Zig is an open-source programming language designed for robustness, optimality, and clarity.
Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.
If you search for something specific in this documentation and do not find it, please file an issue or say something on IRC.
The code samples in this document are compiled and tested as part of the main test suite of Zig. This HTML document depends on no external files, so you can use it offline.
{#header_close#} {#header_open|Hello World#} {#code_begin|exe|hello#} const std = @import("std"); pub fn main() -> %void { // If this program is run without stdout attached, exit with an error. var stdout_file = try std.io.getStdOut(); // If this program encounters pipe failure when printing to stdout, exit // with an error. try stdout_file.write("Hello, world!\n"); } {#code_end#}Usually you don't want to write to stdout. You want to write to stderr. And you don't care if it fails. It's more like a warning message that you want to emit. For that you can use a simpler API:
{#code_begin|exe|hello#} const warn = @import("std").debug.warn; pub fn main() -> %void { warn("Hello, world!\n"); } {#code_end#} {#see_also|Values|@import|Errors|Root Source File#} {#header_close#} {#header_open|Source Encoding#}Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.
Throughout all zig source code (including in comments), some codepoints are never allowed:
The codepoint U+000a (LF) (which is encoded as the single-byte value 0x0a) is the line terminator character. This character always terminates a line of zig source code (except possbly the last line of the file).
For some discussion on the rationale behind these design decisions, see issue #663
{#header_close#} {#header_open|Values#} {#code_begin|exe|values#} const std = @import("std"); const warn = std.debug.warn; const os = std.os; const assert = std.debug.assert; // error declaration, makes `error.ArgNotFound` available error ArgNotFound; pub fn main() -> %void { // integers const one_plus_one: i32 = 1 + 1; warn("1 + 1 = {}\n", one_plus_one); // floats const seven_div_three: f32 = 7.0 / 3.0; warn("7.0 / 3.0 = {}\n", seven_div_three); // boolean warn("{}\n{}\n{}\n", true and false, true or false, !true); // nullable var nullable_value: ?[]const u8 = null; assert(nullable_value == null); warn("\nnullable 1\ntype: {}\nvalue: {}\n", @typeName(@typeOf(nullable_value)), nullable_value); nullable_value = "hi"; assert(nullable_value != null); warn("\nnullable 2\ntype: {}\nvalue: {}\n", @typeName(@typeOf(nullable_value)), nullable_value); // error union var number_or_error: %i32 = error.ArgNotFound; warn("\nerror union 1\ntype: {}\nvalue: {}\n", @typeName(@typeOf(number_or_error)), number_or_error); number_or_error = 1234; warn("\nerror union 2\ntype: {}\nvalue: {}\n", @typeName(@typeOf(number_or_error)), number_or_error); } {#code_end#} {#header_open|Primitive Types#}Name | C Equivalent | Description |
---|---|---|
i2 |
(none) |
signed 2-bit integer |
u2 |
(none) |
unsigned 2-bit integer |
i3 |
(none) |
signed 3-bit integer |
u3 |
(none) |
unsigned 3-bit integer |
i4 |
(none) |
signed 4-bit integer |
u4 |
(none) |
unsigned 4-bit integer |
i5 |
(none) |
signed 5-bit integer |
u5 |
(none) |
unsigned 5-bit integer |
i6 |
(none) |
signed 6-bit integer |
u6 |
(none) |
unsigned 6-bit integer |
i7 |
(none) |
signed 7-bit integer |
u7 |
(none) |
unsigned 7-bit integer |
i8 |
int8_t |
signed 8-bit integer |
u8 |
uint8_t |
unsigned 8-bit integer |
i16 |
int16_t |
signed 16-bit integer |
u16 |
uint16_t |
unsigned 16-bit integer |
i32 |
int32_t |
signed 32-bit integer |
u32 |
uint32_t |
unsigned 32-bit integer |
i64 |
int64_t |
signed 64-bit integer |
u64 |
uint64_t |
unsigned 64-bit integer |
i128 |
__int128 |
signed 128-bit integer |
u128 |
unsigned __int128 |
unsigned 128-bit integer |
isize |
intptr_t |
signed pointer sized integer |
usize |
uintptr_t |
unsigned pointer sized integer |
c_short |
short |
for ABI compatibility with C |
c_ushort |
unsigned short |
for ABI compatibility with C |
c_int |
int |
for ABI compatibility with C |
c_uint |
unsigned int |
for ABI compatibility with C |
c_long |
long |
for ABI compatibility with C |
c_ulong |
unsigned long |
for ABI compatibility with C |
c_longlong |
long long |
for ABI compatibility with C |
c_ulonglong |
unsigned long long |
for ABI compatibility with C |
c_longdouble |
long double |
for ABI compatibility with C |
c_void |
void |
for ABI compatibility with C |
f32 |
float |
32-bit floating point (23-bit mantissa) |
f64 |
double |
64-bit floating point (52-bit mantissa) |
f128 |
(none) | 128-bit floating point (112-bit mantissa) |
bool |
bool |
true or false |
void |
(none) | 0 bit type |
noreturn |
(none) | the type of break , continue , goto , return , unreachable , and while (true) {} |
type |
(none) | the type of types |
error |
(none) | an error code |
Name | Description |
---|---|
true and false |
bool values |
null |
used to set a nullable type to null |
undefined |
used to leave a value unspecified |
this |
refers to the thing in immediate scope |
Escape Sequence | Name |
---|---|
\n |
Newline |
\r |
Carriage Return |
\t |
Tab |
\\ |
Backslash |
\' |
Single Quote |
\" |
Double Quote |
\xNN |
hexadecimal 8-bit character code (2 digits) |
\uNNNN |
hexadecimal 16-bit Unicode character code UTF-8 encoded (4 digits) |
\UNNNNNN |
hexadecimal 24-bit Unicode character code UTF-8 encoded (6 digits) |
Note that the maximum valid Unicode point is 0x10ffff
.
Multiline string literals have no escapes and can span across multiple lines.
To start a multiline string literal, use the \\
token. Just like a comment,
the string literal goes until the end of the line. The end of the line is
not included in the string literal.
However, if the next line begins with \\
then a newline is appended and
the string literal continues.
For a multiline C string literal, prepend c
to each \\
:
In this example the variable c_string_literal
has type &const char
and
has a terminating null byte.
Use const
to assign a value to an identifier:
If you need a variable that you can modify, use var
:
Variables must be initialized:
{#code_begin|test_err#} test "initialization" { var x: i32; x = 1; } {#code_end#}Use undefined
to leave variables uninitialized:
Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.
However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.
{#code_begin|syntax#} fn divide(a: i32, b: i32) -> i32 { return a / b; } {#code_end#}
In this function, values a
and b
are known only at runtime,
and thus this division operation is vulnerable to both integer overflow and
division by zero.
Operators such as +
and -
cause undefined behavior on
integer overflow. Also available are operations such as +%
and
-%
which are defined to have wrapping arithmetic on all targets.
By default floating point operations use Optimized
mode,
but you can switch to Strict
mode on a per-block basis:
For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.
{#code_begin|exe|float_mode#} {#code_link_object|foo#} const warn = @import("std").debug.warn; extern fn foo_strict(x: f64) -> f64; extern fn foo_optimized(x: f64) -> f64; pub fn main() -> %void { const x = 0.001; warn("optimized = {}\n", foo_optimized(x)); warn("strict = {}\n", foo_strict(x)); } {#code_end#} {#see_also|@setFloatMode|Division by Zero#} {#header_close#} {#header_open|Operators#} {#header_open|Table of Operators#}Syntax | Relevant Types | Description | Example |
---|---|---|---|
|
Addition.
|
|
|
|
Wrapping Addition.
|
|
|
|
Subtraction.
|
|
|
|
Wrapping Subtraction.
|
|
|
|
Negation.
|
|
|
|
Wrapping Negation.
|
|
|
|
Multiplication.
|
|
|
|
Wrapping Multiplication.
|
|
|
|
Divison.
|
|
|
|
Remainder Division.
|
|
|
|
Bit Shift Left.
|
|
|
|
Bit Shift Right.
|
|
|
|
Bitwise AND. |
|
|
|
Bitwise OR. |
|
|
|
Bitwise XOR. |
|
|
|
Bitwise NOT. |
|
|
|
If a is null ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
|
|
|
|
Equivalent to:
|
|
|
|
If a is an error ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
err is the error and is in scope of the expression b .
|
|
|
|
If a is false , returns false
without evaluating b . Otherwise, retuns b .
|
|
|
|
If a is true , returns true
without evaluating b . Otherwise, retuns b .
|
|
|
|
Boolean NOT. |
|
|
|
Returns true if a and b are equal, otherwise returns false .
|
|
|
|
Returns true if a is null , otherwise returns false .
|
|
|
|
Returns false if a and b are equal, otherwise returns true .
|
|
|
|
Returns true if a is greater than b, otherwise returns false .
|
|
|
|
Returns true if a is greater than or equal to b, otherwise returns false .
|
|
|
|
Returns true if a is less than b, otherwise returns false .
|
|
|
|
Returns true if a is less than or equal to b, otherwise returns false .
|
|
|
|
Array concatenation.
|
|
|
|
Array multiplication.
|
|
|
|
Pointer dereference. |
|
|
|
All types | Address of. |
|
x() x[] x.y
!x -x -%x ~x *x &x ?x %x ??x
x{}
* / % ** *%
+ - ++ +% -%
<< >>
&
^
|
== != < > <= >=
and
or
?? catch
= *= /= %= += -= <<= >>= &= ^= |=
{#header_close#}
{#header_close#}
{#header_open|Arrays#}
{#code_begin|test|arrays#}
const assert = @import("std").debug.assert;
const mem = @import("std").mem;
// array literal
const message = []u8{'h', 'e', 'l', 'l', 'o'};
// get the size of an array
comptime {
assert(message.len == 5);
}
// a string literal is an array literal
const same_message = "hello";
comptime {
assert(mem.eql(u8, message, same_message));
assert(@typeOf(message) == @typeOf(same_message));
}
test "iterate over an array" {
var sum: usize = 0;
for (message) |byte| {
sum += byte;
}
assert(sum == usize('h') + usize('e') + usize('l') * 2 + usize('o'));
}
// modifiable array
var some_integers: [100]i32 = undefined;
test "modify an array" {
for (some_integers) |*item, i| {
*item = i32(i);
}
assert(some_integers[10] == 10);
assert(some_integers[99] == 99);
}
// array concatenation works if the values are known
// at compile time
const part_one = []i32{1, 2, 3, 4};
const part_two = []i32{5, 6, 7, 8};
const all_of_it = part_one ++ part_two;
comptime {
assert(mem.eql(i32, all_of_it, []i32{1,2,3,4,5,6,7,8}));
}
// remember that string literals are arrays
const hello = "hello";
const world = "world";
const hello_world = hello ++ " " ++ world;
comptime {
assert(mem.eql(u8, hello_world, "hello world"));
}
// ** does repeating patterns
const pattern = "ab" ** 3;
comptime {
assert(mem.eql(u8, pattern, "ababab"));
}
// initialize an array to zero
const all_zero = []u16{0} ** 10;
comptime {
assert(all_zero.len == 10);
assert(all_zero[5] == 0);
}
// use compile-time code to initialize an array
var fancy_array = init: {
var initial_value: [10]Point = undefined;
for (initial_value) |*pt, i| {
*pt = Point {
.x = i32(i),
.y = i32(i) * 2,
};
}
break :init initial_value;
};
const Point = struct {
x: i32,
y: i32,
};
test "compile-time array initalization" {
assert(fancy_array[4].x == 4);
assert(fancy_array[4].y == 8);
}
// call a function to initialize an array
var more_points = []Point{makePoint(3)} ** 10;
fn makePoint(x: i32) -> Point {
return Point {
.x = x,
.y = x * 2,
};
}
test "array initialization with function calls" {
assert(more_points[4].x == 3);
assert(more_points[4].y == 6);
assert(more_points.len == 10);
}
{#code_end#}
{#see_also|for|Slices#}
{#header_close#}
{#header_open|Pointers#}
{#code_begin|test#}
const assert = @import("std").debug.assert;
test "address of syntax" {
// Get the address of a variable:
const x: i32 = 1234;
const x_ptr = &x;
// Deference a pointer:
assert(*x_ptr == 1234);
// When you get the address of a const variable, you get a const pointer.
assert(@typeOf(x_ptr) == &const i32);
// If you want to mutate the value, you'd need an address of a mutable variable:
var y: i32 = 5678;
const y_ptr = &y;
assert(@typeOf(y_ptr) == &i32);
*y_ptr += 1;
assert(*y_ptr == 5679);
}
test "pointer array access" {
// Pointers do not support pointer arithmetic. If you
// need such a thing, use array index syntax:
var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const ptr = &array[1];
assert(array[2] == 3);
ptr[1] += 1;
assert(array[2] == 4);
}
test "pointer slicing" {
// In Zig, we prefer using slices over null-terminated pointers.
// You can turn a pointer into a slice using slice syntax:
var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const ptr = &array[1];
const slice = ptr[1..3];
assert(slice.ptr == &ptr[1]);
assert(slice.len == 2);
// Slices have bounds checking and are therefore protected
// against this kind of undefined behavior. This is one reason
// we prefer slices to pointers.
assert(array[3] == 4);
slice[1] += 1;
assert(array[3] == 5);
}
comptime {
// Pointers work at compile-time too, as long as you don't use
// @ptrCast.
var x: i32 = 1;
const ptr = &x;
*ptr += 1;
x += 1;
assert(*ptr == 3);
}
test "@ptrToInt and @intToPtr" {
// To convert an integer address into a pointer, use @intToPtr:
const ptr = @intToPtr(&i32, 0xdeadbeef);
// To convert a pointer to an integer, use @ptrToInt:
const addr = @ptrToInt(ptr);
assert(@typeOf(addr) == usize);
assert(addr == 0xdeadbeef);
}
comptime {
// Zig is able to do this at compile-time, as long as
// ptr is never dereferenced.
const ptr = @intToPtr(&i32, 0xdeadbeef);
const addr = @ptrToInt(ptr);
assert(@typeOf(addr) == usize);
assert(addr == 0xdeadbeef);
}
test "volatile" {
// In Zig, loads and stores are assumed to not have side effects.
// If a given load or store should have side effects, such as
// Memory Mapped Input/Output (MMIO), use `volatile`:
const mmio_ptr = @intToPtr(&volatile u8, 0x12345678);
// Now loads and stores with mmio_ptr are guaranteed to all happen
// and in the same order as in source code.
assert(@typeOf(mmio_ptr) == &volatile u8);
}
test "nullable pointers" {
// Pointers cannot be null. If you want a null pointer, use the nullable
// prefix `?` to make the pointer type nullable.
var ptr: ?&i32 = null;
var x: i32 = 1;
ptr = &x;
assert(*??ptr == 1);
// Nullable pointers are the same size as normal pointers, because pointer
// value 0 is used as the null value.
assert(@sizeOf(?&i32) == @sizeOf(&i32));
}
test "pointer casting" {
// To convert one pointer type to another, use @ptrCast. This is an unsafe
// operation that Zig cannot protect you against. Use @ptrCast only when other
// conversions are not possible.
const bytes align(@alignOf(u32)) = []u8{0x12, 0x12, 0x12, 0x12};
const u32_ptr = @ptrCast(&const u32, &bytes[0]);
assert(*u32_ptr == 0x12121212);
// Even this example is contrived - there are better ways to do the above than
// pointer casting. For example, using a slice narrowing cast:
const u32_value = ([]const u32)(bytes[0..])[0];
assert(u32_value == 0x12121212);
// And even another way, the most straightforward way to do it:
assert(@bitCast(u32, bytes) == 0x12121212);
}
test "pointer child type" {
// pointer types have a `child` field which tells you the type they point to.
assert((&u32).Child == u32);
}
{#code_end#}
{#header_open|Alignment#}
Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.
Alignment depends on the CPU architecture, but is always a power of two, and
less than 1 << 29
.
In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:
{#code_begin|test#} const assert = @import("std").debug.assert; const builtin = @import("builtin"); test "variable alignment" { var x: i32 = 1234; const align_of_i32 = @alignOf(@typeOf(x)); assert(@typeOf(&x) == &i32); assert(&i32 == &align(align_of_i32) i32); if (builtin.arch == builtin.Arch.x86_64) { assert((&i32).alignment == 4); } } {#code_end#}In the same way that a &i32
can be implicitly cast to a
&const i32
, a pointer with a larger alignment can be implicitly
cast to a pointer with a smaller alignment, but not vice versa.
You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:
{#code_begin|test#} const assert = @import("std").debug.assert; var foo: u8 align(4) = 100; test "global variable alignment" { assert(@typeOf(&foo).alignment == 4); assert(@typeOf(&foo) == &align(4) u8); const slice = (&foo)[0..1]; assert(@typeOf(slice) == []align(4) u8); } fn derp() align(@sizeOf(usize) * 2) -> i32 { return 1234; } fn noop1() align(1) {} fn noop4() align(4) {} test "function alignment" { assert(derp() == 1234); assert(@typeOf(noop1) == fn() align(1)); assert(@typeOf(noop4) == fn() align(4)); noop1(); noop4(); } {#code_end#}If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:
{#code_begin|test_safety|incorrect alignment#} const assert = @import("std").debug.assert; test "pointer alignment safety" { var array align(4) = []u32{0x11111111, 0x11111111}; const bytes = ([]u8)(array[0..]); assert(foo(bytes) == 0x11111111); } fn foo(bytes: []u8) -> u32 { const slice4 = bytes[1..5]; const int_slice = ([]u32)(@alignCast(4, slice4)); return int_slice[0]; } {#code_end#} {#header_close#} {#header_open|Type Based Alias Analysis#}Zig uses Type Based Alias Analysis (also known as Strict Aliasing) to
perform some optimizations. This means that pointers of different types must
not alias the same memory, with the exception of u8
. Pointers to
u8
can alias any memory.
As an example, this code produces undefined behavior:
*@ptrCast(&u32, f32(12.34))
Instead, use @bitCast:
@bitCast(u32, f32(12.34))
As an added benefit, the @bitcast
version works at compile-time.
This is one reason we prefer slices to pointers.
{#code_begin|test|slices#} const assert = @import("std").debug.assert; const mem = @import("std").mem; const fmt = @import("std").fmt; test "using slices for strings" { // Zig has no concept of strings. String literals are arrays of u8, and // in general the string type is []u8 (slice of u8). // Here we implicitly cast [5]u8 to []const u8 const hello: []const u8 = "hello"; const world: []const u8 = "世界"; var all_together: [100]u8 = undefined; // You can use slice syntax on an array to convert an array into a slice. const all_together_slice = all_together[0..]; // String concatenation example. const hello_world = try fmt.bufPrint(all_together_slice, "{} {}", hello, world); // Generally, you can use UTF-8 and not worry about whether something is a // string. If you don't need to deal with individual characters, no need // to decode. assert(mem.eql(u8, hello_world, "hello 世界")); } test "slice pointer" { var array: [10]u8 = undefined; const ptr = &array[0]; // You can use slicing syntax to convert a pointer into a slice: const slice = ptr[0..5]; slice[2] = 3; assert(slice[2] == 3); // The slice is mutable because we sliced a mutable pointer. assert(@typeOf(slice) == []u8); // You can also slice a slice: const slice2 = slice[2..3]; assert(slice2.len == 1); assert(slice2[0] == 3); } test "slice widening" { // Zig supports slice widening and slice narrowing. Cast a slice of u8 // to a slice of anything else, and Zig will perform the length conversion. const array align(@alignOf(u32)) = []u8{0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13}; const slice = ([]const u32)(array[0..]); assert(slice.len == 2); assert(slice[0] == 0x12121212); assert(slice[1] == 0x13131313); } {#code_end#} {#see_also|Pointers|for|Arrays#} {#header_close#} {#header_open|struct#} {#code_begin|test|structs#} // Declare a struct. // Zig gives no guarantees about the order of fields and whether or // not there will be padding. const Point = struct { x: f32, y: f32, }; // Maybe we want to pass it to OpenGL so we want to be particular about // how the bytes are arranged. const Point2 = packed struct { x: f32, y: f32, }; // Declare an instance of a struct. const p = Point { .x = 0.12, .y = 0.34, }; // Maybe we're not ready to fill out some of the fields. var p2 = Point { .x = 0.12, .y = undefined, }; // Structs can have methods // Struct methods are not special, they are only namespaced // functions that you can call with dot syntax. const Vec3 = struct { x: f32, y: f32, z: f32, pub fn init(x: f32, y: f32, z: f32) -> Vec3 { return Vec3 { .x = x, .y = y, .z = z, }; } pub fn dot(self: &const Vec3, other: &const Vec3) -> f32 { return self.x * other.x + self.y * other.y + self.z * other.z; } }; const assert = @import("std").debug.assert; test "dot product" { const v1 = Vec3.init(1.0, 0.0, 0.0); const v2 = Vec3.init(0.0, 1.0, 0.0); assert(v1.dot(v2) == 0.0); // Other than being available to call with dot syntax, struct methods are // not special. You can reference them as any other declaration inside // the struct: assert(Vec3.dot(v1, v2) == 0.0); } // Structs can have global declarations. // Structs can have 0 fields. const Empty = struct { pub const PI = 3.14; }; test "struct namespaced variable" { assert(Empty.PI == 3.14); assert(@sizeOf(Empty) == 0); // you can still instantiate an empty struct const does_nothing = Empty {}; } // struct field order is determined by the compiler for optimal performance. // however, you can still calculate a struct base pointer given a field pointer: fn setYBasedOnX(x: &f32, y: f32) { const point = @fieldParentPtr(Point, "x", x); point.y = y; } test "field parent pointer" { var point = Point { .x = 0.1234, .y = 0.5678, }; setYBasedOnX(&point.x, 0.9); assert(point.y == 0.9); } // You can return a struct from a function. This is how we do generics // in Zig: fn LinkedList(comptime T: type) -> type { return struct { pub const Node = struct { prev: ?&Node, next: ?&Node, data: T, }; first: ?&Node, last: ?&Node, len: usize, }; } test "linked list" { // Functions called at compile-time are memoized. This means you can // do this: assert(LinkedList(i32) == LinkedList(i32)); var list = LinkedList(i32) { .first = null, .last = null, .len = 0, }; assert(list.len == 0); // Since types are first class values you can instantiate the type // by assigning it to a variable: const ListOfInts = LinkedList(i32); assert(ListOfInts == LinkedList(i32)); var node = ListOfInts.Node { .prev = null, .next = null, .data = 1234, }; var list2 = LinkedList(i32) { .first = &node, .last = &node, .len = 1, }; assert((??list2.first).data == 1234); } {#code_end#} {#see_also|comptime|@fieldParentPtr#} {#header_close#} {#header_open|enum#} {#code_begin|test|enums#} const assert = @import("std").debug.assert; const mem = @import("std").mem; // Declare an enum. const Type = enum { Ok, NotOk, }; // Declare a specific instance of the enum variant. const c = Type.Ok; // If you want access to the ordinal value of an enum, you // can specify the tag type. const Value = enum(u2) { Zero, One, Two, }; // Now you can cast between u2 and Value. // The ordinal value starts from 0, counting up for each member. test "enum ordinal value" { assert(u2(Value.Zero) == 0); assert(u2(Value.One) == 1); assert(u2(Value.Two) == 2); } // You can override the ordinal value for an enum. const Value2 = enum(u32) { Hundred = 100, Thousand = 1000, Million = 1000000, }; test "set enum ordinal value" { assert(u32(Value2.Hundred) == 100); assert(u32(Value2.Thousand) == 1000); assert(u32(Value2.Million) == 1000000); } // Enums can have methods, the same as structs and unions. // Enum methods are not special, they are only namespaced // functions that you can call with dot syntax. const Suit = enum { Clubs, Spades, Diamonds, Hearts, pub fn isClubs(self: Suit) -> bool { return self == Suit.Clubs; } }; test "enum method" { const p = Suit.Spades; assert(!p.isClubs()); } // An enum variant of different types can be switched upon. const Foo = enum { String, Number, None, }; test "enum variant switch" { const p = Foo.Number; const what_is_it = switch (p) { Foo.String => "this is a string", Foo.Number => "this is a number", Foo.None => "this is a none", }; assert(mem.eql(u8, what_is_it, "this is a number")); } // @TagType can be used to access the integer tag type of an enum. const Small = enum { One, Two, Three, Four, }; test "@TagType" { assert(@TagType(Small) == u2); } // @memberCount tells how many fields an enum has: test "@memberCount" { assert(@memberCount(Small) == 4); } // @memberName tells the name of a field in an enum: test "@memberName" { assert(mem.eql(u8, @memberName(Small, 1), "Two")); } // @tagName gives a []const u8 representation of an enum value: test "@tagName" { assert(mem.eql(u8, @tagName(Small.Three), "Three")); } {#code_end#} {#header_open|extern enum#}By default, enums are not guaranteed to be compatible with the C ABI:
{#code_begin|obj_err|parameter of type 'Foo' not allowed in function with calling convention 'ccc'#} const Foo = enum { A, B, C }; export fn entry(foo: Foo) { } {#code_end#}
For a C-ABI-compatible enum, use extern enum
:
TODO packed enum
{#see_also|@memberName|@memberCount|@tagName#} {#header_close#} {#header_open|union#} {#code_begin|test|union#} const assert = @import("std").debug.assert; const mem = @import("std").mem; // A union has only 1 active field at a time. const Payload = union { Int: i64, Float: f64, Bool: bool, }; test "simple union" { var payload = Payload {.Int = 1234}; // payload.Float = 12.34; // ERROR! field not active assert(payload.Int == 1234); // You can activate another field by assigning the entire union. payload = Payload {.Float = 12.34}; assert(payload.Float == 12.34); } // Unions can be given an enum tag type: const ComplexTypeTag = enum { Ok, NotOk }; const ComplexType = union(ComplexTypeTag) { Ok: u8, NotOk: void, }; // Declare a specific instance of the union variant. test "declare union value" { const c = ComplexType { .Ok = 0 }; assert(ComplexTypeTag(c) == ComplexTypeTag.Ok); } // @TagType can be used to access the enum tag type of a union. test "@TagType" { assert(@TagType(ComplexType) == ComplexTypeTag); } // Unions can be made to infer the enum tag type. const Foo = union(enum) { String: []const u8, Number: u64, // void can be omitted when inferring enum tag type. None, }; test "union variant switch" { const p = Foo { .Number = 54 }; const what_is_it = switch (p) { // Capture by reference Foo.String => |*x| blk: { break :blk "this is a string"; }, // Capture by value Foo.Number => |x| blk: { assert(x == 54); break :blk "this is a number"; }, Foo.None => blk: { break :blk "this is a none"; }, }; assert(mem.eql(u8, what_is_it, "this is a number")); } // TODO union methods const Small = union { A: i32, B: bool, C: u8, }; // @memberCount tells how many fields a union has: test "@memberCount" { assert(@memberCount(Small) == 3); } // @memberName tells the name of a field in an enum: test "@memberName" { assert(mem.eql(u8, @memberName(Small, 1), "B")); } // @tagName gives a []const u8 representation of an enum value, // but only if the union has an enum tag type. const Small2 = union(enum) { A: i32, B: bool, C: u8, }; test "@tagName" { assert(mem.eql(u8, @tagName(Small2.C), "C")); } {#code_end#}Unions with an enum tag are generated as a struct with a tag field and union field. Zig sorts the order of the tag and union field by the largest alignment.
{#header_close#} {#header_open|switch#} {#code_begin|test|switch#} const assert = @import("std").debug.assert; const builtin = @import("builtin"); test "switch simple" { const a: u64 = 10; const zz: u64 = 103; // All branches of a switch expression must be able to be coerced to a // common type. // // Branches cannot fallthrough. If fallthrough behavior is desired, combine // the cases and use an if. const b = switch (a) { // Multiple cases can be combined via a ',' 1, 2, 3 => 0, // Ranges can be specified using the ... syntax. These are inclusive // both ends. 5 ... 100 => 1, // Branches can be arbitrarily complex. 101 => blk: { const c: u64 = 5; break :blk c * 2 + 1; }, // Switching on arbitrary expressions is allowed as long as the // expression is known at compile-time. zz => zz, comptime blk: { const d: u32 = 5; const e: u32 = 100; break :blk d + e; } => 107, // The else branch catches everything not already captured. // Else branches are mandatory unless the entire range of values // is handled. else => 9, }; assert(b == 1); } test "switch enum" { const Item = union(enum) { A: u32, C: struct { x: u8, y: u8 }, D, }; var a = Item { .A = 3 }; // Switching on more complex enums is allowed. const b = switch (a) { // A capture group is allowed on a match, and will return the enum // value matched. Item.A => |item| item, // A reference to the matched value can be obtained using `*` syntax. Item.C => |*item| blk: { (*item).x += 1; break :blk 6; }, // No else is required if the types cases was exhaustively handled Item.D => 8, }; assert(b == 3); } // Switch expressions can be used outside a function: const os_msg = switch (builtin.os) { builtin.Os.linux => "we found a linux user", else => "not a linux user", }; // Inside a function, switch statements implicitly are compile-time // evaluated if the target expression is compile-time known. test "switch inside function" { switch (builtin.os) { builtin.Os.fuchsia => { // On an OS other than fuchsia, block is not even analyzed, // so this compile error is not triggered. // On fuchsia this compile error would be triggered. @compileError("windows not supported"); }, else => {}, } } {#code_end#} {#see_also|comptime|enum|@compileError|Compile Variables#} {#header_close#} {#header_open|while#} {#code_begin|test|while#} const assert = @import("std").debug.assert; test "while basic" { // A while loop is used to repeatedly execute an expression until // some condition is no longer true. var i: usize = 0; while (i < 10) { i += 1; } assert(i == 10); } test "while break" { // You can use break to exit a while loop early. var i: usize = 0; while (true) { if (i == 10) break; i += 1; } assert(i == 10); } test "while continue" { // You can use continue to jump back to the beginning of the loop. var i: usize = 0; while (true) { i += 1; if (i < 10) continue; break; } assert(i == 10); } test "while loop continuation expression" { // You can give an expression to the while loop to execute when // the loop is continued. This is respected by the continue control flow. var i: usize = 0; while (i < 10) : (i += 1) {} assert(i == 10); } test "while loop continuation expression, more complicated" { // More complex blocks can be used as an expression in the loop continue // expression. var i1: usize = 1; var j1: usize = 1; while (i1 * j1 < 2000) : ({ i1 *= 2; j1 *= 3; }) { const my_ij1 = i1 * j1; assert(my_ij1 < 2000); } } test "while else" { assert(rangeHasNumber(0, 10, 5)); assert(!rangeHasNumber(0, 10, 15)); } fn rangeHasNumber(begin: usize, end: usize, number: usize) -> bool { var i = begin; // While loops are expressions. The result of the expression is the // result of the else clause of a while loop, which is executed when // the condition of the while loop is tested as false. return while (i < end) : (i += 1) { if (i == number) { // break expressions, like return expressions, accept a value // parameter. This is the result of the while expression. // When you break from a while loop, the else branch is not // evaluated. break true; } } else false; } test "while null capture" { // Just like if expressions, while loops can take a nullable as the // condition and capture the payload. When null is encountered the loop // exits. var sum1: u32 = 0; numbers_left = 3; while (eventuallyNullSequence()) |value| { sum1 += value; } assert(sum1 == 3); // The else branch is allowed on nullable iteration. In this case, it will // be executed on the first null value encountered. var sum2: u32 = 0; numbers_left = 3; while (eventuallyNullSequence()) |value| { sum2 += value; } else { assert(sum1 == 3); } // Just like if expressions, while loops can also take an error union as // the condition and capture the payload or the error code. When the // condition results in an error code the else branch is evaluated and // the loop is finished. var sum3: u32 = 0; numbers_left = 3; while (eventuallyErrorSequence()) |value| { sum3 += value; } else |err| { assert(err == error.ReachedZero); } } var numbers_left: u32 = undefined; fn eventuallyNullSequence() -> ?u32 { return if (numbers_left == 0) null else blk: { numbers_left -= 1; break :blk numbers_left; }; } error ReachedZero; fn eventuallyErrorSequence() -> %u32 { return if (numbers_left == 0) error.ReachedZero else blk: { numbers_left -= 1; break :blk numbers_left; }; } test "inline while loop" { // While loops can be inlined. This causes the loop to be unrolled, which // allows the code to do some things which only work at compile time, // such as use types as first class values. comptime var i = 0; var sum: usize = 0; inline while (i < 3) : (i += 1) { const T = switch (i) { 0 => f32, 1 => i8, 2 => bool, else => unreachable, }; sum += typeNameLength(T); } assert(sum == 9); } fn typeNameLength(comptime T: type) -> usize { return @typeName(T).len; } {#code_end#} {#see_also|if|Nullables|Errors|comptime|unreachable#} {#header_close#} {#header_open|for#} {#code_begin|test|for#} const assert = @import("std").debug.assert; test "for basics" { const items = []i32 { 4, 5, 3, 4, 0 }; var sum: i32 = 0; // For loops iterate over slices and arrays. for (items) |value| { // Break and continue are supported. if (value == 0) { continue; } sum += value; } assert(sum == 16); // To iterate over a portion of a slice, reslice. for (items[0..1]) |value| { sum += value; } assert(sum == 20); // To access the index of iteration, specify a second capture value. // This is zero-indexed. var sum2: i32 = 0; for (items) |value, i| { assert(@typeOf(i) == usize); sum2 += i32(i); } assert(sum2 == 10); } test "for reference" { var items = []i32 { 3, 4, 2 }; // Iterate over the slice by reference by // specifying that the capture value is a pointer. for (items) |*value| { *value += 1; } assert(items[0] == 4); assert(items[1] == 5); assert(items[2] == 3); } test "for else" { // For allows an else attached to it, the same as a while loop. var items = []?i32 { 3, 4, null, 5 }; // For loops can also be used as expressions. var sum: i32 = 0; const result = for (items) |value| { if (value == null) { break 9; } else { sum += ??value; } } else blk: { assert(sum == 7); break :blk sum; }; } test "inline for loop" { const nums = []i32{2, 4, 6}; // For loops can be inlined. This causes the loop to be unrolled, which // allows the code to do some things which only work at compile time, // such as use types as first class values. // The capture value and iterator value of inlined for loops are // compile-time known. var sum: usize = 0; inline for (nums) |i| { const T = switch (i) { 2 => f32, 4 => i8, 6 => bool, else => unreachable, }; sum += typeNameLength(T); } assert(sum == 9); } fn typeNameLength(comptime T: type) -> usize { return @typeName(T).len; } {#code_end#} {#see_also|while|comptime|Arrays|Slices#} {#header_close#} {#header_open|if#} {#code_begin|test|if#} // If expressions have three uses, corresponding to the three types: // * bool // * ?T // * %T const assert = @import("std").debug.assert; test "if boolean" { // If expressions test boolean conditions. const a: u32 = 5; const b: u32 = 4; if (a != b) { assert(true); } else if (a == 9) { unreachable; } else { unreachable; } // If expressions are used instead of a ternary expression. const result = if (a != b) 47 else 3089; assert(result == 47); } test "if nullable" { // If expressions test for null. const a: ?u32 = 0; if (a) |value| { assert(value == 0); } else { unreachable; } const b: ?u32 = null; if (b) |value| { unreachable; } else { assert(true); } // The else is not required. if (a) |value| { assert(value == 0); } // To test against null only, use the binary equality operator. if (b == null) { assert(true); } // Access the value by reference using a pointer capture. var c: ?u32 = 3; if (c) |*value| { *value = 2; } if (c) |value| { assert(value == 2); } else { unreachable; } } error BadValue; error LessBadValue; test "if error union" { // If expressions test for errors. // Note the |err| capture on the else. const a: %u32 = 0; if (a) |value| { assert(value == 0); } else |err| { unreachable; } const b: %u32 = error.BadValue; if (b) |value| { unreachable; } else |err| { assert(err == error.BadValue); } // The else and |err| capture is strictly required. if (a) |value| { assert(value == 0); } else |_| {} // To check only the error value, use an empty block expression. if (b) |_| {} else |err| { assert(err == error.BadValue); } // Access the value by reference using a pointer capture. var c: %u32 = 3; if (c) |*value| { *value = 9; } else |err| { unreachable; } if (c) |value| { assert(value == 9); } else |err| { unreachable; } } {#code_end#} {#see_also|Nullables|Errors#} {#header_close#} {#header_open|defer#} {#code_begin|test|defer#} const std = @import("std"); const assert = std.debug.assert; const warn = std.debug.warn; // defer will execute an expression at the end of the current scope. fn deferExample() -> usize { var a: usize = 1; { defer a = 2; a = 1; } assert(a == 2); a = 5; return a; } test "defer basics" { assert(deferExample() == 5); } // If multiple defer statements are specified, they will be executed in // the reverse order they were run. fn deferUnwindExample() { warn("\n"); defer { warn("1 "); } defer { warn("2 "); } if (false) { // defers are not run if they are never executed. defer { warn("3 "); } } } test "defer unwinding" { deferUnwindExample(); } // The %defer keyword is similar to defer, but will only execute if the // scope returns with an error. // // This is especially useful in allowing a function to clean up properly // on error, and replaces goto error handling tactics as seen in c. error DeferError; fn deferErrorExample(is_error: bool) -> %void { warn("\nstart of function\n"); // This will always be executed on exit defer { warn("end of function\n"); } %defer { warn("encountered an error!\n"); } if (is_error) { return error.DeferError; } } test "%defer unwinding" { _ = deferErrorExample(false); _ = deferErrorExample(true); } {#code_end#} {#see_also|Errors#} {#header_close#} {#header_open|unreachable#}
In Debug
and ReleaseSafe
mode, and when using zig test
,
unreachable
emits a call to panic
with the message reached unreachable code
.
In ReleaseFast
mode, the optimizer uses the assumption that unreachable
code
will never be hit to perform optimizations. However, zig test
even in ReleaseFast
mode
still emits unreachable
as calls to panic
.
In fact, this is how assert is implemented:
{#code_begin|test_err#} fn assert(ok: bool) { if (!ok) unreachable; // assertion failure } // This test will fail because we hit unreachable. test "this will fail" { assert(false); } {#code_end#} {#header_close#} {#header_open|At Compile-Time#} {#code_begin|test_err|unreachable code#} const assert = @import("std").debug.assert; test "type of unreachable" { comptime { // The type of unreachable is noreturn. // However this assertion will still fail because // evaluating unreachable at compile-time is a compile error. assert(@typeOf(unreachable) == noreturn); } } {#code_end#} {#see_also|Zig Test|Build Mode|comptime#} {#header_close#} {#header_close#} {#header_open|noreturn#}
noreturn
is the type of:
break
continue
goto
return
unreachable
while (true) {}
When resolving types together, such as if
clauses or switch
prongs,
the noreturn
type is compatible with every other type. Consider:
Another use case for noreturn
is the exit
function:
Function values are like pointers:
{#code_begin|obj#} const assert = @import("std").debug.assert; comptime { assert(@typeOf(foo) == fn()); assert(@sizeOf(fn()) == @sizeOf(?fn())); } fn foo() { } {#code_end#} {#header_open|Pass-by-value Parameters#}In Zig, structs, unions, and enums with payloads cannot be passed by value to a function.
{#code_begin|test_err|not copyable; cannot pass by value#} const Foo = struct { x: i32, }; fn bar(foo: Foo) {} test "pass aggregate type by value to function" { bar(Foo {.x = 12,}); } {#code_end#}
Instead, one must use &const
. Zig allows implicitly casting something
to a const pointer to it:
However, the C ABI does allow passing structs and unions by value. So functions which use the C calling convention may pass structs and unions by value.
{#header_close#} {#header_close#} {#header_open|Errors#}One of the distinguishing features of Zig is its exception handling strategy.
Among the top level declarations available is the error value declaration:
{#code_begin|syntax#} error FileNotFound; error OutOfMemory; error UnexpectedToken; {#code_end#}These error values are assigned an unsigned integer value greater than 0 at compile time. You are allowed to declare the same error value more than once, and if you do, it gets assigned the same integer value.
You can refer to these error values with the error namespace such as
error.FileNotFound
.
Each error value across the entire compilation unit gets a unique integer, and this determines the size of the pure error type.
The pure error type is one of the error values, and in the same way that pointers cannot be null, a pure error is always an error.
{#code_begin|syntax#}const pure_error = error.FileNotFound;{#code_end#}
Most of the time you will not find yourself using a pure error type. Instead,
likely you will be using the error union type. This is when you take a normal type,
and prefix it with the %
operator.
Here is a function to parse a string into a 64-bit integer:
{#code_begin|test#} error InvalidChar; error Overflow; pub fn parseU64(buf: []const u8, radix: u8) -> %u64 { var x: u64 = 0; for (buf) |c| { const digit = charToDigit(c); if (digit >= radix) { return error.InvalidChar; } // x *= radix if (@mulWithOverflow(u64, x, radix, &x)) { return error.Overflow; } // x += digit if (@addWithOverflow(u64, x, digit, &x)) { return error.Overflow; } } return x; } fn charToDigit(c: u8) -> u8 { return switch (c) { '0' ... '9' => c - '0', 'A' ... 'Z' => c - 'A' + 10, 'a' ... 'z' => c - 'a' + 10, else => @maxValue(u8), }; } test "parse u64" { const result = try parseU64("1234", 10); @import("std").debug.assert(result == 1234); } {#code_end#}
Notice the return type is %u64
. This means that the function
either returns an unsigned 64 bit integer, or an error.
Within the function definition, you can see some return statements that return
a pure error, and at the bottom a return statement that returns a u64
.
Both types implicitly cast to %u64
.
What it looks like to use this function varies depending on what you're trying to do. One of the following:
If you want to provide a default value, you can use the catch
binary operator:
In this code, number
will be equal to the successfully parsed string, or
a default value of 13. The type of the right hand side of the binary catch
operator must
match the unwrapped error union type, or be of type noreturn
.
Let's say you wanted to return the error if you got one, otherwise continue with the function logic:
{#code_begin|syntax#} fn doAThing(str: []u8) -> %void { const number = parseU64(str, 10) catch |err| return err; // ... } {#code_end#}
There is a shortcut for this. The try
expression:
try
evaluates an error union expression. If it is an error, it returns
from the current function with the same error. Otherwise, the expression results in
the unwrapped value.
Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:
{#code_begin|syntax#}const number = parseU64("1234", 10) catch unreachable;{#code_end#}
Here we know for sure that "1234" will parse successfully. So we put the
unreachable
value on the right hand side. unreachable
generates
a panic in Debug and ReleaseSafe modes and undefined behavior in ReleaseFast mode. So, while we're debugging the
application, if there was a surprise error here, the application would crash
appropriately.
TODO: mention error return traces
Finally, you may want to take a different action for every situation. For that, we combine
the if
and switch
expression:
The other component to error handling is defer statements.
In addition to an unconditional defer
, Zig has %defer
,
which evaluates the deferred expression on block exit path if and only if
the function returned with an error from the block.
Example:
{#code_begin|syntax#} fn createFoo(param: i32) -> %Foo { const foo = try tryToAllocateFoo(); // now we have allocated foo. we need to free it if the function fails. // but we want to return it if the function succeeds. %defer deallocateFoo(foo); const tmp_buf = allocateTmpBuffer() ?? return error.OutOfMemory; // tmp_buf is truly a temporary resource, and we for sure want to clean it up // before this block leaves scope defer deallocateTmpBuffer(tmp_buf); if (param > 1337) return error.InvalidParam; // here the %defer will not run since we're returning success from the function. // but the defer will run! return foo; } {#code_end#}The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.
A couple of other tidbits about error handling:
catch unreachable
and
get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong.
One area that Zig provides safety without compromising efficiency or readability is with the nullable type.
The question mark symbolizes the nullable type. You can convert a type to a nullable type by putting a question mark in front of it, like this:
{#code_begin|syntax#} // normal integer const normal_int: i32 = 1234; // nullable integer const nullable_int: ?i32 = 5678; {#code_end#}
Now the variable nullable_int
could be an i32
, or null
.
Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.
Zig does not have them.
Instead, you can use a nullable pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the nullable type. But the compiler can check your work and make sure you don't assign null to something that can't be null.
Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.
Task: call malloc, if the result is null, return null.
C code
// malloc prototype included for reference
void *malloc(size_t size);
struct Foo *do_a_thing(void) {
char *ptr = malloc(1234);
if (!ptr) return NULL;
// ...
}
Zig code
{#code_begin|syntax#} // malloc prototype included for reference extern fn malloc(size: size_t) -> ?&u8; fn doAThing() -> ?&Foo { const ptr = malloc(1234) ?? return null; // ... } {#code_end#}
Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr"
is &u8
not ?&u8
. The ??
operator
unwrapped the nullable type and therefore ptr
is guaranteed to be non-null everywhere
it is used in the function.
The other form of checking against NULL you might see looks like this:
void do_a_thing(struct Foo *foo) {
// do some stuff
if (foo) {
do_something_with_foo(foo);
}
// do some stuff
}
In Zig you can accomplish the same thing:
{#code_begin|syntax#} fn doAThing(nullable_foo: ?&Foo) { // do some stuff if (nullable_foo) |foo| { doSomethingWithFoo(foo); } // do some stuff } {#code_end#}
Once again, the notable thing here is that inside the if block,
foo
is no longer a nullable pointer, it is a pointer, which
cannot be null.
One benefit to this is that functions which take pointers as arguments can
be annotated with the "nonnull" attribute - __attribute__((nonnull))
in
GCC.
The optimizer can sometimes make better decisions knowing that pointer arguments
cannot be null.
TODO: explain implicit vs explicit casting
TODO: resolve peer types builtin
TODO: truncate builtin
TODO: bitcast builtin
TODO: int to ptr builtin
TODO: ptr to int builtin
TODO: ptrcast builtin
TODO: explain number literals vs concrete types
{#header_close#} {#header_open|void#}TODO: assigning void has no codegen
TODO: hashmap with void becomes a set
TODO: difference between c_void and void
TODO: void is the default return value of functions
TODO: functions require assigning the return value
{#header_close#} {#header_open|this#}TODO: example of this referring to Self struct
TODO: example of this referring to recursion function
TODO: example of this referring to basic block for @setDebugSafety
{#header_close#} {#header_open|comptime#}Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.
{#header_open|Introducing the Compile-Time Concept#} {#header_open|Compile-Time Parameters#}Compile-time parameters is how Zig implements generics. It is compile-time duck typing.
{#code_begin|syntax#} fn max(comptime T: type, a: T, b: T) -> T { return if (a > b) a else b; } fn gimmeTheBiggerFloat(a: f32, b: f32) -> f32 { return max(f32, a, b); } fn gimmeTheBiggerInteger(a: u64, b: u64) -> u64 { return max(u64, a, b); } {#code_end#}
In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions,
and returned from functions. However, they can only be used in expressions which are known at compile-time,
which is why the parameter T
in the above snippet must be marked with comptime
.
A comptime
parameter means that:
For example, if we were to introduce another function to the above snippet:
{#code_begin|test_err|unable to evaluate constant expression#} fn max(comptime T: type, a: T, b: T) -> T { return if (a > b) a else b; } test "try to pass a runtime type" { foo(false); } fn foo(condition: bool) { const result = max( if (condition) f32 else u64, 1234, 5678); } {#code_end#}This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.
Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.
For example:
{#code_begin|test_err|operator not allowed for type 'bool'#} fn max(comptime T: type, a: T, b: T) -> T { return if (a > b) a else b; } test "try to compare bools" { _ = max(bool, true, false); } {#code_end#}
On the flip side, inside the function definition with the comptime
parameter, the
value is known at compile-time. This means that we actually could make this work for the bool type
if we wanted to:
This works because Zig implicitly inlines if
expressions when the condition
is known at compile-time, and the compiler guarantees that it will skip analysis of
the branch not taken.
This means that the actual function generated for max
in this situation looks like
this:
All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.
This works the same way for switch
expressions - they are implicitly inlined
when the target expression is compile-time known.
In Zig, the programmer can label variables as comptime
. This guarantees to the compiler
that every load and store of the variable is performed at compile-time. Any violation of this results in a
compile error.
This combined with the fact that we can inline
loops allows us to write
a function which is partially evaluated at compile-time and partially at run-time.
For example:
{#code_begin|test|comptime_vars#} const assert = @import("std").debug.assert; const CmdFn = struct { name: []const u8, func: fn(i32) -> i32, }; const cmd_fns = []CmdFn{ CmdFn {.name = "one", .func = one}, CmdFn {.name = "two", .func = two}, CmdFn {.name = "three", .func = three}, }; fn one(value: i32) -> i32 { return value + 1; } fn two(value: i32) -> i32 { return value + 2; } fn three(value: i32) -> i32 { return value + 3; } fn performFn(comptime prefix_char: u8, start_value: i32) -> i32 { var result: i32 = start_value; comptime var i = 0; inline while (i < cmd_fns.len) : (i += 1) { if (cmd_fns[i].name[0] == prefix_char) { result = cmd_fns[i].func(result); } } return result; } test "perform fn" { assert(performFn('t', 1) == 6); assert(performFn('o', 0) == 1); assert(performFn('w', 99) == 99); } {#code_end#}
This example is a bit contrived, because the compile-time evaluation component is unnecessary;
this code would work fine if it was all done at run-time. But it does end up generating
different code. In this example, the function performFn
is generated three different times,
for the different values of prefix_char
provided:
Note that this happens even in a debug build; in a release build these generated functions still pass through rigorous LLVM optimizations. The important thing to note, however, is not that this is a way to write more optimized code, but that it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and as demonstrated later in this article, allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.
{#header_close#} {#header_open|Compile-Time Expressions#}
In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can
use a comptime
expression to guarantee that the expression will be evaluated at compile-time.
If this cannot be accomplished, the compiler will emit an error. For example:
It doesn't make sense that a program could call exit()
(or any other external function)
at compile-time, so this is a compile error. However, a comptime
expression does much
more than sometimes cause a compile error.
Within a comptime
expression:
comptime
variables.if
, while
, for
, switch
, and goto
expressions are evaluated at compile-time, or emit a compile error if this is not possible.This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.
Let's look at an example:
{#code_begin|test#} const assert = @import("std").debug.assert; fn fibonacci(index: u32) -> u32 { if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { // test fibonacci at run-time assert(fibonacci(7) == 13); // test fibonacci at compile-time comptime { assert(fibonacci(7) == 13); } } {#code_end#}Imagine if we had forgotten the base case of the recursive function and tried to run the tests:
{#code_begin|test_err|operation caused overflow#} const assert = @import("std").debug.assert; fn fibonacci(index: u32) -> u32 { //if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { comptime { assert(fibonacci(7) == 13); } } {#code_end#}The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.
Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?
{#code_begin|test_err|evaluation exceeded 1000 backwards branches#} const assert = @import("std").debug.assert; fn fibonacci(index: i32) -> i32 { //if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { comptime { assert(fibonacci(7) == 13); } } {#code_end#}The compiler noticed that evaluating this function at compile-time took a long time, and thus emitted a compile error and gave up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.
What if we fix the base case, but put the wrong value in the assert
line?
What happened is Zig started interpreting the assert
function with the
parameter ok
set to false
. When the interpreter hit
unreachable
it emitted a compile error, because reaching unreachable
code is undefined behavior, and undefined behavior causes a compile error if it is detected
at compile-time.
In the global scope (outside of any function), all expressions are implicitly
comptime
expressions. This means that we can use functions to
initialize complex static data. For example:
When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:
@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060
Note that we did not have to do anything special with the syntax of these functions. For example,
we could call the sum
function as is with a slice of numbers whose length and values were
only known at run-time.
Zig uses these capabilities to implement generic data structures without introducing any special-case syntax. If you followed along so far, you may already know how to create a generic data structure.
Here is an example of a generic List
data structure, that we will instantiate with
the type i32
. In Zig we refer to the type as List(i32)
.
That's it. It's a function that returns an anonymous struct
. For the purposes of error messages
and debugging, Zig infers the name "List(i32)"
from the function name and parameters invoked when creating
the anonymous struct.
To keep the language small and uniform, all aggregate types in Zig are anonymous. To give a type a name, we assign it to a constant:
{#code_begin|syntax#} const Node = struct { next: &Node, name: []u8, }; {#code_end#}
This works because all top level declarations are order-independent, and as long as there isn't
an actual infinite regression, values can refer to themselves, directly or indirectly. In this case,
Node
refers to itself as a pointer, which is not actually an infinite regression, so
it works fine.
Putting all of this together, let's see how printf
works in Zig.
Let's crack open the implementation of this and see how it works:
{#code_begin|syntax#} /// Calls print and then flushes the buffer. pub fn printf(self: &OutStream, comptime format: []const u8, args: ...) -> %void { const State = enum { Start, OpenBrace, CloseBrace, }; comptime var start_index: usize = 0; comptime var state = State.Start; comptime var next_arg: usize = 0; inline for (format) |c, i| { switch (state) { State.Start => switch (c) { '{' => { if (start_index < i) try self.write(format[start_index..i]); state = State.OpenBrace; }, '}' => { if (start_index < i) try self.write(format[start_index..i]); state = State.CloseBrace; }, else => {}, }, State.OpenBrace => switch (c) { '{' => { state = State.Start; start_index = i; }, '}' => { try self.printValue(args[next_arg]); next_arg += 1; state = State.Start; start_index = i + 1; }, else => @compileError("Unknown format character: " ++ c), }, State.CloseBrace => switch (c) { '}' => { state = State.Start; start_index = i; }, else => @compileError("Single '}' encountered in format string"), }, } } comptime { if (args.len != next_arg) { @compileError("Unused arguments"); } if (state != State.Start) { @compileError("Incomplete format string: " ++ format); } } if (start_index < format.len) { try self.write(format[start_index..format.len]); } try self.flush(); } {#code_end#}This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.
Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.
When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:
{#code_begin|syntax#} pub fn printf(self: &OutStream, arg0: i32, arg1: []const u8) -> %void { try self.write("here is a string: '"); try self.printValue(arg0); try self.write("' here is a number: "); try self.printValue(arg1); try self.write("\n"); try self.flush(); } {#code_end#}
printValue
is a function that takes a parameter of any type, and does different things depending
on the type:
And now, what happens if we give too many arguments to printf
?
Zig gives programmers the tools needed to protect themselves against their own mistakes.
Zig doesn't care whether the format argument is a string literal,
only that it is a compile-time known value that is implicitly castable to a []const u8
:
This works fine.
Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.
TODO: suggestion to not use inline unless necessary
{#header_close#} {#header_close#} {#header_open|inline#}TODO: inline while
TODO: inline for
TODO: suggestion to not use inline unless necessary
{#header_close#} {#header_open|Assembly#}TODO: example of inline assembly
TODO: example of module level assembly
TODO: example of using inline assembly return value
TODO: example of using inline assembly assigning values to variables
{#header_close#} {#header_open|Atomics#}TODO: @fence()
TODO: @atomic rmw
TODO: builtin atomic memory ordering enum
{#header_close#} {#header_open|Builtin Functions#}
Builtin functions are provided by the compiler and are prefixed with @
.
The comptime
keyword on a parameter means that the parameter must be known
at compile time.
@addWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a + b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
TODO
{#header_close#} {#header_open|@bitCast#}@bitCast(comptime DestType: type, value: var) -> DestType
Converts a value of one type to another type.
Asserts that @sizeOf(@typeOf(value)) == @sizeOf(DestType)
.
Asserts that @typeId(DestType) != @import("builtin").TypeId.Pointer
. Use @ptrCast
or @intToPtr
if you need this.
Can be used for these things for example:
f32
to u32
bitsi32
to u32
preserving twos complement
Works at compile-time if value
is known at compile time. It's a compile error to bitcast a struct to a scalar type of the same size since structs have undefined layout. However if the struct is packed then it works.
@breakpoint()
This function inserts a platform-specific debug trap instruction which causes debuggers to break there.
This function is only valid within function scope.
{#header_close#} {#header_open|@alignCast#}@alignCast(comptime alignment: u29, ptr: var) -> var
ptr
can be &T
, fn()
, ?&T
,
?fn()
, or []T
. It returns the same type as ptr
except with the alignment adjusted to the new value.
A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.
{#header_close#} {#header_open|@alignOf#}@alignOf(comptime T: type) -> (number literal)
This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.
const assert = @import("std").debug.assert;
comptime {
assert(&u32 == &align(@alignOf(u32)) u32);
}
The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).
{#see_also|Alignment#} {#header_close#} {#header_open|@cDefine#}@cDefine(comptime name: []u8, value)
This function can only occur inside @cImport
.
This appends #define $name $value
to the @cImport
temporary buffer.
To define without a value, like this:
#define _GNU_SOURCE
Use the void value, like this:
@cDefine("_GNU_SOURCE", {})
{#see_also|Import from C Header File|@cInclude|@cImport|@cUndef|void#}
{#header_close#}
{#header_open|@cImport#}
@cImport(expression) -> (namespace)
This function parses C code and imports the functions, types, variables, and compatible macro definitions into the result namespace.
expression
is interpreted at compile time. The builtin functions
@cInclude
, @cDefine
, and @cUndef
work
within this expression, appending to a temporary buffer which is then parsed as C code.
@cInclude(comptime path: []u8)
This function can only occur inside @cImport
.
This appends #include <$path>\n
to the c_import
temporary buffer.
@cUndef(comptime name: []u8)
This function can only occur inside @cImport
.
This appends #undef $name
to the @cImport
temporary buffer.
@canImplicitCast(comptime T: type, value) -> bool
Returns whether a value can be implicitly casted to a given type.
{#header_close#} {#header_open|@clz#}@clz(x: T) -> U
This function counts the number of leading zeroes in x
which is an integer
type T
.
The return type U
is an unsigned integer with the minimum number
of bits that can represent the value T.bit_count
.
If x
is zero, @clz
returns T.bit_count
.
@cmpxchg(ptr: &T, cmp: T, new: T, success_order: AtomicOrder, fail_order: AtomicOrder) -> bool
This function performs an atomic compare exchange operation.
AtomicOrder
can be found with @import("builtin").AtomicOrder
.
@typeOf(ptr).alignment
must be >= @sizeOf(T).
@compileError(comptime msg: []u8)
This function, when semantically analyzed, causes a compile error with the
message msg
.
There are several ways that code avoids being semantically checked, such as
using if
or switch
with compile time constants,
and comptime
functions.
@compileLog(args: ...)
This function prints the arguments passed to it at compile-time.
To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.
This function can be used to do "printf debugging" on compile-time executing code.
{#code_begin|test_err|found compile log statement#} const warn = @import("std").debug.warn; const num1 = blk: { var val1: i32 = 99; @compileLog("comptime val1 = ", val1); val1 = val1 + 1; break :blk val1; }; test "main" { @compileLog("comptime in main"); warn("Runtime in main, num1 = {}.\n", num1); } {#code_end#}will ouput:
If all @compileLog
calls are removed or
not encountered by analysis, the
program compiles successfully and the generated executable prints:
@ctz(x: T) -> U
This function counts the number of trailing zeroes in x
which is an integer
type T
.
The return type U
is an unsigned integer with the minimum number
of bits that can represent the value T.bit_count
.
If x
is zero, @ctz
returns T.bit_count
.
@divExact(numerator: T, denominator: T) -> T
Exact division. Caller guarantees denominator != 0
and
@divTrunc(numerator, denominator) * denominator == numerator
.
@divExact(6, 3) == 2
@divExact(a, b) * b == a
For a function that returns a possible error code, use @import("std").math.divExact
.
@divFloor(numerator: T, denominator: T) -> T
Floored division. Rounds toward negative infinity. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1)
.
@divFloor(-5, 3) == -2
@divFloor(a, b) + @mod(a, b) == a
For a function that returns a possible error code, use @import("std").math.divFloor
.
@divTrunc(numerator: T, denominator: T) -> T
Truncated division. Rounds toward zero. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1)
.
@divTrunc(-5, 3) == -1
@divTrunc(a, b) + @rem(a, b) == a
For a function that returns a possible error code, use @import("std").math.divTrunc
.
@embedFile(comptime path: []const u8) -> [X]u8
This function returns a compile time constant fixed-size array with length
equal to the byte count of the file given by path
. The contents of the array
are the contents of the file.
path
is absolute or relative to the current file, just like @import
.
@export(comptime name: []const u8, target: var, linkage: builtin.GlobalLinkage) -> []const u8
Creates a symbol in the output object file.
{#header_close#} {#header_open|@tagName#}@tagName(value: var) -> []const u8
Converts an enum value or union value to a slice of bytes representing the name.
{#header_close#} {#header_open|@TagType#}@TagType(T: type) -> type
For an enum, returns the integer type that is used to store the enumeration value.
For a union, returns the enum type that is used to store the tag value.
{#header_close#} {#header_open|@errorName#}@errorName(err: error) -> []u8
This function returns the string representation of an error. If an error declaration is:
error OutOfMem
Then the string representation is "OutOfMem"
.
If there are no calls to @errorName
in an entire application,
or all calls have a compile-time known value for err
, then no
error name table will be generated.
@errorReturnTrace() -> ?&builtin.StackTrace
If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns `null`.
{#header_close#} {#header_open|@fence#}@fence(order: AtomicOrder)
The fence
function is used to introduce happens-before edges between operations.
AtomicOrder
can be found with @import("builtin").AtomicOrder
.
@fieldParentPtr(comptime ParentType: type, comptime field_name: []const u8,
field_ptr: &T) -> &ParentType
Given a pointer to a field, returns the base pointer of a struct.
{#header_close#} {#header_open|@frameAddress#}@frameAddress()
This function returns the base pointer of the current stack frame.
The implications of this are target specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.
This function is only valid within function scope.
{#header_close#} {#header_open|@import#}@import(comptime path: []u8) -> (namespace)
This function finds a zig file corresponding to path
and imports all the
public top level declarations into the resulting namespace.
path
can be a relative or absolute path, or it can be the name of a package.
If it is a relative path, it is relative to the file that contains the @import
function call.
The following packages are always available:
@import("std")
- Zig Standard Library@import("builtin")
- Compiler-provided types and variables@inlineCall(function: X, args: ...) -> Y
This calls a function, in the same way that invoking an expression with parentheses does:
{#code_begin|test#} const assert = @import("std").debug.assert; test "inline function call" { assert(@inlineCall(add, 3, 9) == 12); } fn add(a: i32, b: i32) -> i32 { return a + b; } {#code_end#}
Unlike a normal function call, however, @inlineCall
guarantees that the call
will be inlined. If the call cannot be inlined, a compile error is emitted.
@intToPtr(comptime DestType: type, int: usize) -> DestType
Converts an integer to a pointer. To convert the other way, use @ptrToInt.
{#header_close#} {#header_open|@IntType#}@IntType(comptime is_signed: bool, comptime bit_count: u8) -> type
This function returns an integer type with the given signness and bit count.
{#header_close#} {#header_open|@maxValue#}@maxValue(comptime T: type) -> (number literal)
This function returns the maximum value of the integer type T
.
The result is a compile time constant.
{#header_close#} {#header_open|@memberCount#}@memberCount(comptime T: type) -> (number literal)
This function returns the number of enum values in an enum type.
The result is a compile time constant.
{#header_close#} {#header_open|@memberName#}TODO
{#header_close#} {#header_open|@memberType#}TODO
{#header_close#} {#header_open|@memcpy#}@memcpy(noalias dest: &u8, noalias source: &const u8, byte_count: usize)
This function copies bytes from one region of memory to another. dest
and
source
are both pointers and must not overlap.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (source[0...byte_count]) |b, i| dest[i] = b;
The optimizer is intelligent enough to turn the above snippet into a memcpy.
There is also a standard library function for this:
const mem = @import("std").mem;
mem.copy(u8, dest[0...byte_count], source[0...byte_count]);
{#header_close#}
{#header_open|@memset#}
@memset(dest: &u8, c: u8, byte_count: usize)
This function sets a region of memory to c
. dest
is a pointer.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (dest[0...byte_count]) |*b| *b = c;
The optimizer is intelligent enough to turn the above snippet into a memset.
There is also a standard library function for this:
const mem = @import("std").mem;
mem.set(u8, dest, c);
{#header_close#}
{#header_open|@minValue#}
@minValue(comptime T: type) -> (number literal)
This function returns the minimum value of the integer type T.
The result is a compile time constant.
{#header_close#} {#header_open|@mod#}@mod(numerator: T, denominator: T) -> T
Modulus division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
.
@mod(-5, 3) == 1
@divFloor(a, b) + @mod(a, b) == a
For a function that returns an error code, see @import("std").math.mod
.
@mulWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a * b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
@noInlineCall(function: var, args: ...) -> var
This calls a function, in the same way that invoking an expression with parentheses does:
const assert = @import("std").debug.assert;
test "noinline function call" {
assert(@noInlineCall(add, 3, 9) == 12);
}
fn add(a: i32, b: i32) -> i32 { a + b }
Unlike a normal function call, however, @noInlineCall
guarantees that the call
will not be inlined. If the call must be inlined, a compile error is emitted.
@offsetOf(comptime T: type, comptime field_name: [] const u8) -> (number literal)
This function returns the byte offset of a field relative to its containing struct.
{#header_close#} {#header_open|@OpaqueType#}@OpaqueType() -> type
Creates a new type with an unknown size and alignment.
This is typically used for type safety when interacting with C code that does not expose struct details. Example:
{#code_begin|test_err|expected type '&Derp', found '&Wat'#} const Derp = @OpaqueType(); const Wat = @OpaqueType(); extern fn bar(d: &Derp); export fn foo(w: &Wat) { bar(w); } test "call foo" { foo(undefined); } {#code_end#} {#header_close#} {#header_open|@panic#}@panic(message: []const u8) -> noreturn
Invokes the panic handler function. By default the panic handler function
calls the public panic
function exposed in the root source file, or
if there is not one specified, invokes the one provided in std/special/panic.zig
.
Generally it is better to use @import("std").debug.panic
.
However, @panic
can be useful for 2 scenarios:
@ptrCast(comptime DestType: type, value: var) -> DestType
Converts a pointer of one type to a pointer of another type.
{#header_close#} {#header_open|@ptrToInt#}@ptrToInt(value: var) -> usize
Converts value
to a usize
which is the address of the pointer. value
can be one of these types:
&T
?&T
fn()
?fn()
To convert the other way, use @intToPtr
{#header_close#} {#header_open|@rem#}@rem(numerator: T, denominator: T) -> T
Remainder division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
.
@rem(-5, 3) == -2
@divTrunc(a, b) + @rem(a, b) == a
For a function that returns an error code, see @import("std").math.rem
.
@returnAddress()
This function returns a pointer to the return address of the current stack frame.
The implications of this are target specific and not consistent across all platforms.
This function is only valid within function scope.
{#header_close#} {#header_open|@setCold#}@setCold(is_cold: bool)
Tells the optimizer that a function is rarely called.
{#header_close#} {#header_open|@setDebugSafety#}@setDebugSafety(scope, safety_on: bool)
Sets whether debug safety checks are on for a given scope.
{#header_close#} {#header_open|@setEvalBranchQuota#}@setEvalBranchQuota(new_quota: usize)
Changes the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.
If the new_quota
is smaller than the default quota (1000
) or
a previously explicitly set quota, it is ignored.
Example:
{#code_begin|test_err|evaluation exceeded 1000 backwards branches#} test "foo" { comptime { var i = 0; while (i < 1001) : (i += 1) {} } } {#code_end#}Now we use @setEvalBranchQuota
:
@setFloatMode(scope, mode: @import("builtin").FloatMode)
Sets the floating point mode for a given scope. Possible values are:
{#code_begin|syntax#} pub const FloatMode = enum { Optimized, Strict, }; {#code_end#}Optimized
(default) - Floating point operations may do all of the following:
-ffast-math
in GCC.
Strict
- Floating point operations follow strict IEEE compliance.
@setGlobalLinkage(global_variable_name, comptime linkage: GlobalLinkage)
GlobalLinkage
can be found with @import("builtin").GlobalLinkage
.
@setGlobalSection(global_variable_name, comptime section_name: []const u8) -> bool
Puts the global variable in the specified section.
{#header_close#} {#header_open|@shlExact#}@shlExact(value: T, shift_amt: Log2T) -> T
Performs the left shift operation (<<
). Caller guarantees
that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
@shlWithOverflow(comptime T: type, a: T, shift_amt: Log2T, result: &T) -> bool
Performs *result = a << b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
@shrExact(value: T, shift_amt: Log2T) -> T
Performs the right shift operation (>>
). Caller guarantees
that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
@sizeOf(comptime T: type) -> (number literal)
This function returns the number of bytes it takes to store T
in memory.
The result is a target-specific compile time constant.
{#header_close#} {#header_open|@subWithOverflow#}@subWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a - b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
@truncate(comptime T: type, integer) -> T
This function truncates bits from an integer type, resulting in a smaller integer type.
The following produces a crash in debug mode and undefined behavior in release mode:
const a: u16 = 0xabcd;
const b: u8 = u8(a);
However this is well defined and working code:
const a: u16 = 0xabcd;
const b: u8 = @truncate(u8, a);
// b is now 0xcd
This function always truncates the significant bits of the integer, regardless of endianness on the target platform.
{#header_close#} {#header_open|@typeId#}@typeId(comptime T: type) -> @import("builtin").TypeId
Returns which kind of type something is. Possible values:
{#code_begin|syntax#} pub const TypeId = enum { Type, Void, Bool, NoReturn, Int, Float, Pointer, Array, Struct, FloatLiteral, IntLiteral, UndefinedLiteral, NullLiteral, Nullable, ErrorUnion, Error, Enum, Union, Fn, Namespace, Block, BoundFn, ArgTuple, Opaque, }; {#code_end#} {#header_close#} {#header_open|@typeName#}@typeName(T: type) -> []u8
This function returns the string representation of a type.
{#header_close#} {#header_open|@typeOf#}@typeOf(expression) -> type
This function returns a compile-time constant, which is the type of the expression passed as an argument. The expression is evaluated.
{#header_close#} {#header_close#} {#header_open|Build Mode#}Zig has three build modes:
To add standard build options to a build.zig
file:
This causes these options to be available:
-Drelease-safe=(bool) optimizations on and safety on
-Drelease-fast=(bool) optimizations on and safety off
{#header_open|Debug#}
$ zig build-exe example.zig
$ zig build-exe example.zig --release-fast
$ zig build-exe example.zig --release-safe
Zig has many instances of undefined behavior. If undefined behavior is
detected at compile-time, Zig emits an error. Most undefined behavior that
cannot be detected at compile-time can be detected at runtime. In these cases,
Zig has safety checks. Safety checks can be disabled on a per-block basis
with @setDebugSafety
. The ReleaseFast
build mode disables all safety checks in order to facilitate optimizations.
When a safety check fails, Zig crashes with a stack trace, like this:
{#code_begin|test_err|reached unreachable code#} test "safety check" { unreachable; } {#code_end#} {#header_open|Reaching Unreachable Code#}At compile-time:
{#code_begin|test_err|unable to evaluate constant expression#} comptime { assert(false); } fn assert(ok: bool) { if (!ok) unreachable; // assertion failure } {#code_end#}At runtime crashes with the message reached unreachable code
and a stack trace.
At compile-time:
{#code_begin|test_err|index 5 outside array of size 5#} comptime { const array = "hello"; const garbage = array[5]; } {#code_end#}At runtime crashes with the message index out of bounds
and a stack trace.
At compile-time:
{#code_begin|test_err|attempt to cast negative value to unsigned integer#} comptime { const value: i32 = -1; const unsigned = u32(value); } {#code_end#}At runtime crashes with the message attempt to cast negative value to unsigned integer
and a stack trace.
If you are trying to obtain the maximum value of an unsigned integer, use @maxValue(T)
,
where T
is the integer type, such as u32
.
At compile-time:
{#code_begin|test_err|cast from 'u16' to 'u8' truncates bits#} comptime { const spartan_count: u16 = 300; const byte = u8(spartan_count); } {#code_end#}At runtime crashes with the message integer cast truncated bits
and a stack trace.
If you are trying to truncate bits, use @truncate(T, value)
,
where T
is the integer type, such as u32
, and value
is the value you want to truncate.
The following operators can cause integer overflow:
+
(addition)-
(subtraction)-
(negation)*
(multiplication)/
(division)@divTrunc
(division)@divFloor
(division)@divExact
(division)Example with addition at compile-time:
{#code_begin|test_err|operation caused overflow#} comptime { var byte: u8 = 255; byte += 1; } {#code_end#}At runtime crashes with the message integer overflow
and a stack trace.
These functions provided by the standard library return possible errors.
@import("std").math.add
@import("std").math.sub
@import("std").math.mul
@import("std").math.divTrunc
@import("std").math.divFloor
@import("std").math.divExact
@import("std").math.shl
Example of catching an overflow for addition:
{#code_begin|exe_err#} const math = @import("std").math; const warn = @import("std").debug.warn; pub fn main() -> %void { var byte: u8 = 255; byte = if (math.add(u8, byte, 1)) |result| result else |err| { warn("unable to add one: {}\n", @errorName(err)); return err; }; warn("result: {}\n", byte); } {#code_end#} {#header_close#} {#header_open|Builtin Overflow Functions#}
These builtins return a bool
of whether or not overflow
occurred, as well as returning the overflowed bits:
@addWithOverflow
@subWithOverflow
@mulWithOverflow
@shlWithOverflow
Example of @addWithOverflow
:
These operations have guaranteed wraparound semantics.
+%
(wraparound addition)-%
(wraparound subtraction)-%
(wraparound negation)*%
(wraparound multiplication)At compile-time:
{#code_begin|test_err|operation caused overflow#} comptime { const x = @shlExact(u8(0b01010101), 2); } {#code_end#}At runtime crashes with the message left shift overflowed bits
and a stack trace.
At compile-time:
{#code_begin|test_err|exact shift shifted out 1 bits#} comptime { const x = @shrExact(u8(0b10101010), 2); } {#code_end#}At runtime crashes with the message right shift overflowed bits
and a stack trace.
At compile-time:
{#code_begin|test_err|division by zero#} comptime { const a: i32 = 1; const b: i32 = 0; const c = a / b; } {#code_end#}At runtime crashes with the message division by zero
and a stack trace.
At compile-time:
{#code_begin|test_err|division by zero#} comptime { const a: i32 = 10; const b: i32 = 0; const c = a % b; } {#code_end#}At runtime crashes with the message remainder division by zero
and a stack trace.
TODO
{#header_close#} {#header_open|Slice Widen Remainder#}TODO
{#header_close#} {#header_open|Attempt to Unwrap Null#}At compile-time:
{#code_begin|test_err|unable to unwrap null#} comptime { const nullable_number: ?i32 = null; const number = ??nullable_number; } {#code_end#}At runtime crashes with the message attempt to unwrap null
and a stack trace.
One way to avoid this crash is to test for null instead of assuming non-null, with
the if
expression:
At compile-time:
{#code_begin|test_err|unable to unwrap error 'UnableToReturnNumber'#} comptime { const number = getNumberOrFail() catch unreachable; } error UnableToReturnNumber; fn getNumberOrFail() -> %i32 { return error.UnableToReturnNumber; } {#code_end#}At runtime crashes with the message attempt to unwrap error: ErrorCode
and a stack trace.
One way to avoid this crash is to test for an error instead of assuming a successful result, with
the if
expression:
At compile-time:
{#code_begin|test_err|integer value 11 represents no error#} error AnError; comptime { const err = error.AnError; const number = u32(err) + 10; const invalid_err = error(number); } {#code_end#}At runtime crashes with the message invalid error code
and a stack trace.
TODO
{#header_close#} {#header_open|Incorrect Pointer Alignment#}TODO
{#header_close#} {#header_open|Wrong Union Field Access#}TODO
{#header_close#} {#header_close#} {#header_open|Memory#}TODO: explain no default allocator in zig
TODO: show how to use the allocator interface
TODO: mention debug allocator
TODO: importance of checking for allocation failure
TODO: mention overcommit and the OOM Killer
TODO: mention recursion
{#see_also|Pointers#} {#header_close#} {#header_open|Compile Variables#}
Compile variables are accessible by importing the "builtin"
package,
which the compiler makes available to every Zig source file. It contains
compile-time constants such as the current target, endianness, and release mode.
Example of what is imported with @import("builtin")
:
TODO: explain how root source file finds other files
TODO: pub fn main
TODO: pub fn panic
TODO: if linking with libc you can use export fn main
TODO: order independent top level declarations
TODO: lazy analysis
TODO: using comptime { _ = @import() }
{#header_close#} {#header_open|Zig Test#}TODO: basic usage
TODO: lazy analysis
TODO: --test-filter
TODO: --test-name-prefix
TODO: testing in releasefast and releasesafe mode. assert still works
{#header_close#} {#header_open|Zig Build System#}TODO: explain purpose, it's supposed to replace make/cmake
TODO: example of building a zig executable
TODO: example of building a C library
{#header_close#} {#header_open|C#}Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.
There are a few ways that Zig facilitates C interop.
{#header_open|C Type Primitives#}These have guaranteed C ABI compatibility and can be used like any other type.
c_short
c_ushort
c_int
c_uint
c_long
c_ulong
c_longlong
c_ulonglong
c_longdouble
c_void
The @cImport
builtin function can be used
to directly import symbols from .h files:
The @cImport
function takes an expression as a parameter.
This expression is evaluated at compile-time and is used to control
preprocessor directives and include multiple .h files:
You can mix Zig object files with any other object files that respect the C ABI. Example:
base64.zig
{#code_begin|syntax#} const base64 = @import("std").base64; export fn decode_base_64(dest_ptr: &u8, dest_len: usize, source_ptr: &const u8, source_len: usize) -> usize { const src = source_ptr[0..source_len]; const dest = dest_ptr[0..dest_len]; const base64_decoder = base64.standard_decoder_unsafe; const decoded_size = base64_decoder.calcSize(src); base64_decoder.decode(dest[0..decoded_size], src); return decoded_size; } {#code_end#}test.c
// This header is generated by zig from base64.zig
#include "base64.h"
#include <string.h>
#include <stdio.h>
int main(int argc, char **argv) {
const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz";
char buf[200];
size_t len = decode_base_64(buf, 200, encoded, strlen(encoded));
buf[len] = 0;
puts(buf);
return 0;
}
build.zig
{#code_begin|syntax#} const Builder = @import("std").build.Builder; pub fn build(b: &Builder) -> %void { const obj = b.addObject("base64", "base64.zig"); const exe = b.addCExecutable("test"); exe.addCompileFlags([][]const u8 { "-std=c99", }); exe.addSourceFile("test.c"); exe.addObject(obj); exe.setOutputPath("."); b.default_step.dependOn(&exe.step); } {#code_end#} {#header_close#} {#header_open|Terminal#}$ zig build
$ ./test
all your base are belong to us
{#see_also|Targets|Zig Build System#}
{#header_close#}
{#header_close#}
{#header_open|Targets#}
Zig supports generating code for all targets that LLVM supports. Here is
what it looks like to execute zig targets
on a Linux x86_64
computer:
$ zig targets
Architectures:
armv8_2a
armv8_1a
armv8
armv8r
armv8m_baseline
armv8m_mainline
armv7
armv7em
armv7m
armv7s
armv7k
armv7ve
armv6
armv6m
armv6k
armv6t2
armv5
armv5te
armv4t
armeb
aarch64
aarch64_be
avr
bpfel
bpfeb
hexagon
mips
mipsel
mips64
mips64el
msp430
nios2
powerpc
powerpc64
powerpc64le
r600
amdgcn
riscv32
riscv64
sparc
sparcv9
sparcel
s390x
tce
tcele
thumb
thumbeb
i386
x86_64 (native)
xcore
nvptx
nvptx64
le32
le64
amdil
amdil64
hsail
hsail64
spir
spir64
kalimbav3
kalimbav4
kalimbav5
shave
lanai
wasm32
wasm64
renderscript32
renderscript64
Operating Systems:
freestanding
ananas
cloudabi
dragonfly
freebsd
fuchsia
ios
kfreebsd
linux (native)
lv2
macosx
netbsd
openbsd
solaris
windows
haiku
minix
rtems
nacl
cnk
bitrig
aix
cuda
nvcl
amdhsa
ps4
elfiamcu
tvos
watchos
mesa3d
contiki
zen
Environments:
unknown
gnu (native)
gnuabi64
gnueabi
gnueabihf
gnux32
code16
eabi
eabihf
android
musl
musleabi
musleabihf
msvc
itanium
cygnus
amdopencl
coreclr
opencl
The Zig Standard Library (@import("std")
) has architecture, environment, and operating sytsem
abstractions, and thus takes additional work to support more platforms. It currently supports
Linux x86_64. Not all standard library code requires operating system abstractions, however,
so things such as generic data structures work an all above platforms.
These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.
{#header_open|Whitespace#}
Roughly speaking: camelCaseFunctionName
, TitleCaseTypeName
,
snake_case_variable_name
. More precisely:
x
is a struct
(or an alias of a struct
),
then x
should be TitleCase
.
x
otherwise identifies a type, x
should have snake_case
.
x
is callable, and x
's return type is type
, then x
should be TitleCase
.
x
is otherwise callable, then x
should be camelCase
.
x
should be snake_case
.
Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.
These are general rules of thumb; if it makes sense to do something different,
do what makes sense. For example, if there is an established convention such as
ENOENT
, follow the established convention.
See the Zig Standard Library for more examples.
{#header_close#} {#header_close#} {#header_open|Grammar#}Root = many(TopLevelItem) EOF
TopLevelItem = ErrorValueDecl | CompTimeExpression(Block) | TopLevelDecl | TestDecl
TestDecl = "test" String Block
TopLevelDecl = option("pub") (FnDef | ExternDecl | GlobalVarDecl | UseDecl)
ErrorValueDecl = "error" Symbol ";"
GlobalVarDecl = option("export") VariableDeclaration ";"
LocalVarDecl = option("comptime") VariableDeclaration
VariableDeclaration = ("var" | "const") Symbol option(":" TypeExpr) option("align" "(" Expression ")") option("section" "(" Expression ")") "=" Expression
ContainerMember = (ContainerField | FnDef | GlobalVarDecl)
ContainerField = Symbol option(":" PrefixOpExpression option("=" PrefixOpExpression ","
UseDecl = "use" Expression ";"
ExternDecl = "extern" option(String) (FnProto | VariableDeclaration) ";"
FnProto = option("nakedcc" | "stdcallcc" | "extern") "fn" option(Symbol) ParamDeclList option("align" "(" Expression ")") option("section" "(" Expression ")") option("->" TypeExpr)
FnDef = option("inline" | "export") FnProto Block
ParamDeclList = "(" list(ParamDecl, ",") ")"
ParamDecl = option("noalias" | "comptime") option(Symbol ":") (TypeExpr | "...")
Block = option(Symbol ":") "{" many(Statement) "}"
Statement = LocalVarDecl ";" | Defer(Block) | Defer(Expression) ";" | BlockExpression(Block) | Expression ";" | ";"
TypeExpr = PrefixOpExpression | "var"
BlockOrExpression = Block | Expression
Expression = TryExpression | ReturnExpression | BreakExpression | AssignmentExpression
AsmExpression = "asm" option("volatile") "(" String option(AsmOutput) ")"
AsmOutput = ":" list(AsmOutputItem, ",") option(AsmInput)
AsmInput = ":" list(AsmInputItem, ",") option(AsmClobbers)
AsmOutputItem = "[" Symbol "]" String "(" (Symbol | "->" TypeExpr) ")"
AsmInputItem = "[" Symbol "]" String "(" Expression ")"
AsmClobbers= ":" list(String, ",")
UnwrapExpression = BoolOrExpression (UnwrapNullable | UnwrapError) | BoolOrExpression
UnwrapNullable = "??" Expression
UnwrapError = "catch" option("|" Symbol "|") Expression
AssignmentExpression = UnwrapExpression AssignmentOperator UnwrapExpression | UnwrapExpression
AssignmentOperator = "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" | "^=" | "|=" | "*%=" | "+%=" | "-%="
BlockExpression(body) = Block | IfExpression(body) | IfErrorExpression(body) | TestExpression(body) | WhileExpression(body) | ForExpression(body) | SwitchExpression | CompTimeExpression(body)
CompTimeExpression(body) = "comptime" body
SwitchExpression = "switch" "(" Expression ")" "{" many(SwitchProng) "}"
SwitchProng = (list(SwitchItem, ",") | "else") "=>" option("|" option("*") Symbol "|") Expression ","
SwitchItem = Expression | (Expression "..." Expression)
ForExpression(body) = option(Symbol ":") option("inline") "for" "(" Expression ")" option("|" option("*") Symbol option("," Symbol) "|") body option("else" BlockExpression(body))
BoolOrExpression = BoolAndExpression "or" BoolOrExpression | BoolAndExpression
ReturnExpression = "return" option(Expression)
TryExpression = "try" Expression
BreakExpression = "break" option(":" Symbol) option(Expression)
Defer(body) = option("%") "defer" body
IfExpression(body) = "if" "(" Expression ")" body option("else" BlockExpression(body))
IfErrorExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body "else" "|" Symbol "|" BlockExpression(body)
TestExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body option("else" BlockExpression(body))
WhileExpression(body) = option(Symbol ":") option("inline") "while" "(" Expression ")" option("|" option("*") Symbol "|") option(":" "(" Expression ")") body option("else" option("|" Symbol "|") BlockExpression(body))
BoolAndExpression = ComparisonExpression "and" BoolAndExpression | ComparisonExpression
ComparisonExpression = BinaryOrExpression ComparisonOperator BinaryOrExpression | BinaryOrExpression
ComparisonOperator = "==" | "!=" | "<" | ">" | "<=" | ">="
BinaryOrExpression = BinaryXorExpression "|" BinaryOrExpression | BinaryXorExpression
BinaryXorExpression = BinaryAndExpression "^" BinaryXorExpression | BinaryAndExpression
BinaryAndExpression = BitShiftExpression "&" BinaryAndExpression | BitShiftExpression
BitShiftExpression = AdditionExpression BitShiftOperator BitShiftExpression | AdditionExpression
BitShiftOperator = "<<" | ">>" | "<<"
AdditionExpression = MultiplyExpression AdditionOperator AdditionExpression | MultiplyExpression
AdditionOperator = "+" | "-" | "++" | "+%" | "-%"
MultiplyExpression = CurlySuffixExpression MultiplyOperator MultiplyExpression | CurlySuffixExpression
CurlySuffixExpression = TypeExpr option(ContainerInitExpression)
MultiplyOperator = "*" | "/" | "%" | "**" | "*%"
PrefixOpExpression = PrefixOp PrefixOpExpression | SuffixOpExpression
SuffixOpExpression = PrimaryExpression option(FnCallExpression | ArrayAccessExpression | FieldAccessExpression | SliceExpression)
FieldAccessExpression = "." Symbol
FnCallExpression = "(" list(Expression, ",") ")"
ArrayAccessExpression = "[" Expression "]"
SliceExpression = "[" Expression ".." option(Expression) "]"
ContainerInitExpression = "{" ContainerInitBody "}"
ContainerInitBody = list(StructLiteralField, ",") | list(Expression, ",")
StructLiteralField = "." Symbol "=" Expression
PrefixOp = "!" | "-" | "~" | "*" | ("&" option("align" "(" Expression option(":" Integer ":" Integer) ")" ) option("const") option("volatile")) | "?" | "%" | "??" | "-%" | "try"
PrimaryExpression = Integer | Float | String | CharLiteral | KeywordLiteral | GroupedExpression | BlockExpression(BlockOrExpression) | Symbol | ("@" Symbol FnCallExpression) | ArrayType | FnProto | AsmExpression | ("error" "." Symbol) | ContainerDecl | ("continue" option(":" Symbol))
ArrayType : "[" option(Expression) "]" option("align" "(" Expression option(":" Integer ":" Integer) ")")) option("const") option("volatile") TypeExpr
GroupedExpression = "(" Expression ")"
KeywordLiteral = "true" | "false" | "null" | "undefined" | "error" | "this" | "unreachable"
ContainerDecl = option("extern" | "packed")
("struct" option(GroupedExpression) | "union" option("enum" option(GroupedExpression) | GroupedExpression) | ("enum" option(GroupedExpression)))
"{" many(ContainerMember) "}"
{#header_close#}
{#header_open|Zen#}
TODO: document changes from a31b23c46ba2a8c28df01adc1aa0b4d878b9a5cf (compile time reflection additions)
{#header_close#}