zig/std/sort.zig

1136 lines
53 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const std = @import("index.zig");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;
const builtin = @import("builtin");
/// Stable in-place sort. O(n) best case, O(pow(n, 2)) worst case. O(1) memory (no allocator required).
pub fn insertionSort(comptime T: type, items: []T, lessThan: fn(lhs: &const T, rhs: &const T)bool) void {
{var i: usize = 1; while (i < items.len) : (i += 1) {
const x = items[i];
var j: usize = i;
while (j > 0 and lessThan(x, items[j - 1])) : (j -= 1) {
items[j] = items[j - 1];
}
items[j] = x;
}}
}
const Range = struct {
start: usize,
end: usize,
fn init(start: usize, end: usize) Range {
return Range { .start = start, .end = end };
}
fn length(self: &const Range) usize {
return self.end - self.start;
}
};
const Iterator = struct {
size: usize,
power_of_two: usize,
numerator: usize,
decimal: usize,
denominator: usize,
decimal_step: usize,
numerator_step: usize,
fn init(size2: usize, min_level: usize) Iterator {
const power_of_two = math.floorPowerOfTwo(usize, size2);
const denominator = power_of_two / min_level;
return Iterator {
.numerator = 0,
.decimal = 0,
.size = size2,
.power_of_two = power_of_two,
.denominator = denominator,
.decimal_step = size2 / denominator,
.numerator_step = size2 % denominator,
};
}
fn begin(self: &Iterator) void {
self.numerator = 0;
self.decimal = 0;
}
fn nextRange(self: &Iterator) Range {
const start = self.decimal;
self.decimal += self.decimal_step;
self.numerator += self.numerator_step;
if (self.numerator >= self.denominator) {
self.numerator -= self.denominator;
self.decimal += 1;
}
return Range {.start = start, .end = self.decimal};
}
fn finished(self: &Iterator) bool {
return self.decimal >= self.size;
}
fn nextLevel(self: &Iterator) bool {
self.decimal_step += self.decimal_step;
self.numerator_step += self.numerator_step;
if (self.numerator_step >= self.denominator) {
self.numerator_step -= self.denominator;
self.decimal_step += 1;
}
return (self.decimal_step < self.size);
}
fn length(self: &Iterator) usize {
return self.decimal_step;
}
};
const Pull = struct {
from: usize,
to: usize,
count: usize,
range: Range,
};
/// Stable in-place sort. O(n) best case, O(n*log(n)) worst case and average case. O(1) memory (no allocator required).
/// Currently implemented as block sort.
pub fn sort(comptime T: type, items: []T, lessThan: fn(lhs: &const T, rhs: &const T)bool) void {
// Implementation ported from https://github.com/BonzaiThePenguin/WikiSort/blob/master/WikiSort.c
var cache: [512]T = undefined;
if (items.len < 4) {
if (items.len == 3) {
// hard coded insertion sort
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
if (lessThan(items[2], items[1])) {
mem.swap(T, &items[1], &items[2]);
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
}
} else if (items.len == 2) {
if (lessThan(items[1], items[0])) mem.swap(T, &items[0], &items[1]);
}
return;
}
// sort groups of 4-8 items at a time using an unstable sorting network,
// but keep track of the original item orders to force it to be stable
// http://pages.ripco.net/~jgamble/nw.html
var iterator = Iterator.init(items.len, 4);
while (!iterator.finished()) {
var order = []u8{0, 1, 2, 3, 4, 5, 6, 7};
const range = iterator.nextRange();
const sliced_items = items[range.start..];
switch (range.length()) {
8 => {
swap(T, sliced_items, lessThan, &order, 0, 1);
swap(T, sliced_items, lessThan, &order, 2, 3);
swap(T, sliced_items, lessThan, &order, 4, 5);
swap(T, sliced_items, lessThan, &order, 6, 7);
swap(T, sliced_items, lessThan, &order, 0, 2);
swap(T, sliced_items, lessThan, &order, 1, 3);
swap(T, sliced_items, lessThan, &order, 4, 6);
swap(T, sliced_items, lessThan, &order, 5, 7);
swap(T, sliced_items, lessThan, &order, 1, 2);
swap(T, sliced_items, lessThan, &order, 5, 6);
swap(T, sliced_items, lessThan, &order, 0, 4);
swap(T, sliced_items, lessThan, &order, 3, 7);
swap(T, sliced_items, lessThan, &order, 1, 5);
swap(T, sliced_items, lessThan, &order, 2, 6);
swap(T, sliced_items, lessThan, &order, 1, 4);
swap(T, sliced_items, lessThan, &order, 3, 6);
swap(T, sliced_items, lessThan, &order, 2, 4);
swap(T, sliced_items, lessThan, &order, 3, 5);
swap(T, sliced_items, lessThan, &order, 3, 4);
},
7 => {
swap(T, sliced_items, lessThan, &order, 1, 2);
swap(T, sliced_items, lessThan, &order, 3, 4);
swap(T, sliced_items, lessThan, &order, 5, 6);
swap(T, sliced_items, lessThan, &order, 0, 2);
swap(T, sliced_items, lessThan, &order, 3, 5);
swap(T, sliced_items, lessThan, &order, 4, 6);
swap(T, sliced_items, lessThan, &order, 0, 1);
swap(T, sliced_items, lessThan, &order, 4, 5);
swap(T, sliced_items, lessThan, &order, 2, 6);
swap(T, sliced_items, lessThan, &order, 0, 4);
swap(T, sliced_items, lessThan, &order, 1, 5);
swap(T, sliced_items, lessThan, &order, 0, 3);
swap(T, sliced_items, lessThan, &order, 2, 5);
swap(T, sliced_items, lessThan, &order, 1, 3);
swap(T, sliced_items, lessThan, &order, 2, 4);
swap(T, sliced_items, lessThan, &order, 2, 3);
},
6 => {
swap(T, sliced_items, lessThan, &order, 1, 2);
swap(T, sliced_items, lessThan, &order, 4, 5);
swap(T, sliced_items, lessThan, &order, 0, 2);
swap(T, sliced_items, lessThan, &order, 3, 5);
swap(T, sliced_items, lessThan, &order, 0, 1);
swap(T, sliced_items, lessThan, &order, 3, 4);
swap(T, sliced_items, lessThan, &order, 2, 5);
swap(T, sliced_items, lessThan, &order, 0, 3);
swap(T, sliced_items, lessThan, &order, 1, 4);
swap(T, sliced_items, lessThan, &order, 2, 4);
swap(T, sliced_items, lessThan, &order, 1, 3);
swap(T, sliced_items, lessThan, &order, 2, 3);
},
5 => {
swap(T, sliced_items, lessThan, &order, 0, 1);
swap(T, sliced_items, lessThan, &order, 3, 4);
swap(T, sliced_items, lessThan, &order, 2, 4);
swap(T, sliced_items, lessThan, &order, 2, 3);
swap(T, sliced_items, lessThan, &order, 1, 4);
swap(T, sliced_items, lessThan, &order, 0, 3);
swap(T, sliced_items, lessThan, &order, 0, 2);
swap(T, sliced_items, lessThan, &order, 1, 3);
swap(T, sliced_items, lessThan, &order, 1, 2);
},
4 => {
swap(T, sliced_items, lessThan, &order, 0, 1);
swap(T, sliced_items, lessThan, &order, 2, 3);
swap(T, sliced_items, lessThan, &order, 0, 2);
swap(T, sliced_items, lessThan, &order, 1, 3);
swap(T, sliced_items, lessThan, &order, 1, 2);
},
else => {},
}
}
if (items.len < 8) return;
// then merge sort the higher levels, which can be 8-15, 16-31, 32-63, 64-127, etc.
while (true) {
// if every A and B block will fit into the cache, use a special branch specifically for merging with the cache
// (we use < rather than <= since the block size might be one more than iterator.length())
if (iterator.length() < cache.len) {
// if four subarrays fit into the cache, it's faster to merge both pairs of subarrays into the cache,
// then merge the two merged subarrays from the cache back into the original array
if ((iterator.length() + 1) * 4 <= cache.len and iterator.length() * 4 <= items.len) {
iterator.begin();
while (!iterator.finished()) {
// merge A1 and B1 into the cache
var A1 = iterator.nextRange();
var B1 = iterator.nextRange();
var A2 = iterator.nextRange();
var B2 = iterator.nextRange();
if (lessThan(items[B1.end - 1], items[A1.start])) {
// the two ranges are in reverse order, so copy them in reverse order into the cache
mem.copy(T, cache[B1.length()..], items[A1.start..A1.end]);
mem.copy(T, cache[0..], items[B1.start..B1.end]);
} else if (lessThan(items[B1.start], items[A1.end - 1])) {
// these two ranges weren't already in order, so merge them into the cache
mergeInto(T, items, A1, B1, lessThan, cache[0..]);
} else {
// if A1, B1, A2, and B2 are all in order, skip doing anything else
if (!lessThan(items[B2.start], items[A2.end - 1]) and !lessThan(items[A2.start], items[B1.end - 1])) continue;
// copy A1 and B1 into the cache in the same order
mem.copy(T, cache[0..], items[A1.start..A1.end]);
mem.copy(T, cache[A1.length()..], items[B1.start..B1.end]);
}
A1 = Range.init(A1.start, B1.end);
// merge A2 and B2 into the cache
if (lessThan(items[B2.end - 1], items[A2.start])) {
// the two ranges are in reverse order, so copy them in reverse order into the cache
mem.copy(T, cache[A1.length() + B2.length()..], items[A2.start..A2.end]);
mem.copy(T, cache[A1.length()..], items[B2.start..B2.end]);
} else if (lessThan(items[B2.start], items[A2.end - 1])) {
// these two ranges weren't already in order, so merge them into the cache
mergeInto(T, items, A2, B2, lessThan, cache[A1.length()..]);
} else {
// copy A2 and B2 into the cache in the same order
mem.copy(T, cache[A1.length()..], items[A2.start..A2.end]);
mem.copy(T, cache[A1.length() + A2.length()..], items[B2.start..B2.end]);
}
A2 = Range.init(A2.start, B2.end);
// merge A1 and A2 from the cache into the items
const A3 = Range.init(0, A1.length());
const B3 = Range.init(A1.length(), A1.length() + A2.length());
if (lessThan(cache[B3.end - 1], cache[A3.start])) {
// the two ranges are in reverse order, so copy them in reverse order into the items
mem.copy(T, items[A1.start + A2.length()..], cache[A3.start..A3.end]);
mem.copy(T, items[A1.start..], cache[B3.start..B3.end]);
} else if (lessThan(cache[B3.start], cache[A3.end - 1])) {
// these two ranges weren't already in order, so merge them back into the items
mergeInto(T, cache[0..], A3, B3, lessThan, items[A1.start..]);
} else {
// copy A3 and B3 into the items in the same order
mem.copy(T, items[A1.start..], cache[A3.start..A3.end]);
mem.copy(T, items[A1.start + A1.length()..], cache[B3.start..B3.end]);
}
}
// we merged two levels at the same time, so we're done with this level already
// (iterator.nextLevel() is called again at the bottom of this outer merge loop)
_ = iterator.nextLevel();
} else {
iterator.begin();
while (!iterator.finished()) {
var A = iterator.nextRange();
var B = iterator.nextRange();
if (lessThan(items[B.end - 1], items[A.start])) {
// the two ranges are in reverse order, so a simple rotation should fix it
mem.rotate(T, items[A.start..B.end], A.length());
} else if (lessThan(items[B.start], items[A.end - 1])) {
// these two ranges weren't already in order, so we'll need to merge them!
mem.copy(T, cache[0..], items[A.start..A.end]);
mergeExternal(T, items, A, B, lessThan, cache[0..]);
}
}
}
} else {
// this is where the in-place merge logic starts!
// 1. pull out two internal buffers each containing √A unique values
// 1a. adjust block_size and buffer_size if we couldn't find enough unique values
// 2. loop over the A and B subarrays within this level of the merge sort
// 3. break A and B into blocks of size 'block_size'
// 4. "tag" each of the A blocks with values from the first internal buffer
// 5. roll the A blocks through the B blocks and drop/rotate them where they belong
// 6. merge each A block with any B values that follow, using the cache or the second internal buffer
// 7. sort the second internal buffer if it exists
// 8. redistribute the two internal buffers back into the items
var block_size: usize = math.sqrt(iterator.length());
var buffer_size = iterator.length()/block_size + 1;
// as an optimization, we really only need to pull out the internal buffers once for each level of merges
// after that we can reuse the same buffers over and over, then redistribute it when we're finished with this level
var A: Range = undefined;
var B: Range = undefined;
var index: usize = 0;
var last: usize = 0;
var count: usize = 0;
var find: usize = 0;
var start: usize = 0;
var pull_index: usize = 0;
var pull = []Pull{
Pull {.from = 0, .to = 0, .count = 0, .range = Range.init(0, 0),},
Pull {.from = 0, .to = 0, .count = 0, .range = Range.init(0, 0),},
};
var buffer1 = Range.init(0, 0);
var buffer2 = Range.init(0, 0);
// find two internal buffers of size 'buffer_size' each
find = buffer_size + buffer_size;
var find_separately = false;
if (block_size <= cache.len) {
// if every A block fits into the cache then we won't need the second internal buffer,
// so we really only need to find 'buffer_size' unique values
find = buffer_size;
} else if (find > iterator.length()) {
// we can't fit both buffers into the same A or B subarray, so find two buffers separately
find = buffer_size;
find_separately = true;
}
// we need to find either a single contiguous space containing 2√A unique values (which will be split up into two buffers of size √A each),
// or we need to find one buffer of < 2√A unique values, and a second buffer of √A unique values,
// OR if we couldn't find that many unique values, we need the largest possible buffer we can get
// in the case where it couldn't find a single buffer of at least √A unique values,
// all of the Merge steps must be replaced by a different merge algorithm (MergeInPlace)
iterator.begin();
while (!iterator.finished()) {
A = iterator.nextRange();
B = iterator.nextRange();
// just store information about where the values will be pulled from and to,
// as well as how many values there are, to create the two internal buffers
// check A for the number of unique values we need to fill an internal buffer
// these values will be pulled out to the start of A
last = A.start;
count = 1;
while (count < find) : ({last = index; count += 1;}) {
index = findLastForward(T, items, items[last], Range.init(last + 1, A.end), lessThan, find - count);
if (index == A.end) break;
}
index = last;
if (count >= buffer_size) {
// keep track of the range within the items where we'll need to "pull out" these values to create the internal buffer
pull[pull_index] = Pull {
.range = Range.init(A.start, B.end),
.count = count,
.from = index,
.to = A.start,
};
pull_index = 1;
if (count == buffer_size + buffer_size) {
// we were able to find a single contiguous section containing 2√A unique values,
// so this section can be used to contain both of the internal buffers we'll need
buffer1 = Range.init(A.start, A.start + buffer_size);
buffer2 = Range.init(A.start + buffer_size, A.start + count);
break;
} else if (find == buffer_size + buffer_size) {
// we found a buffer that contains at least √A unique values, but did not contain the full 2√A unique values,
// so we still need to find a second separate buffer of at least √A unique values
buffer1 = Range.init(A.start, A.start + count);
find = buffer_size;
} else if (block_size <= cache.len) {
// we found the first and only internal buffer that we need, so we're done!
buffer1 = Range.init(A.start, A.start + count);
break;
} else if (find_separately) {
// found one buffer, but now find the other one
buffer1 = Range.init(A.start, A.start + count);
find_separately = false;
} else {
// we found a second buffer in an 'A' subarray containing √A unique values, so we're done!
buffer2 = Range.init(A.start, A.start + count);
break;
}
} else if (pull_index == 0 and count > buffer1.length()) {
// keep track of the largest buffer we were able to find
buffer1 = Range.init(A.start, A.start + count);
pull[pull_index] = Pull {
.range = Range.init(A.start, B.end),
.count = count,
.from = index,
.to = A.start,
};
}
// check B for the number of unique values we need to fill an internal buffer
// these values will be pulled out to the end of B
last = B.end - 1;
count = 1;
while (count < find) : ({last = index - 1; count += 1;}) {
index = findFirstBackward(T, items, items[last], Range.init(B.start, last), lessThan, find - count);
if (index == B.start) break;
}
index = last;
if (count >= buffer_size) {
// keep track of the range within the items where we'll need to "pull out" these values to create the internal buffe
pull[pull_index] = Pull {
.range = Range.init(A.start, B.end),
.count = count,
.from = index,
.to = B.end,
};
pull_index = 1;
if (count == buffer_size + buffer_size) {
// we were able to find a single contiguous section containing 2√A unique values,
// so this section can be used to contain both of the internal buffers we'll need
buffer1 = Range.init(B.end - count, B.end - buffer_size);
buffer2 = Range.init(B.end - buffer_size, B.end);
break;
} else if (find == buffer_size + buffer_size) {
// we found a buffer that contains at least √A unique values, but did not contain the full 2√A unique values,
// so we still need to find a second separate buffer of at least √A unique values
buffer1 = Range.init(B.end - count, B.end);
find = buffer_size;
} else if (block_size <= cache.len) {
// we found the first and only internal buffer that we need, so we're done!
buffer1 = Range.init(B.end - count, B.end);
break;
} else if (find_separately) {
// found one buffer, but now find the other one
buffer1 = Range.init(B.end - count, B.end);
find_separately = false;
} else {
// buffer2 will be pulled out from a 'B' subarray, so if the first buffer was pulled out from the corresponding 'A' subarray,
// we need to adjust the end point for that A subarray so it knows to stop redistributing its values before reaching buffer2
if (pull[0].range.start == A.start) pull[0].range.end -= pull[1].count;
// we found a second buffer in an 'B' subarray containing √A unique values, so we're done!
buffer2 = Range.init(B.end - count, B.end);
break;
}
} else if (pull_index == 0 and count > buffer1.length()) {
// keep track of the largest buffer we were able to find
buffer1 = Range.init(B.end - count, B.end);
pull[pull_index] = Pull {
.range = Range.init(A.start, B.end),
.count = count,
.from = index,
.to = B.end,
};
}
}
// pull out the two ranges so we can use them as internal buffers
pull_index = 0;
while (pull_index < 2) : (pull_index += 1) {
const length = pull[pull_index].count;
if (pull[pull_index].to < pull[pull_index].from) {
// we're pulling the values out to the left, which means the start of an A subarray
index = pull[pull_index].from;
count = 1;
while (count < length) : (count += 1) {
index = findFirstBackward(T, items, items[index - 1], Range.init(pull[pull_index].to, pull[pull_index].from - (count - 1)), lessThan, length - count);
const range = Range.init(index + 1, pull[pull_index].from + 1);
mem.rotate(T, items[range.start..range.end], range.length() - count);
pull[pull_index].from = index + count;
}
} else if (pull[pull_index].to > pull[pull_index].from) {
// we're pulling values out to the right, which means the end of a B subarray
index = pull[pull_index].from + 1;
count = 1;
while (count < length) : (count += 1) {
index = findLastForward(T, items, items[index], Range.init(index, pull[pull_index].to), lessThan, length - count);
const range = Range.init(pull[pull_index].from, index - 1);
mem.rotate(T, items[range.start..range.end], count);
pull[pull_index].from = index - 1 - count;
}
}
}
// adjust block_size and buffer_size based on the values we were able to pull out
buffer_size = buffer1.length();
block_size = iterator.length()/buffer_size + 1;
// the first buffer NEEDS to be large enough to tag each of the evenly sized A blocks,
// so this was originally here to test the math for adjusting block_size above
// assert((iterator.length() + 1)/block_size <= buffer_size);
// now that the two internal buffers have been created, it's time to merge each A+B combination at this level of the merge sort!
iterator.begin();
while (!iterator.finished()) {
A = iterator.nextRange();
B = iterator.nextRange();
// remove any parts of A or B that are being used by the internal buffers
start = A.start;
if (start == pull[0].range.start) {
if (pull[0].from > pull[0].to) {
A.start += pull[0].count;
// if the internal buffer takes up the entire A or B subarray, then there's nothing to merge
// this only happens for very small subarrays, like √4 = 2, 2 * (2 internal buffers) = 4,
// which also only happens when cache.len is small or 0 since it'd otherwise use MergeExternal
if (A.length() == 0) continue;
} else if (pull[0].from < pull[0].to) {
B.end -= pull[0].count;
if (B.length() == 0) continue;
}
}
if (start == pull[1].range.start) {
if (pull[1].from > pull[1].to) {
A.start += pull[1].count;
if (A.length() == 0) continue;
} else if (pull[1].from < pull[1].to) {
B.end -= pull[1].count;
if (B.length() == 0) continue;
}
}
if (lessThan(items[B.end - 1], items[A.start])) {
// the two ranges are in reverse order, so a simple rotation should fix it
mem.rotate(T, items[A.start..B.end], A.length());
} else if (lessThan(items[A.end], items[A.end - 1])) {
// these two ranges weren't already in order, so we'll need to merge them!
var findA: usize = undefined;
// break the remainder of A into blocks. firstA is the uneven-sized first A block
var blockA = Range.init(A.start, A.end);
var firstA = Range.init(A.start, A.start + blockA.length() % block_size);
// swap the first value of each A block with the value in buffer1
var indexA = buffer1.start;
index = firstA.end;
while (index < blockA.end) : ({indexA += 1; index += block_size;}) {
mem.swap(T, &items[indexA], &items[index]);
}
// start rolling the A blocks through the B blocks!
// whenever we leave an A block behind, we'll need to merge the previous A block with any B blocks that follow it, so track that information as well
var lastA = firstA;
var lastB = Range.init(0, 0);
var blockB = Range.init(B.start, B.start + math.min(block_size, B.length()));
blockA.start += firstA.length();
indexA = buffer1.start;
// if the first unevenly sized A block fits into the cache, copy it there for when we go to Merge it
// otherwise, if the second buffer is available, block swap the contents into that
if (lastA.length() <= cache.len) {
mem.copy(T, cache[0..], items[lastA.start..lastA.end]);
} else if (buffer2.length() > 0) {
blockSwap(T, items, lastA.start, buffer2.start, lastA.length());
}
if (blockA.length() > 0) {
while (true) {
// if there's a previous B block and the first value of the minimum A block is <= the last value of the previous B block,
// then drop that minimum A block behind. or if there are no B blocks left then keep dropping the remaining A blocks.
if ((lastB.length() > 0 and !lessThan(items[lastB.end - 1], items[indexA])) or blockB.length() == 0) {
// figure out where to split the previous B block, and rotate it at the split
const B_split = binaryFirst(T, items, items[indexA], lastB, lessThan);
const B_remaining = lastB.end - B_split;
// swap the minimum A block to the beginning of the rolling A blocks
var minA = blockA.start;
findA = minA + block_size;
while (findA < blockA.end) : (findA += block_size) {
if (lessThan(items[findA], items[minA])) {
minA = findA;
}
}
blockSwap(T, items, blockA.start, minA, block_size);
// swap the first item of the previous A block back with its original value, which is stored in buffer1
mem.swap(T, &items[blockA.start], &items[indexA]);
indexA += 1;
// locally merge the previous A block with the B values that follow it
// if lastA fits into the external cache we'll use that (with MergeExternal),
// or if the second internal buffer exists we'll use that (with MergeInternal),
// or failing that we'll use a strictly in-place merge algorithm (MergeInPlace)
if (lastA.length() <= cache.len) {
mergeExternal(T, items, lastA, Range.init(lastA.end, B_split), lessThan, cache[0..]);
} else if (buffer2.length() > 0) {
mergeInternal(T, items, lastA, Range.init(lastA.end, B_split), lessThan, buffer2);
} else {
mergeInPlace(T, items, lastA, Range.init(lastA.end, B_split), lessThan);
}
if (buffer2.length() > 0 or block_size <= cache.len) {
// copy the previous A block into the cache or buffer2, since that's where we need it to be when we go to merge it anyway
if (block_size <= cache.len) {
mem.copy(T, cache[0..], items[blockA.start..blockA.start + block_size]);
} else {
blockSwap(T, items, blockA.start, buffer2.start, block_size);
}
// this is equivalent to rotating, but faster
// the area normally taken up by the A block is either the contents of buffer2, or data we don't need anymore since we memcopied it
// either way, we don't need to retain the order of those items, so instead of rotating we can just block swap B to where it belongs
blockSwap(T, items, B_split, blockA.start + block_size - B_remaining, B_remaining);
} else {
// we are unable to use the 'buffer2' trick to speed up the rotation operation since buffer2 doesn't exist, so perform a normal rotation
mem.rotate(T, items[B_split..blockA.start + block_size], blockA.start - B_split);
}
// update the range for the remaining A blocks, and the range remaining from the B block after it was split
lastA = Range.init(blockA.start - B_remaining, blockA.start - B_remaining + block_size);
lastB = Range.init(lastA.end, lastA.end + B_remaining);
// if there are no more A blocks remaining, this step is finished!
blockA.start += block_size;
if (blockA.length() == 0)
break;
} else if (blockB.length() < block_size) {
// move the last B block, which is unevenly sized, to before the remaining A blocks, by using a rotation
// the cache is disabled here since it might contain the contents of the previous A block
mem.rotate(T, items[blockA.start..blockB.end], blockB.start - blockA.start);
lastB = Range.init(blockA.start, blockA.start + blockB.length());
blockA.start += blockB.length();
blockA.end += blockB.length();
blockB.end = blockB.start;
} else {
// roll the leftmost A block to the end by swapping it with the next B block
blockSwap(T, items, blockA.start, blockB.start, block_size);
lastB = Range.init(blockA.start, blockA.start + block_size);
blockA.start += block_size;
blockA.end += block_size;
blockB.start += block_size;
if (blockB.end > B.end - block_size) {
blockB.end = B.end;
} else {
blockB.end += block_size;
}
}
}
}
// merge the last A block with the remaining B values
if (lastA.length() <= cache.len) {
mergeExternal(T, items, lastA, Range.init(lastA.end, B.end), lessThan, cache[0..]);
} else if (buffer2.length() > 0) {
mergeInternal(T, items, lastA, Range.init(lastA.end, B.end), lessThan, buffer2);
} else {
mergeInPlace(T, items, lastA, Range.init(lastA.end, B.end), lessThan);
}
}
}
// when we're finished with this merge step we should have the one or two internal buffers left over, where the second buffer is all jumbled up
// insertion sort the second buffer, then redistribute the buffers back into the items using the opposite process used for creating the buffer
// while an unstable sort like quicksort could be applied here, in benchmarks it was consistently slightly slower than a simple insertion sort,
// even for tens of millions of items. this may be because insertion sort is quite fast when the data is already somewhat sorted, like it is here
insertionSort(T, items[buffer2.start..buffer2.end], lessThan);
pull_index = 0;
while (pull_index < 2) : (pull_index += 1) {
var unique = pull[pull_index].count * 2;
if (pull[pull_index].from > pull[pull_index].to) {
// the values were pulled out to the left, so redistribute them back to the right
var buffer = Range.init(pull[pull_index].range.start, pull[pull_index].range.start + pull[pull_index].count);
while (buffer.length() > 0) {
index = findFirstForward(T, items, items[buffer.start], Range.init(buffer.end, pull[pull_index].range.end), lessThan, unique);
const amount = index - buffer.end;
mem.rotate(T, items[buffer.start..index], buffer.length());
buffer.start += (amount + 1);
buffer.end += amount;
unique -= 2;
}
} else if (pull[pull_index].from < pull[pull_index].to) {
// the values were pulled out to the right, so redistribute them back to the left
var buffer = Range.init(pull[pull_index].range.end - pull[pull_index].count, pull[pull_index].range.end);
while (buffer.length() > 0) {
index = findLastBackward(T, items, items[buffer.end - 1], Range.init(pull[pull_index].range.start, buffer.start), lessThan, unique);
const amount = buffer.start - index;
mem.rotate(T, items[index..buffer.end], amount);
buffer.start -= amount;
buffer.end -= (amount + 1);
unique -= 2;
}
}
}
}
// double the size of each A and B subarray that will be merged in the next level
if (!iterator.nextLevel()) break;
}
}
// merge operation without a buffer
fn mergeInPlace(comptime T: type, items: []T, A_arg: &const Range, B_arg: &const Range, lessThan: fn(&const T,&const T)bool) void {
if (A_arg.length() == 0 or B_arg.length() == 0) return;
// this just repeatedly binary searches into B and rotates A into position.
// the paper suggests using the 'rotation-based Hwang and Lin algorithm' here,
// but I decided to stick with this because it had better situational performance
//
// (Hwang and Lin is designed for merging subarrays of very different sizes,
// but WikiSort almost always uses subarrays that are roughly the same size)
//
// normally this is incredibly suboptimal, but this function is only called
// when none of the A or B blocks in any subarray contained 2√A unique values,
// which places a hard limit on the number of times this will ACTUALLY need
// to binary search and rotate.
//
// according to my analysis the worst case is √A rotations performed on √A items
// once the constant factors are removed, which ends up being O(n)
//
// again, this is NOT a general-purpose solution it only works well in this case!
// kind of like how the O(n^2) insertion sort is used in some places
var A = *A_arg;
var B = *B_arg;
while (true) {
// find the first place in B where the first item in A needs to be inserted
const mid = binaryFirst(T, items, items[A.start], B, lessThan);
// rotate A into place
const amount = mid - A.end;
mem.rotate(T, items[A.start..mid], A.length());
if (B.end == mid) break;
// calculate the new A and B ranges
B.start = mid;
A = Range.init(A.start + amount, B.start);
A.start = binaryLast(T, items, items[A.start], A, lessThan);
if (A.length() == 0) break;
}
}
// merge operation using an internal buffer
fn mergeInternal(comptime T: type, items: []T, A: &const Range, B: &const Range, lessThan: fn(&const T,&const T)bool, buffer: &const Range) void {
// whenever we find a value to add to the final array, swap it with the value that's already in that spot
// when this algorithm is finished, 'buffer' will contain its original contents, but in a different order
var A_count: usize = 0;
var B_count: usize = 0;
var insert: usize = 0;
if (B.length() > 0 and A.length() > 0) {
while (true) {
if (!lessThan(items[B.start + B_count], items[buffer.start + A_count])) {
mem.swap(T, &items[A.start + insert], &items[buffer.start + A_count]);
A_count += 1;
insert += 1;
if (A_count >= A.length()) break;
} else {
mem.swap(T, &items[A.start + insert], &items[B.start + B_count]);
B_count += 1;
insert += 1;
if (B_count >= B.length()) break;
}
}
}
// swap the remainder of A into the final array
blockSwap(T, items, buffer.start + A_count, A.start + insert, A.length() - A_count);
}
fn blockSwap(comptime T: type, items: []T, start1: usize, start2: usize, block_size: usize) void {
var index: usize = 0;
while (index < block_size) : (index += 1) {
mem.swap(T, &items[start1 + index], &items[start2 + index]);
}
}
// combine a linear search with a binary search to reduce the number of comparisons in situations
// where have some idea as to how many unique values there are and where the next value might be
fn findFirstForward(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool, unique: usize) usize {
if (range.length() == 0) return range.start;
const skip = math.max(range.length()/unique, usize(1));
var index = range.start + skip;
while (lessThan(items[index - 1], value)) : (index += skip) {
if (index >= range.end - skip) {
return binaryFirst(T, items, value, Range.init(index, range.end), lessThan);
}
}
return binaryFirst(T, items, value, Range.init(index - skip, index), lessThan);
}
fn findFirstBackward(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool, unique: usize) usize {
if (range.length() == 0) return range.start;
const skip = math.max(range.length()/unique, usize(1));
var index = range.end - skip;
while (index > range.start and !lessThan(items[index - 1], value)) : (index -= skip) {
if (index < range.start + skip) {
return binaryFirst(T, items, value, Range.init(range.start, index), lessThan);
}
}
return binaryFirst(T, items, value, Range.init(index, index + skip), lessThan);
}
fn findLastForward(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool, unique: usize) usize {
if (range.length() == 0) return range.start;
const skip = math.max(range.length()/unique, usize(1));
var index = range.start + skip;
while (!lessThan(value, items[index - 1])) : (index += skip) {
if (index >= range.end - skip) {
return binaryLast(T, items, value, Range.init(index, range.end), lessThan);
}
}
return binaryLast(T, items, value, Range.init(index - skip, index), lessThan);
}
fn findLastBackward(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool, unique: usize) usize {
if (range.length() == 0) return range.start;
const skip = math.max(range.length()/unique, usize(1));
var index = range.end - skip;
while (index > range.start and lessThan(value, items[index - 1])) : (index -= skip) {
if (index < range.start + skip) {
return binaryLast(T, items, value, Range.init(range.start, index), lessThan);
}
}
return binaryLast(T, items, value, Range.init(index, index + skip), lessThan);
}
fn binaryFirst(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool) usize {
var start = range.start;
var end = range.end - 1;
if (range.start >= range.end) return range.end;
while (start < end) {
const mid = start + (end - start)/2;
if (lessThan(items[mid], value)) {
start = mid + 1;
} else {
end = mid;
}
}
if (start == range.end - 1 and lessThan(items[start], value)) {
start += 1;
}
return start;
}
fn binaryLast(comptime T: type, items: []T, value: &const T, range: &const Range, lessThan: fn(&const T,&const T)bool) usize {
var start = range.start;
var end = range.end - 1;
if (range.start >= range.end) return range.end;
while (start < end) {
const mid = start + (end - start)/2;
if (!lessThan(value, items[mid])) {
start = mid + 1;
} else {
end = mid;
}
}
if (start == range.end - 1 and !lessThan(value, items[start])) {
start += 1;
}
return start;
}
fn mergeInto(comptime T: type, from: []T, A: &const Range, B: &const Range, lessThan: fn(&const T,&const T)bool, into: []T) void {
var A_index: usize = A.start;
var B_index: usize = B.start;
const A_last = A.end;
const B_last = B.end;
var insert_index: usize = 0;
while (true) {
if (!lessThan(from[B_index], from[A_index])) {
into[insert_index] = from[A_index];
A_index += 1;
insert_index += 1;
if (A_index == A_last) {
// copy the remainder of B into the final array
mem.copy(T, into[insert_index..], from[B_index..B_last]);
break;
}
} else {
into[insert_index] = from[B_index];
B_index += 1;
insert_index += 1;
if (B_index == B_last) {
// copy the remainder of A into the final array
mem.copy(T, into[insert_index..], from[A_index..A_last]);
break;
}
}
}
}
fn mergeExternal(comptime T: type, items: []T, A: &const Range, B: &const Range, lessThan: fn(&const T,&const T)bool, cache: []T) void {
// A fits into the cache, so use that instead of the internal buffer
var A_index: usize = 0;
var B_index: usize = B.start;
var insert_index: usize = A.start;
const A_last = A.length();
const B_last = B.end;
if (B.length() > 0 and A.length() > 0) {
while (true) {
if (!lessThan(items[B_index], cache[A_index])) {
items[insert_index] = cache[A_index];
A_index += 1;
insert_index += 1;
if (A_index == A_last) break;
} else {
items[insert_index] = items[B_index];
B_index += 1;
insert_index += 1;
if (B_index == B_last) break;
}
}
}
// copy the remainder of A into the final array
mem.copy(T, items[insert_index..], cache[A_index..A_last]);
}
fn swap(comptime T: type, items: []T, lessThan: fn(lhs: &const T, rhs: &const T)bool, order: &[8]u8, x: usize, y: usize) void {
if (lessThan(items[y], items[x]) or
((*order)[x] > (*order)[y] and !lessThan(items[x], items[y])))
{
mem.swap(T, &items[x], &items[y]);
mem.swap(u8, &(*order)[x], &(*order)[y]);
}
}
fn i32asc(lhs: &const i32, rhs: &const i32) bool {
return *lhs < *rhs;
}
fn i32desc(lhs: &const i32, rhs: &const i32) bool {
return *rhs < *lhs;
}
fn u8asc(lhs: &const u8, rhs: &const u8) bool {
return *lhs < *rhs;
}
fn u8desc(lhs: &const u8, rhs: &const u8) bool {
return *rhs < *lhs;
}
test "stable sort" {
testStableSort();
comptime testStableSort();
}
fn testStableSort() void {
var expected = []IdAndValue {
IdAndValue{.id = 0, .value = 0},
IdAndValue{.id = 1, .value = 0},
IdAndValue{.id = 2, .value = 0},
IdAndValue{.id = 0, .value = 1},
IdAndValue{.id = 1, .value = 1},
IdAndValue{.id = 2, .value = 1},
IdAndValue{.id = 0, .value = 2},
IdAndValue{.id = 1, .value = 2},
IdAndValue{.id = 2, .value = 2},
};
var cases = [][9]IdAndValue {
[]IdAndValue {
IdAndValue{.id = 0, .value = 0},
IdAndValue{.id = 0, .value = 1},
IdAndValue{.id = 0, .value = 2},
IdAndValue{.id = 1, .value = 0},
IdAndValue{.id = 1, .value = 1},
IdAndValue{.id = 1, .value = 2},
IdAndValue{.id = 2, .value = 0},
IdAndValue{.id = 2, .value = 1},
IdAndValue{.id = 2, .value = 2},
},
[]IdAndValue {
IdAndValue{.id = 0, .value = 2},
IdAndValue{.id = 0, .value = 1},
IdAndValue{.id = 0, .value = 0},
IdAndValue{.id = 1, .value = 2},
IdAndValue{.id = 1, .value = 1},
IdAndValue{.id = 1, .value = 0},
IdAndValue{.id = 2, .value = 2},
IdAndValue{.id = 2, .value = 1},
IdAndValue{.id = 2, .value = 0},
},
};
for (cases) |*case| {
insertionSort(IdAndValue, (*case)[0..], cmpByValue);
for (*case) |item, i| {
assert(item.id == expected[i].id);
assert(item.value == expected[i].value);
}
}
}
const IdAndValue = struct {
id: usize,
value: i32,
};
fn cmpByValue(a: &const IdAndValue, b: &const IdAndValue) bool {
return i32asc(a.value, b.value);
}
test "std.sort" {
const u8cases = [][]const []const u8 {
[][]const u8{"", ""},
[][]const u8{"a", "a"},
[][]const u8{"az", "az"},
[][]const u8{"za", "az"},
[][]const u8{"asdf", "adfs"},
[][]const u8{"one", "eno"},
};
for (u8cases) |case| {
var buf: [8]u8 = undefined;
const slice = buf[0..case[0].len];
mem.copy(u8, slice, case[0]);
sort(u8, slice, u8asc);
assert(mem.eql(u8, slice, case[1]));
}
const i32cases = [][]const []const i32 {
[][]const i32{[]i32{}, []i32{}},
[][]const i32{[]i32{1}, []i32{1}},
[][]const i32{[]i32{0, 1}, []i32{0, 1}},
[][]const i32{[]i32{1, 0}, []i32{0, 1}},
[][]const i32{[]i32{1, -1, 0}, []i32{-1, 0, 1}},
[][]const i32{[]i32{2, 1, 3}, []i32{1, 2, 3}},
};
for (i32cases) |case| {
var buf: [8]i32 = undefined;
const slice = buf[0..case[0].len];
mem.copy(i32, slice, case[0]);
sort(i32, slice, i32asc);
assert(mem.eql(i32, slice, case[1]));
}
}
test "std.sort descending" {
const rev_cases = [][]const []const i32 {
[][]const i32{[]i32{}, []i32{}},
[][]const i32{[]i32{1}, []i32{1}},
[][]const i32{[]i32{0, 1}, []i32{1, 0}},
[][]const i32{[]i32{1, 0}, []i32{1, 0}},
[][]const i32{[]i32{1, -1, 0}, []i32{1, 0, -1}},
[][]const i32{[]i32{2, 1, 3}, []i32{3, 2, 1}},
};
for (rev_cases) |case| {
var buf: [8]i32 = undefined;
const slice = buf[0..case[0].len];
mem.copy(i32, slice, case[0]);
sort(i32, slice, i32desc);
assert(mem.eql(i32, slice, case[1]));
}
}
test "another sort case" {
var arr = []i32{ 5, 3, 1, 2, 4 };
sort(i32, arr[0..], i32asc);
assert(mem.eql(i32, arr, []i32{ 1, 2, 3, 4, 5 }));
}
test "sort fuzz testing" {
var prng = std.rand.DefaultPrng.init(0x12345678);
const test_case_count = 10;
var i: usize = 0;
while (i < test_case_count) : (i += 1) {
fuzzTest(&prng.random);
}
}
var fixed_buffer_mem: [100 * 1024]u8 = undefined;
fn fuzzTest(rng: &std.rand.Random) void {
const array_size = rng.range(usize, 0, 1000);
var fixed_allocator = std.heap.FixedBufferAllocator.init(fixed_buffer_mem[0..]);
var array = fixed_allocator.allocator.alloc(IdAndValue, array_size) catch unreachable;
// populate with random data
for (array) |*item, index| {
item.id = index;
item.value = rng.range(i32, 0, 100);
}
sort(IdAndValue, array, cmpByValue);
var index: usize = 1;
while (index < array.len) : (index += 1) {
if (array[index].value == array[index - 1].value) {
assert(array[index].id > array[index - 1].id);
} else {
assert(array[index].value > array[index - 1].value);
}
}
}
pub fn min(comptime T: type, items: []T, lessThan: fn(lhs: &const T, rhs: &const T)bool) T {
var i: usize = 0;
var smallest = items[0];
for (items[1..]) |item| {
if (lessThan(item, smallest)) {
smallest = item;
}
}
return smallest;
}
pub fn max(comptime T: type, items: []T, lessThan: fn(lhs: &const T, rhs: &const T)bool) T {
var i: usize = 0;
var biggest = items[0];
for (items[1..]) |item| {
if (lessThan(biggest, item)) {
biggest = item;
}
}
return biggest;
}