mirror of
https://github.com/ziglang/zig.git
synced 2025-02-15 09:00:16 +00:00
274 lines
12 KiB
Zig
274 lines
12 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__cos.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__cosdf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__sin.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__sindf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__tand.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/__tandf.c
|
|
|
|
/// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
/// Input y is the tail of x.
|
|
///
|
|
/// Algorithm
|
|
/// 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|
/// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|
/// 3. cos(x) is approximated by a polynomial of degree 14 on
|
|
/// [0,pi/4]
|
|
/// 4 14
|
|
/// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|
/// where the remez error is
|
|
///
|
|
/// | 2 4 6 8 10 12 14 | -58
|
|
/// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|
/// | |
|
|
///
|
|
/// 4 6 8 10 12 14
|
|
/// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|
/// cos(x) ~ 1 - x*x/2 + r
|
|
/// since cos(x+y) ~ cos(x) - sin(x)*y
|
|
/// ~ cos(x) - x*y,
|
|
/// a correction term is necessary in cos(x) and hence
|
|
/// cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|
/// For better accuracy, rearrange to
|
|
/// cos(x+y) ~ w + (tmp + (r-x*y))
|
|
/// where w = 1 - x*x/2 and tmp is a tiny correction term
|
|
/// (1 - x*x/2 == w + tmp exactly in infinite precision).
|
|
/// The exactness of w + tmp in infinite precision depends on w
|
|
/// and tmp having the same precision as x. If they have extra
|
|
/// precision due to compiler bugs, then the extra precision is
|
|
/// only good provided it is retained in all terms of the final
|
|
/// expression for cos(). Retention happens in all cases tested
|
|
/// under FreeBSD, so don't pessimize things by forcibly clipping
|
|
/// any extra precision in w.
|
|
pub fn __cos(x: f64, y: f64) f64 {
|
|
const C1 = 4.16666666666666019037e-02; // 0x3FA55555, 0x5555554C
|
|
const C2 = -1.38888888888741095749e-03; // 0xBF56C16C, 0x16C15177
|
|
const C3 = 2.48015872894767294178e-05; // 0x3EFA01A0, 0x19CB1590
|
|
const C4 = -2.75573143513906633035e-07; // 0xBE927E4F, 0x809C52AD
|
|
const C5 = 2.08757232129817482790e-09; // 0x3E21EE9E, 0xBDB4B1C4
|
|
const C6 = -1.13596475577881948265e-11; // 0xBDA8FAE9, 0xBE8838D4
|
|
|
|
const z = x * x;
|
|
const zs = z * z;
|
|
const r = z * (C1 + z * (C2 + z * C3)) + zs * zs * (C4 + z * (C5 + z * C6));
|
|
const hz = 0.5 * z;
|
|
const w = 1.0 - hz;
|
|
return w + (((1.0 - w) - hz) + (z * r - x * y));
|
|
}
|
|
|
|
pub fn __cosdf(x: f64) f32 {
|
|
// |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]).
|
|
const C0 = -0x1ffffffd0c5e81.0p-54; // -0.499999997251031003120
|
|
const C1 = 0x155553e1053a42.0p-57; // 0.0416666233237390631894
|
|
const C2 = -0x16c087e80f1e27.0p-62; // -0.00138867637746099294692
|
|
const C3 = 0x199342e0ee5069.0p-68; // 0.0000243904487962774090654
|
|
|
|
// Try to optimize for parallel evaluation as in __tandf.c.
|
|
const z = x * x;
|
|
const w = z * z;
|
|
const r = C2 + z * C3;
|
|
return @floatCast(((1.0 + z * C0) + w * C1) + (w * z) * r);
|
|
}
|
|
|
|
/// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
|
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
/// Input y is the tail of x.
|
|
/// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
|
///
|
|
/// Algorithm
|
|
/// 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
|
/// 2. Callers must return sin(-0) = -0 without calling here since our
|
|
/// odd polynomial is not evaluated in a way that preserves -0.
|
|
/// Callers may do the optimization sin(x) ~ x for tiny x.
|
|
/// 3. sin(x) is approximated by a polynomial of degree 13 on
|
|
/// [0,pi/4]
|
|
/// 3 13
|
|
/// sin(x) ~ x + S1*x + ... + S6*x
|
|
/// where
|
|
///
|
|
/// |sin(x) 2 4 6 8 10 12 | -58
|
|
/// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
|
/// | x |
|
|
///
|
|
/// 4. sin(x+y) = sin(x) + sin'(x')*y
|
|
/// ~ sin(x) + (1-x*x/2)*y
|
|
/// For better accuracy, let
|
|
/// 3 2 2 2 2
|
|
/// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
|
/// then 3 2
|
|
/// sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
|
pub fn __sin(x: f64, y: f64, iy: i32) f64 {
|
|
const S1 = -1.66666666666666324348e-01; // 0xBFC55555, 0x55555549
|
|
const S2 = 8.33333333332248946124e-03; // 0x3F811111, 0x1110F8A6
|
|
const S3 = -1.98412698298579493134e-04; // 0xBF2A01A0, 0x19C161D5
|
|
const S4 = 2.75573137070700676789e-06; // 0x3EC71DE3, 0x57B1FE7D
|
|
const S5 = -2.50507602534068634195e-08; // 0xBE5AE5E6, 0x8A2B9CEB
|
|
const S6 = 1.58969099521155010221e-10; // 0x3DE5D93A, 0x5ACFD57C
|
|
|
|
const z = x * x;
|
|
const w = z * z;
|
|
const r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
|
|
const v = z * x;
|
|
if (iy == 0) {
|
|
return x + v * (S1 + z * r);
|
|
} else {
|
|
return x - ((z * (0.5 * y - v * r) - y) - v * S1);
|
|
}
|
|
}
|
|
|
|
pub fn __sindf(x: f64) f32 {
|
|
// |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]).
|
|
const S1 = -0x15555554cbac77.0p-55; // -0.166666666416265235595
|
|
const S2 = 0x111110896efbb2.0p-59; // 0.0083333293858894631756
|
|
const S3 = -0x1a00f9e2cae774.0p-65; // -0.000198393348360966317347
|
|
const S4 = 0x16cd878c3b46a7.0p-71; // 0.0000027183114939898219064
|
|
|
|
// Try to optimize for parallel evaluation as in __tandf.c.
|
|
const z = x * x;
|
|
const w = z * z;
|
|
const r = S3 + z * S4;
|
|
const s = z * x;
|
|
return @floatCast((x + s * (S1 + z * S2)) + s * w * r);
|
|
}
|
|
|
|
/// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
|
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
/// Input y is the tail of x.
|
|
/// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
|
|
///
|
|
/// Algorithm
|
|
/// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
/// 2. Callers must return tan(-0) = -0 without calling here since our
|
|
/// odd polynomial is not evaluated in a way that preserves -0.
|
|
/// Callers may do the optimization tan(x) ~ x for tiny x.
|
|
/// 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
|
/// [0,0.67434]
|
|
/// 3 27
|
|
/// tan(x) ~ x + T1*x + ... + T13*x
|
|
/// where
|
|
///
|
|
/// |tan(x) 2 4 26 | -59.2
|
|
/// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
|
/// | x |
|
|
///
|
|
/// Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
/// ~ tan(x) + (1+x*x)*y
|
|
/// Therefore, for better accuracy in computing tan(x+y), let
|
|
/// 3 2 2 2 2
|
|
/// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
|
/// then
|
|
/// 3 2
|
|
/// tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
|
///
|
|
/// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
|
/// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
/// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
pub fn __tan(x_: f64, y_: f64, odd: bool) f64 {
|
|
var x = x_;
|
|
var y = y_;
|
|
|
|
const T = [_]f64{
|
|
3.33333333333334091986e-01, // 3FD55555, 55555563
|
|
1.33333333333201242699e-01, // 3FC11111, 1110FE7A
|
|
5.39682539762260521377e-02, // 3FABA1BA, 1BB341FE
|
|
2.18694882948595424599e-02, // 3F9664F4, 8406D637
|
|
8.86323982359930005737e-03, // 3F8226E3, E96E8493
|
|
3.59207910759131235356e-03, // 3F6D6D22, C9560328
|
|
1.45620945432529025516e-03, // 3F57DBC8, FEE08315
|
|
5.88041240820264096874e-04, // 3F4344D8, F2F26501
|
|
2.46463134818469906812e-04, // 3F3026F7, 1A8D1068
|
|
7.81794442939557092300e-05, // 3F147E88, A03792A6
|
|
7.14072491382608190305e-05, // 3F12B80F, 32F0A7E9
|
|
-1.85586374855275456654e-05, // BEF375CB, DB605373
|
|
2.59073051863633712884e-05, // 3EFB2A70, 74BF7AD4
|
|
};
|
|
const pio4 = 7.85398163397448278999e-01; // 3FE921FB, 54442D18
|
|
const pio4lo = 3.06161699786838301793e-17; // 3C81A626, 33145C07
|
|
|
|
var z: f64 = undefined;
|
|
var r: f64 = undefined;
|
|
var v: f64 = undefined;
|
|
var w: f64 = undefined;
|
|
var s: f64 = undefined;
|
|
var a: f64 = undefined;
|
|
var w0: f64 = undefined;
|
|
var a0: f64 = undefined;
|
|
var hx: u32 = undefined;
|
|
var sign: bool = undefined;
|
|
|
|
hx = @intCast(@as(u64, @bitCast(x)) >> 32);
|
|
const big = (hx & 0x7fffffff) >= 0x3FE59428; // |x| >= 0.6744
|
|
if (big) {
|
|
sign = hx >> 31 != 0;
|
|
if (sign) {
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
x = (pio4 - x) + (pio4lo - y);
|
|
y = 0.0;
|
|
}
|
|
z = x * x;
|
|
w = z * z;
|
|
|
|
// Break x^5*(T[1]+x^2*T[2]+...) into
|
|
// x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
|
// x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
|
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
|
|
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
|
|
s = z * x;
|
|
r = y + z * (s * (r + v) + y) + s * T[0];
|
|
w = x + r;
|
|
if (big) {
|
|
s = 1 - 2 * @as(f64, @floatFromInt(@intFromBool(odd)));
|
|
v = s - 2.0 * (x + (r - w * w / (w + s)));
|
|
return if (sign) -v else v;
|
|
}
|
|
if (!odd) {
|
|
return w;
|
|
}
|
|
// -1.0/(x+r) has up to 2ulp error, so compute it accurately
|
|
w0 = w;
|
|
w0 = @bitCast(@as(u64, @bitCast(w0)) & 0xffffffff00000000);
|
|
v = r - (w0 - x); // w0+v = r+x
|
|
a = -1.0 / w;
|
|
a0 = a;
|
|
a0 = @bitCast(@as(u64, @bitCast(a0)) & 0xffffffff00000000);
|
|
return a0 + a * (1.0 + a0 * w0 + a0 * v);
|
|
}
|
|
|
|
pub fn __tandf(x: f64, odd: bool) f32 {
|
|
// |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]).
|
|
const T = [_]f64{
|
|
0x15554d3418c99f.0p-54, // 0.333331395030791399758
|
|
0x1112fd38999f72.0p-55, // 0.133392002712976742718
|
|
0x1b54c91d865afe.0p-57, // 0.0533812378445670393523
|
|
0x191df3908c33ce.0p-58, // 0.0245283181166547278873
|
|
0x185dadfcecf44e.0p-61, // 0.00297435743359967304927
|
|
0x1362b9bf971bcd.0p-59, // 0.00946564784943673166728
|
|
};
|
|
|
|
const z = x * x;
|
|
// Split up the polynomial into small independent terms to give
|
|
// opportunities for parallel evaluation. The chosen splitting is
|
|
// micro-optimized for Athlons (XP, X64). It costs 2 multiplications
|
|
// relative to Horner's method on sequential machines.
|
|
//
|
|
// We add the small terms from lowest degree up for efficiency on
|
|
// non-sequential machines (the lowest degree terms tend to be ready
|
|
// earlier). Apart from this, we don't care about order of
|
|
// operations, and don't need to to care since we have precision to
|
|
// spare. However, the chosen splitting is good for accuracy too,
|
|
// and would give results as accurate as Horner's method if the
|
|
// small terms were added from highest degree down.
|
|
const r = T[4] + z * T[5];
|
|
const t = T[2] + z * T[3];
|
|
const w = z * z;
|
|
const s = z * x;
|
|
const u = T[0] + z * T[1];
|
|
const r0 = (x + s * u) + (s * w) * (t + w * r);
|
|
return @floatCast(if (odd) -1.0 / r0 else r0);
|
|
}
|