3ef6a00bb8
closes #730 |
||
---|---|---|
c_headers | ||
ci | ||
cmake | ||
deps | ||
doc | ||
example | ||
src | ||
src-self-hosted | ||
std | ||
test | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
build.zig | ||
CMakeLists.txt | ||
LICENSE | ||
README.md |
A programming language designed for robustness, optimality, and clarity.
Feature Highlights
- Small, simple language. Focus on debugging your application rather than debugging knowledge of your programming language.
- Ships with a build system that obviates the need for a configure script or a makefile. In fact, existing C and C++ projects may choose to depend on Zig instead of e.g. cmake.
- A fresh take on error handling which makes writing correct code easier than writing buggy code.
- Debug mode optimizes for fast compilation time and crashing with a stack trace when undefined behavior would happen.
- ReleaseFast mode produces heavily optimized code. What other projects call "Link Time Optimization" Zig does automatically.
- Compatible with C libraries with no wrapper necessary. Directly include C .h files and get access to the functions and symbols therein.
- Provides standard library which competes with the C standard library and is always compiled against statically in source form. Compile units do not depend on libc unless explicitly linked.
- Nullable type instead of null pointers.
- Safe unions, tagged unions, and C ABI compatible unions.
- Generics so that one can write efficient data structures that work for any data type.
- No header files required. Top level declarations are entirely order-independent.
- Compile-time code execution. Compile-time reflection.
- Partial compile-time function evaluation with eliminates the need for a preprocessor or macros.
- The binaries produced by Zig have complete debugging information so you can, for example, use GDB or MSVC to debug your software.
- Built-in unit tests with
zig test
. - Friendly toward package maintainers. Reproducible build, bootstrapping process carefully documented. Issues filed by package maintainers are considered especially important.
- Cross-compiling is a primary use case.
- In addition to creating executables, creating a C library is a primary use case. You can export an auto-generated .h file.
Support Table
Freestanding means that you do not directly interact with the OS or you are writing your own OS.
Note that if you use libc or other libraries to interact with the OS, that counts as "freestanding" for the purposes of this table.
freestanding | linux | macosx | windows | other | |
---|---|---|---|---|---|
i386 | OK | planned | OK | planned | planned |
x86_64 | OK | OK | OK | OK | planned |
arm | OK | planned | planned | N/A | planned |
aarch64 | OK | planned | planned | planned | planned |
bpf | OK | planned | planned | N/A | planned |
hexagon | OK | planned | planned | N/A | planned |
mips | OK | planned | planned | N/A | planned |
powerpc | OK | planned | planned | N/A | planned |
r600 | OK | planned | planned | N/A | planned |
amdgcn | OK | planned | planned | N/A | planned |
sparc | OK | planned | planned | N/A | planned |
s390x | OK | planned | planned | N/A | planned |
thumb | OK | planned | planned | N/A | planned |
spir | OK | planned | planned | N/A | planned |
lanai | OK | planned | planned | N/A | planned |
Community
- IRC:
#zig
on Freenode. - Reddit: /r/zig
- Email list: ziglang@googlegroups.com
Wanted: Windows Developers
Flesh out the standard library for Windows, streamline Zig installation and distribution for Windows. Work with LLVM and LLD teams to improve PDB/CodeView/MSVC debugging. Implement stack traces for Windows in the MinGW environment and the MSVC environment.
Wanted: MacOS and iOS Developers
Flesh out the standard library for MacOS. Improve the MACH-O linker. Implement stack traces for MacOS. Streamline the process of using Zig to build for iOS.
Wanted: Android Developers
Flesh out the standard library for Android. Streamline the process of using Zig to build for Android and for depending on Zig code on Android.
Wanted: Web Developers
Figure out what are the use cases for compiling Zig to WebAssembly. Create demo projects with it and streamline experience for users trying to output WebAssembly. Work on the documentation generator outputting useful searchable html documentation. Create Zig modules for common web tasks such as WebSockets and gzip.
Wanted: Embedded Developers
Flesh out the standard library for uncommon CPU architectures and OS targets. Drive issue discussion for cross compiling and using Zig in constrained or unusual environments.
Wanted: Game Developers
Create cross platform Zig modules to compete with SDL and GLFW. Create an OpenGL library that does not depend on libc. Drive the usability of Zig for video games. Create a general purpose allocator that does not depend on libc. Create demo games using Zig.
Building
Stage 1: Build Zig from C++ Source Code
Dependencies
POSIX
- cmake >= 2.8.5
- gcc >= 5.0.0 or clang >= 3.6.0
- LLVM, Clang, LLD libraries == 5.0.1, compiled with the same gcc or clang version above
Windows
- cmake >= 2.8.5
- Microsoft Visual Studio 2015
- LLVM, Clang, LLD libraries == 5.0.1, compiled with the same MSVC version above
Instructions
POSIX
If you have gcc or clang installed, you can find out what ZIG_LIBC_LIB_DIR
,
ZIG_LIBC_STATIC_LIB_DIR
, and ZIG_LIBC_INCLUDE_DIR
should be set to
(example below).
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$(pwd) -DZIG_LIBC_LIB_DIR=$(dirname $(cc -print-file-name=crt1.o)) -DZIG_LIBC_INCLUDE_DIR=$(echo -n | cc -E -x c - -v 2>&1 | grep -B1 "End of search list." | head -n1 | cut -c 2- | sed "s/ .*//") -DZIG_LIBC_STATIC_LIB_DIR=$(dirname $(cc -print-file-name=crtbegin.o))
make
make install
./zig build --build-file ../build.zig test
MacOS
ZIG_LIBC_LIB_DIR
and ZIG_LIBC_STATIC_LIB_DIR
are unused.
brew install cmake llvm@5
brew outdated llvm@5 || brew upgrade llvm@5
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=/usr/local/opt/llvm@5/ -DCMAKE_INSTALL_PREFIX=$(pwd)
make install
./zig build --build-file ../build.zig test
Windows
See https://github.com/zig-lang/zig/wiki/Building-Zig-on-Windows
Stage 2: Build Self-Hosted Zig from Zig Source Code
Note: Stage 2 compiler is not complete. Beta users of Zig should use the Stage 1 compiler for now.
Dependencies are the same as Stage 1, except now you have a working zig compiler.
bin/zig build --build-file ../build.zig --prefix $(pwd)/stage2 install
This produces ./stage2/bin/zig
which can be used for testing and development.
Once it is feature complete, it will be used to build stage 3 - the final compiler
binary.
Stage 3: Rebuild Self-Hosted Zig Using the Self-Hosted Compiler
This is the actual compiler binary that we will install to the system.
Debug / Development Build
./stage2/bin/zig build --build-file ../build.zig --prefix $(pwd)/stage3 install
Release / Install Build
./stage2/bin/zig build --build-file ../build.zig install -Drelease-fast