General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Go to file
2018-03-27 15:20:07 -04:00
c_headers update C headers to clang 6.0.0rc3 2018-02-23 13:15:16 -05:00
ci change 5 to 6 in travis osx scripts 2018-03-10 14:36:59 -05:00
cmake add LLVM_LIBDIRS to link directories 2018-03-17 18:41:54 +01:00
deps update to SoftFloat-3e 2018-03-09 15:06:06 -05:00
doc doc: fix typo and tighten wording in error sections 2018-03-25 18:48:07 -04:00
example fix exported variable not named in the object file 2018-02-11 16:46:02 -05:00
src fix crash when compile error in analyzing @panic call 2018-03-27 15:07:45 -04:00
src-self-hosted introduce std.heap.ArenaAllocator and std.heap.DirectAllocator 2018-02-12 02:14:44 -05:00
std std.math.cast handles signed integers 2018-03-27 15:20:07 -04:00
test fix crash when compile error in analyzing @panic call 2018-03-27 15:07:45 -04:00
.gitattributes Enforce "\n" line endings on Windows (#574) 2017-11-01 10:31:32 -04:00
.gitignore fix up msvc stuff to make it work on linux and macos too 2017-09-13 02:40:02 -04:00
.travis.yml travis: add macos script 2017-08-27 01:07:06 -04:00
build.zig self-hosted build: print helpful message when libstdc++.a not found 2018-03-20 13:48:25 -04:00
CMakeLists.txt Include libxml2 and zlib as required libraries 2018-03-20 18:15:02 +00:00
LICENSE add license 2015-08-05 16:22:18 -07:00
README.md xml2 workaround is relevant for linux too 2018-03-10 18:23:08 -05:00

ZIG

A programming language designed for robustness, optimality, and clarity.

ziglang.org

Feature Highlights

  • Small, simple language. Focus on debugging your application rather than debugging knowledge of your programming language.
  • Ships with a build system that obviates the need for a configure script or a makefile. In fact, existing C and C++ projects may choose to depend on Zig instead of e.g. cmake.
  • A fresh take on error handling which makes writing correct code easier than writing buggy code.
  • Debug mode optimizes for fast compilation time and crashing with a stack trace when undefined behavior would happen.
  • ReleaseFast mode produces heavily optimized code. What other projects call "Link Time Optimization" Zig does automatically.
  • Compatible with C libraries with no wrapper necessary. Directly include C .h files and get access to the functions and symbols therein.
  • Provides standard library which competes with the C standard library and is always compiled against statically in source form. Compile units do not depend on libc unless explicitly linked.
  • Nullable type instead of null pointers.
  • Safe unions, tagged unions, and C ABI compatible unions.
  • Generics so that one can write efficient data structures that work for any data type.
  • No header files required. Top level declarations are entirely order-independent.
  • Compile-time code execution. Compile-time reflection.
  • Partial compile-time function evaluation with eliminates the need for a preprocessor or macros.
  • The binaries produced by Zig have complete debugging information so you can, for example, use GDB or MSVC to debug your software.
  • Built-in unit tests with zig test.
  • Friendly toward package maintainers. Reproducible build, bootstrapping process carefully documented. Issues filed by package maintainers are considered especially important.
  • Cross-compiling is a primary use case.
  • In addition to creating executables, creating a C library is a primary use case. You can export an auto-generated .h file.

Support Table

Freestanding means that you do not directly interact with the OS or you are writing your own OS.

Note that if you use libc or other libraries to interact with the OS, that counts as "freestanding" for the purposes of this table.

freestanding linux macosx windows other
i386 OK planned OK planned planned
x86_64 OK OK OK OK planned
arm OK planned planned N/A planned
aarch64 OK planned planned planned planned
bpf OK planned planned N/A planned
hexagon OK planned planned N/A planned
mips OK planned planned N/A planned
powerpc OK planned planned N/A planned
r600 OK planned planned N/A planned
amdgcn OK planned planned N/A planned
sparc OK planned planned N/A planned
s390x OK planned planned N/A planned
thumb OK planned planned N/A planned
spir OK planned planned N/A planned
lanai OK planned planned N/A planned

Community

Wanted: Windows Developers

Flesh out the standard library for Windows, streamline Zig installation and distribution for Windows. Work with LLVM and LLD teams to improve PDB/CodeView/MSVC debugging. Implement stack traces for Windows in the MinGW environment and the MSVC environment.

Wanted: MacOS and iOS Developers

Flesh out the standard library for MacOS. Improve the MACH-O linker. Implement stack traces for MacOS. Streamline the process of using Zig to build for iOS.

Wanted: Android Developers

Flesh out the standard library for Android. Streamline the process of using Zig to build for Android and for depending on Zig code on Android.

Wanted: Web Developers

Figure out what are the use cases for compiling Zig to WebAssembly. Create demo projects with it and streamline experience for users trying to output WebAssembly. Work on the documentation generator outputting useful searchable html documentation. Create Zig modules for common web tasks such as WebSockets and gzip.

Wanted: Embedded Developers

Flesh out the standard library for uncommon CPU architectures and OS targets. Drive issue discussion for cross compiling and using Zig in constrained or unusual environments.

Wanted: Game Developers

Create cross platform Zig modules to compete with SDL and GLFW. Create an OpenGL library that does not depend on libc. Drive the usability of Zig for video games. Create a general purpose allocator that does not depend on libc. Create demo games using Zig.

Building

Build Status Build status

Stage 1: Build Zig from C++ Source Code

Dependencies

POSIX
  • cmake >= 2.8.5
  • gcc >= 5.0.0 or clang >= 3.6.0
  • LLVM, Clang, LLD development libraries == 6.x, compiled with the same gcc or clang version above
    • These depend on zlib and libxml2.
Windows
  • cmake >= 2.8.5
  • Microsoft Visual Studio 2015
  • LLVM, Clang, LLD development libraries == 6.x, compiled with the same MSVC version above

Instructions

POSIX

If you have gcc or clang installed, you can find out what ZIG_LIBC_LIB_DIR, ZIG_LIBC_STATIC_LIB_DIR, and ZIG_LIBC_INCLUDE_DIR should be set to (example below).

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$(pwd) -DZIG_LIBC_LIB_DIR=$(dirname $(cc -print-file-name=crt1.o)) -DZIG_LIBC_INCLUDE_DIR=$(echo -n | cc -E -x c - -v 2>&1 | grep -B1 "End of search list." | head -n1 | cut -c 2- | sed "s/ .*//") -DZIG_LIBC_STATIC_LIB_DIR=$(dirname $(cc -print-file-name=crtbegin.o))
make
make install
./zig build --build-file ../build.zig test
MacOS

ZIG_LIBC_LIB_DIR and ZIG_LIBC_STATIC_LIB_DIR are unused.

brew install cmake llvm@6
brew outdated llvm@6 || brew upgrade llvm@6
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=/usr/local/opt/llvm@6/ -DCMAKE_INSTALL_PREFIX=$(pwd)
make install
./zig build --build-file ../build.zig test
Windows

See https://github.com/zig-lang/zig/wiki/Building-Zig-on-Windows

Stage 2: Build Self-Hosted Zig from Zig Source Code

Note: Stage 2 compiler is not complete. Beta users of Zig should use the Stage 1 compiler for now.

Dependencies are the same as Stage 1, except now you have a working zig compiler.

bin/zig build --build-file ../build.zig --prefix $(pwd)/stage2 install

This produces ./stage2/bin/zig which can be used for testing and development. Once it is feature complete, it will be used to build stage 3 - the final compiler binary.

Stage 3: Rebuild Self-Hosted Zig Using the Self-Hosted Compiler

This is the actual compiler binary that we will install to the system.

Debug / Development Build

./stage2/bin/zig build --build-file ../build.zig --prefix $(pwd)/stage3 install

Release / Install Build

./stage2/bin/zig build --build-file ../build.zig install -Drelease-fast