
CHAR16 *Description,
UINT32 Attributes
)
{
EFI_STATUS Status;
INTN OptionIndex;
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
Status = EfiBootManagerInitializeLoadOption (
&NewOption,
LoadOptionNumberUnassigned,
LoadOptionTypeBoot,
Attributes,
Description,
DevicePath,
NULL,
0
);
ASSERT_EFI_ERROR (Status);
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount, LoadOptionTypeBoot
);
OptionIndex = EfiBootManagerFindLoadOption (
&NewOption, BootOptions, BootOptionCount
);
if (OptionIndex == -1) {
Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
ASSERT_EFI_ERROR (Status);
OptionIndex = BootOptionCount;
}
EfiBootManagerFreeLoadOption (&NewOption);
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
return OptionIndex;
}
STATIC
INTN
PlatformRegisterFvBootOption (
CONST EFI_GUID *FileGuid,
CHAR16 *Description,
UINT32 Attributes
)
{
EFI_STATUS Status;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
INTN OptionIndex;
Status = gBS->HandleProtocol (
gImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **) &LoadedImage
);
ASSERT_EFI_ERROR (Status);
EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid);
DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle);
ASSERT (DevicePath != NULL);
DevicePath = AppendDevicePathNode (
DevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &FileNode
);
ASSERT (DevicePath != NULL);
OptionIndex = PlatformRegisterBootOption (DevicePath,
Description,
Attributes);
FreePool (DevicePath);
return OptionIndex;
}
STATIC
VOID
PlatformRegisterOptionsAndKeys (
VOID
)
{
INTN ShellOption;
ShellOption = PlatformRegisterFvBootOption(
&gUefiShellFileGuid,
L"UEFI Shell",
LOAD_OPTION_ACTIVE
);
}
STATIC
VOID
PlatformRegisterSetupKey(
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY PowerBtn;
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
//
// Map Power to Boot Manager Menu
//
PowerBtn.ScanCode = SCAN_NULL;
PowerBtn.UnicodeChar = CHAR_CARRIAGE_RETURN;
Status = EfiBootManagerGetBootManagerMenu(&BootOption);
ASSERT_EFI_ERROR(Status);
Status = EfiBootManagerAddKeyOptionVariable(
NULL,
(UINT16) BootOption.OptionNumber,
0,
&PowerBtn,
NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}
//
// BDS Platform Functions
//
/**
Do the platform init, can be customized by OEM/IBV
Possible things that can be done in PlatformBootManagerBeforeConsole:
> Update console variable: 1. include hot-plug devices;
> 2. Clear ConIn and add SOL for AMT
> Register new Driver#### or Boot####
> Register new Key####: e.g.: F12
> Signal ReadyToLock event
> Authentication action: 1. connect Auth devices;
> 2. Identify auto logon user.
**/
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
VOID
)
{
EFI_STATUS Status;
ESRT_MANAGEMENT_PROTOCOL *EsrtManagement;
if (GetBootModeHob() == BOOT_ON_FLASH_UPDATE) {
DEBUG ((DEBUG_INFO, "ProcessCapsules Before EndOfDxe ......\n"));
Status = ProcessCapsules ();
DEBUG ((DEBUG_INFO, "ProcessCapsules returned %r\n", Status));
} else {
Status = gBS->LocateProtocol (&gEsrtManagementProtocolGuid, NULL,
(VOID **)&EsrtManagement);
if (!EFI_ERROR (Status)) {
EsrtManagement->SyncEsrtFmp ();
}
}
//
// Now add the device path of all handles with GOP on them to ConOut and
// ErrOut.
//
FilterAndProcess (&gEfiGraphicsOutputProtocolGuid, NULL, AddOutput);
//
// Add the hardcoded short-form USB keyboard device path to ConIn.
//
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard, NULL);
//
// Now add the device path of all handles with QcomKeypadDeviceProtocolGuid
// on them to ConIn.
//
FilterAndProcess (&gEFIDroidKeypadDeviceProtocolGuid, NULL, AddInput);
// Register setup key then
PlatformRegisterSetupKey();
//
// Add the hardcoded serial console device path to ConIn, ConOut, ErrOut.
//
ASSERT (FixedPcdGet8 (PcdDefaultTerminalType) == 4);
CopyGuid (&mSerialConsole.TermType.Guid, &gEfiTtyTermGuid);
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ConOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
//
// Signal EndOfDxe PI Event
//
EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid);
//
// Dispatch deferred images after EndOfDxe event and ReadyToLock installation.
//
EfiBootManagerDispatchDeferredImages ();
}
/**
Do the platform specific action after the console is ready
Possible things that can be done in PlatformBootManagerAfterConsole:
> Console post action:
> Dynamically switch output mode from 100x31 to 80x25 for certain senarino
> Signal console ready platform customized event
> Run diagnostics like memory testing
> Connect certain devices
> Dispatch aditional option roms
> Special boot: e.g.: USB boot, enter UI
**/
VOID
EFIAPI
PlatformBootManagerAfterConsole (
VOID
)
{
ESRT_MANAGEMENT_PROTOCOL *EsrtManagement;
EFI_STATUS Status;
//
// Show the splash screen.
//
Status = BootLogoEnableLogo ();
//
// Connect the rest of the devices.
//
EfiBootManagerConnectAll ();
Status = gBS->LocateProtocol (&gEsrtManagementProtocolGuid, NULL,
(VOID **)&EsrtManagement);
if (!EFI_ERROR (Status)) {
EsrtManagement->SyncEsrtFmp ();
}
if (GetBootModeHob() == BOOT_ON_FLASH_UPDATE) {
DEBUG((DEBUG_INFO, "ProcessCapsules After EndOfDxe ......\n"));
Status = ProcessCapsules ();
DEBUG((DEBUG_INFO, "ProcessCapsules returned %r\n", Status));
}
EfiBootManagerRefreshAllBootOption ();
PlatformRegisterOptionsAndKeys ();
}
/**
This function is called each second during the boot manager waits the
timeout.
@param TimeoutRemain The remaining timeout.
**/
VOID
EFIAPI
PlatformBootManagerWaitCallback (
UINT16 TimeoutRemain
)
{
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
UINT16 Timeout;
EFI_STATUS Status;
Timeout = PcdGet16 (PcdPlatformBootTimeOut);
Black.Raw = 0x00000000;
White.Raw = 0x00FFFFFF;
Status = BootLogoUpdateProgress (
White.Pixel,
Black.Pixel,
L"Press Power Button for Setup Utility\n",
White.Pixel,
(Timeout - TimeoutRemain) * 100 / Timeout,
0
);
if (EFI_ERROR (Status)) {
Print (L".");
}
}
/**
The function is called when no boot option could be launched,
including platform recovery options and options pointing to applications
built into firmware volumes.
If this function returns, BDS attempts to enter an infinite loop.
**/
VOID
EFIAPI
PlatformBootManagerUnableToBoot (
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY Key;
EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu;
UINTN Index;
//
// BootManagerMenu doesn't contain the correct information when return status
// is EFI_NOT_FOUND.
//
Status = EfiBootManagerGetBootManagerMenu (&BootManagerMenu);
if (EFI_ERROR (Status)) {
return;
}
//
// Normally BdsDxe does not print anything to the system console, but this is
// a last resort -- the end-user will likely not see any DEBUG messages
// logged in this situation.
//
// AsciiPrint() will NULL-check gST->ConOut internally. We check gST->ConIn
// here to see if it makes sense to request and wait for a keypress.
//
if (gST->ConIn != NULL) {
AsciiPrint (
"%a: No bootable option or device was found.\n"
"%a: Press any key to enter the Boot Manager Menu.\n",
gEfiCallerBaseName,
gEfiCallerBaseName
);
Status = gBS->WaitForEvent (1, &gST->ConIn->WaitForKey, &Index);
ASSERT_EFI_ERROR (Status);
ASSERT (Index == 0);
//
// Drain any queued keys.
//
while (!EFI_ERROR (gST->ConIn->ReadKeyStroke (gST->ConIn, &Key))) {
//
// just throw away Key
//
}
}
for (;;) {
EfiBootManagerBoot (&BootManagerMenu);
}
}