zig/lib/compiler_rt/tan.zig
mlugg 0fe3fd01dd
std: update std.builtin.Type fields to follow naming conventions
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.

This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
2024-08-28 08:39:59 +01:00

171 lines
5.8 KiB
Zig

//! Ported from musl, which is licensed under the MIT license:
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//!
//! https://git.musl-libc.org/cgit/musl/tree/src/math/tanf.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/tan.c
//! https://golang.org/src/math/tan.go
const std = @import("std");
const builtin = @import("builtin");
const math = std.math;
const mem = std.mem;
const expect = std.testing.expect;
const kernel = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
const arch = builtin.cpu.arch;
const common = @import("common.zig");
pub const panic = common.panic;
comptime {
@export(&__tanh, .{ .name = "__tanh", .linkage = common.linkage, .visibility = common.visibility });
@export(&tanf, .{ .name = "tanf", .linkage = common.linkage, .visibility = common.visibility });
@export(&tan, .{ .name = "tan", .linkage = common.linkage, .visibility = common.visibility });
@export(&__tanx, .{ .name = "__tanx", .linkage = common.linkage, .visibility = common.visibility });
if (common.want_ppc_abi) {
@export(&tanq, .{ .name = "tanf128", .linkage = common.linkage, .visibility = common.visibility });
}
@export(&tanq, .{ .name = "tanq", .linkage = common.linkage, .visibility = common.visibility });
@export(&tanl, .{ .name = "tanl", .linkage = common.linkage, .visibility = common.visibility });
}
pub fn __tanh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(tanf(x));
}
pub fn tanf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const t1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const t2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
const t3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
const t4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
var ix: u32 = @bitCast(x);
const sign = ix >> 31 != 0;
ix &= 0x7fffffff;
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
if (ix < 0x39800000) { // |x| < 2**-12
// raise inexact if x!=0 and underflow if subnormal
if (common.want_float_exceptions) mem.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
return x;
}
return kernel.__tandf(x, false);
}
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
return kernel.__tandf((if (sign) x + t1pio2 else x - t1pio2), true);
} else {
return kernel.__tandf((if (sign) x + t2pio2 else x - t2pio2), false);
}
}
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
return kernel.__tandf((if (sign) x + t3pio2 else x - t3pio2), true);
} else {
return kernel.__tandf((if (sign) x + t4pio2 else x - t4pio2), false);
}
}
// tan(Inf or NaN) is NaN
if (ix >= 0x7f800000) {
return x - x;
}
var y: f64 = undefined;
const n = rem_pio2f(x, &y);
return kernel.__tandf(y, n & 1 != 0);
}
pub fn tan(x: f64) callconv(.C) f64 {
var ix = @as(u64, @bitCast(x)) >> 32;
ix &= 0x7fffffff;
// |x| ~< pi/4
if (ix <= 0x3fe921fb) {
if (ix < 0x3e400000) { // |x| < 2**-27
// raise inexact if x!=0 and underflow if subnormal
if (common.want_float_exceptions) mem.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
return x;
}
return kernel.__tan(x, 0.0, false);
}
// tan(Inf or NaN) is NaN
if (ix >= 0x7ff00000) {
return x - x;
}
var y: [2]f64 = undefined;
const n = rem_pio2(x, &y);
return kernel.__tan(y[0], y[1], n & 1 != 0);
}
pub fn __tanx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(tanq(x));
}
pub fn tanq(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return tan(@floatCast(x));
}
pub fn tanl(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).float.bits) {
16 => return __tanh(x),
32 => return tanf(x),
64 => return tan(x),
80 => return __tanx(x),
128 => return tanq(x),
else => @compileError("unreachable"),
}
}
test "tan" {
try expect(tan(@as(f32, 0.0)) == tanf(0.0));
try expect(tan(@as(f64, 0.0)) == tan(0.0));
}
test "tan32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, tanf(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f32, tanf(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f32, tanf(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f32, tanf(89.123), 2.285852, epsilon));
}
test "tan64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, tan(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, tan(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f64, tan(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f64, tan(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f64, tan(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f64, tan(89.123), 2.2858376, epsilon));
}
test "tan32.special" {
try expect(tanf(0.0) == 0.0);
try expect(tanf(-0.0) == -0.0);
try expect(math.isNan(tanf(math.inf(f32))));
try expect(math.isNan(tanf(-math.inf(f32))));
try expect(math.isNan(tanf(math.nan(f32))));
}
test "tan64.special" {
try expect(tan(0.0) == 0.0);
try expect(tan(-0.0) == -0.0);
try expect(math.isNan(tan(math.inf(f64))));
try expect(math.isNan(tan(-math.inf(f64))));
try expect(math.isNan(tan(math.nan(f64))));
}