//! Ported from: //! //! https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c const std = @import("std"); const builtin = @import("builtin"); const arch = builtin.cpu.arch; const is_test = builtin.is_test; const common = @import("common.zig"); const normalize = common.normalize; const wideMultiply = common.wideMultiply; pub const panic = common.panic; comptime { if (common.want_aeabi) { @export(&__aeabi_ddiv, .{ .name = "__aeabi_ddiv", .linkage = common.linkage, .visibility = common.visibility }); } else { @export(&__divdf3, .{ .name = "__divdf3", .linkage = common.linkage, .visibility = common.visibility }); } } pub fn __divdf3(a: f64, b: f64) callconv(.C) f64 { return div(a, b); } fn __aeabi_ddiv(a: f64, b: f64) callconv(.AAPCS) f64 { return div(a, b); } inline fn div(a: f64, b: f64) f64 { const Z = std.meta.Int(.unsigned, 64); const SignedZ = std.meta.Int(.signed, 64); const significandBits = std.math.floatMantissaBits(f64); const exponentBits = std.math.floatExponentBits(f64); const signBit = (@as(Z, 1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const implicitBit = (@as(Z, 1) << significandBits); const quietBit = implicitBit >> 1; const significandMask = implicitBit - 1; const absMask = signBit - 1; const exponentMask = absMask ^ significandMask; const qnanRep = exponentMask | quietBit; const infRep = @as(Z, @bitCast(std.math.inf(f64))); const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent); const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent); const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit; var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask; var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) { const aAbs: Z = @as(Z, @bitCast(a)) & absMask; const bAbs: Z = @as(Z, @bitCast(b)) & absMask; // NaN / anything = qNaN if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit); // anything / NaN = qNaN if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit); if (aAbs == infRep) { // infinity / infinity = NaN if (bAbs == infRep) { return @bitCast(qnanRep); } // infinity / anything else = +/- infinity else { return @bitCast(aAbs | quotientSign); } } // anything else / infinity = +/- 0 if (bAbs == infRep) return @bitCast(quotientSign); if (aAbs == 0) { // zero / zero = NaN if (bAbs == 0) { return @bitCast(qnanRep); } // zero / anything else = +/- zero else { return @bitCast(quotientSign); } } // anything else / zero = +/- infinity if (bAbs == 0) return @bitCast(infRep | quotientSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand); if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale; // Align the significand of b as a Q31 fixed-point number in the range // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This // is accurate to about 3.5 binary digits. const q31b: u32 = @truncate(bSignificand >> 21); var recip32 = @as(u32, 0x7504f333) -% q31b; // Now refine the reciprocal estimate using a Newton-Raphson iteration: // // x1 = x0 * (2 - x0 * b) // // This doubles the number of correct binary digits in the approximation // with each iteration, so after three iterations, we have about 28 binary // digits of accuracy. var correction32: u32 = undefined; correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1); recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31); correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1); recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31); correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1); recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31); // recip32 might have overflowed to exactly zero in the preceding // computation if the high word of b is exactly 1.0. This would sabotage // the full-width final stage of the computation that follows, so we adjust // recip32 downward by one bit. recip32 -%= 1; // We need to perform one more iteration to get us to 56 binary digits; // The last iteration needs to happen with extra precision. const q63blo: u32 = @truncate(bSignificand << 11); var correction: u64 = undefined; var reciprocal: u64 = undefined; correction = ~(@as(u64, recip32) *% q31b +% (@as(u64, recip32) *% q63blo >> 32)) +% 1; const cHi: u32 = @truncate(correction >> 32); const cLo: u32 = @truncate(correction); reciprocal = @as(u64, recip32) *% cHi +% (@as(u64, recip32) *% cLo >> 32); // We already adjusted the 32-bit estimate, now we need to adjust the final // 64-bit reciprocal estimate downward to ensure that it is strictly smaller // than the infinitely precise exact reciprocal. Because the computation // of the Newton-Raphson step is truncating at every step, this adjustment // is small; most of the work is already done. reciprocal -%= 2; // The numerical reciprocal is accurate to within 2^-56, lies in the // interval [0.5, 1.0), and is strictly smaller than the true reciprocal // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b // in Q53 with the following properties: // // 1. q < a/b // 2. q is in the interval [0.5, 2.0) // 3. the error in q is bounded away from 2^-53 (actually, we have a // couple of bits to spare, but this is all we need). // We need a 64 x 64 multiply high to compute q, which isn't a basic // operation in C, so we need to be a little bit fussy. var quotient: Z = undefined; var quotientLo: Z = undefined; wideMultiply(Z, aSignificand << 2, reciprocal, "ient, "ientLo); // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). // In either case, we are going to compute a residual of the form // // r = a - q*b // // We know from the construction of q that r satisfies: // // 0 <= r < ulp(q)*b // // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we // already have the correct result. The exact halfway case cannot occur. // We also take this time to right shift quotient if it falls in the [1,2) // range and adjust the exponent accordingly. var residual: Z = undefined; if (quotient < (implicitBit << 1)) { residual = (aSignificand << 53) -% quotient *% bSignificand; quotientExponent -%= 1; } else { quotient >>= 1; residual = (aSignificand << 52) -% quotient *% bSignificand; } const writtenExponent = quotientExponent +% exponentBias; if (writtenExponent >= maxExponent) { // If we have overflowed the exponent, return infinity. return @bitCast(infRep | quotientSign); } else if (writtenExponent < 1) { if (writtenExponent == 0) { // Check whether the rounded result is normal. const round = @intFromBool((residual << 1) > bSignificand); // Clear the implicit bit. var absResult = quotient & significandMask; // Round. absResult += round; if ((absResult & ~significandMask) != 0) { // The rounded result is normal; return it. return @bitCast(absResult | quotientSign); } } // Flush denormals to zero. In the future, it would be nice to add // code to round them correctly. return @bitCast(quotientSign); } else { const round = @intFromBool((residual << 1) > bSignificand); // Clear the implicit bit var absResult = quotient & significandMask; // Insert the exponent absResult |= @as(Z, @bitCast(@as(SignedZ, writtenExponent))) << significandBits; // Round absResult +%= round; // Insert the sign and return return @bitCast(absResult | quotientSign); } } test { _ = @import("divdf3_test.zig"); }