mirror of
https://github.com/ziglang/zig.git
synced 2024-11-24 13:20:14 +00:00
Compare commits
7 Commits
58447423f2
...
e05d2026a2
Author | SHA1 | Date | |
---|---|---|---|
|
e05d2026a2 | ||
|
f845fa04a0 | ||
|
a5d4ad17b7 | ||
|
dafe1a910d | ||
|
acba2645f7 | ||
|
5f3a70ed5f | ||
|
dbba600c6d |
@ -607,6 +607,7 @@ pub const Type = union(enum) {
|
||||
/// The type of the sentinel is the element type of the pointer, which is
|
||||
/// the value of the `child` field in this struct. However there is no way
|
||||
/// to refer to that type here, so we use pointer to `anyopaque`.
|
||||
/// See `getSentinel` for an easier way to access this value.
|
||||
sentinel: ?*const anyopaque,
|
||||
|
||||
/// This data structure is used by the Zig language code generation and
|
||||
@ -617,6 +618,14 @@ pub const Type = union(enum) {
|
||||
Slice,
|
||||
C,
|
||||
};
|
||||
|
||||
/// Returns the sentinel value casted to the child type
|
||||
/// Asserts that `pointer.size` is `.Many` or `.Slice`
|
||||
/// and that `pointer.sentinel` is non-null
|
||||
pub fn getSentinel(pointer: Pointer) pointer.child {
|
||||
std.debug.assert(pointer.size == .Many or pointer.size == .Slice);
|
||||
return @as(*const pointer.child, @ptrCast(@alignCast(pointer.sentinel.?))).*;
|
||||
}
|
||||
};
|
||||
|
||||
/// This data structure is used by the Zig language code generation and
|
||||
@ -628,7 +637,14 @@ pub const Type = union(enum) {
|
||||
/// The type of the sentinel is the element type of the array, which is
|
||||
/// the value of the `child` field in this struct. However there is no way
|
||||
/// to refer to that type here, so we use pointer to `anyopaque`.
|
||||
/// See `getSentinel` for an easier way to access this value.
|
||||
sentinel: ?*const anyopaque,
|
||||
|
||||
/// Returns the sentinel value casted to the child type
|
||||
/// Asserts that `array.sentinel` is non-null
|
||||
pub fn getSentinel(array: Array) array.child {
|
||||
return @as(*const array.child, @ptrCast(@alignCast(array.sentinel.?))).*;
|
||||
}
|
||||
};
|
||||
|
||||
/// This data structure is used by the Zig language code generation and
|
||||
|
@ -669,7 +669,7 @@ fn mul(a: u8, b: u8) u8 {
|
||||
return @as(u8, @truncate(s));
|
||||
}
|
||||
|
||||
const cache_line_bytes = 64;
|
||||
const cache_line_bytes = std.atomic.cache_line;
|
||||
|
||||
inline fn sbox_lookup(sbox: *align(64) const [256]u8, idx0: u8, idx1: u8, idx2: u8, idx3: u8) [4]u8 {
|
||||
if (side_channels_mitigations == .none) {
|
||||
@ -683,8 +683,8 @@ inline fn sbox_lookup(sbox: *align(64) const [256]u8, idx0: u8, idx1: u8, idx2:
|
||||
const stride = switch (side_channels_mitigations) {
|
||||
.none => unreachable,
|
||||
.basic => sbox.len / 4,
|
||||
.medium => sbox.len / (sbox.len / cache_line_bytes) * 2,
|
||||
.full => sbox.len / (sbox.len / cache_line_bytes),
|
||||
.medium => @min(sbox.len, 2 * cache_line_bytes),
|
||||
.full => @min(sbox.len, cache_line_bytes),
|
||||
};
|
||||
const of0 = idx0 % stride;
|
||||
const of1 = idx1 % stride;
|
||||
@ -718,12 +718,11 @@ inline fn table_lookup(table: *align(64) const [4][256]u32, idx0: u8, idx1: u8,
|
||||
table[3][idx3],
|
||||
};
|
||||
} else {
|
||||
const table_bytes = @sizeOf(@TypeOf(table[0]));
|
||||
const stride = switch (side_channels_mitigations) {
|
||||
.none => unreachable,
|
||||
.basic => table[0].len / 4,
|
||||
.medium => table[0].len / (table_bytes / cache_line_bytes) * 2,
|
||||
.full => table[0].len / (table_bytes / cache_line_bytes),
|
||||
.medium => @max(1, @min(table[0].len, 2 * cache_line_bytes / 4)),
|
||||
.full => @max(1, @min(table[0].len, cache_line_bytes / 4)),
|
||||
};
|
||||
const of0 = idx0 % stride;
|
||||
const of1 = idx1 % stride;
|
||||
|
@ -4,6 +4,7 @@ const assert = std.debug.assert;
|
||||
const math = std.math;
|
||||
const mem = std.mem;
|
||||
const native_endian = builtin.cpu.arch.endian();
|
||||
const mode = @import("builtin").mode;
|
||||
|
||||
/// The Keccak-f permutation.
|
||||
pub fn KeccakF(comptime f: u11) type {
|
||||
@ -199,6 +200,46 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type
|
||||
comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid state size
|
||||
comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size
|
||||
|
||||
// In debug mode, track transitions to prevent insecure ones.
|
||||
const Op = enum { uninitialized, initialized, updated, absorb, squeeze };
|
||||
const TransitionTracker = if (mode == .Debug) struct {
|
||||
op: Op = .uninitialized,
|
||||
|
||||
fn to(tracker: *@This(), next_op: Op) void {
|
||||
switch (next_op) {
|
||||
.updated => {
|
||||
switch (tracker.op) {
|
||||
.uninitialized => @panic("cannot permute before initializing"),
|
||||
else => {},
|
||||
}
|
||||
},
|
||||
.absorb => {
|
||||
switch (tracker.op) {
|
||||
.squeeze => @panic("cannot absorb right after squeezing"),
|
||||
else => {},
|
||||
}
|
||||
},
|
||||
.squeeze => {
|
||||
switch (tracker.op) {
|
||||
.uninitialized => @panic("cannot squeeze before initializing"),
|
||||
.initialized => @panic("cannot squeeze right after initializing"),
|
||||
.absorb => @panic("cannot squeeze right after absorbing"),
|
||||
else => {},
|
||||
}
|
||||
},
|
||||
.uninitialized => @panic("cannot transition to uninitialized"),
|
||||
.initialized => {},
|
||||
}
|
||||
tracker.op = next_op;
|
||||
}
|
||||
} else struct {
|
||||
// No-op in non-debug modes.
|
||||
inline fn to(tracker: *@This(), next_op: Op) void {
|
||||
_ = tracker; // no-op
|
||||
_ = next_op; // no-op
|
||||
}
|
||||
};
|
||||
|
||||
return struct {
|
||||
const Self = @This();
|
||||
|
||||
@ -215,67 +256,108 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type
|
||||
|
||||
st: KeccakF(f) = .{},
|
||||
|
||||
transition: TransitionTracker = .{},
|
||||
|
||||
/// Absorb a slice of bytes into the sponge.
|
||||
pub fn absorb(self: *Self, bytes_: []const u8) void {
|
||||
var bytes = bytes_;
|
||||
pub fn absorb(self: *Self, bytes: []const u8) void {
|
||||
self.transition.to(.absorb);
|
||||
var i: usize = 0;
|
||||
if (self.offset > 0) {
|
||||
const left = @min(rate - self.offset, bytes.len);
|
||||
@memcpy(self.buf[self.offset..][0..left], bytes[0..left]);
|
||||
self.offset += left;
|
||||
if (left == bytes.len) return;
|
||||
if (self.offset == rate) {
|
||||
self.offset = 0;
|
||||
self.st.addBytes(self.buf[0..]);
|
||||
self.st.permuteR(rounds);
|
||||
self.offset = 0;
|
||||
}
|
||||
if (left == bytes.len) return;
|
||||
bytes = bytes[left..];
|
||||
i = left;
|
||||
}
|
||||
while (bytes.len >= rate) {
|
||||
self.st.addBytes(bytes[0..rate]);
|
||||
while (i + rate < bytes.len) : (i += rate) {
|
||||
self.st.addBytes(bytes[i..][0..rate]);
|
||||
self.st.permuteR(rounds);
|
||||
bytes = bytes[rate..];
|
||||
}
|
||||
if (bytes.len > 0) {
|
||||
@memcpy(self.buf[0..bytes.len], bytes);
|
||||
self.offset = bytes.len;
|
||||
const left = bytes.len - i;
|
||||
if (left > 0) {
|
||||
@memcpy(self.buf[0..left], bytes[i..][0..left]);
|
||||
}
|
||||
self.offset = left;
|
||||
}
|
||||
|
||||
/// Initialize the state from a slice of bytes.
|
||||
pub fn init(bytes: [f / 8]u8) Self {
|
||||
return .{ .st = KeccakF(f).init(bytes) };
|
||||
pub fn init(bytes: [f / 8]u8, delim: u8) Self {
|
||||
var st = Self{ .st = KeccakF(f).init(bytes), .delim = delim };
|
||||
st.transition.to(.initialized);
|
||||
return st;
|
||||
}
|
||||
|
||||
/// Permute the state
|
||||
pub fn permute(self: *Self) void {
|
||||
if (mode == .Debug) {
|
||||
if (self.transition.op == .absorb and self.offset > 0) {
|
||||
@panic("cannot permute with pending input - call fillBlock() or pad() instead");
|
||||
}
|
||||
}
|
||||
self.transition.to(.updated);
|
||||
self.st.permuteR(rounds);
|
||||
self.offset = 0;
|
||||
}
|
||||
|
||||
/// Align the input to the rate boundary.
|
||||
/// Align the input to the rate boundary and permute.
|
||||
pub fn fillBlock(self: *Self) void {
|
||||
self.transition.to(.absorb);
|
||||
self.st.addBytes(self.buf[0..self.offset]);
|
||||
self.st.permuteR(rounds);
|
||||
self.offset = 0;
|
||||
self.transition.to(.updated);
|
||||
}
|
||||
|
||||
/// Mark the end of the input.
|
||||
pub fn pad(self: *Self) void {
|
||||
self.transition.to(.absorb);
|
||||
self.st.addBytes(self.buf[0..self.offset]);
|
||||
if (self.offset == rate) {
|
||||
self.st.permuteR(rounds);
|
||||
self.offset = 0;
|
||||
}
|
||||
self.st.addByte(self.delim, self.offset);
|
||||
self.st.addByte(0x80, rate - 1);
|
||||
self.st.permuteR(rounds);
|
||||
self.offset = 0;
|
||||
self.transition.to(.updated);
|
||||
}
|
||||
|
||||
/// Squeeze a slice of bytes from the sponge.
|
||||
/// The function can be called multiple times.
|
||||
pub fn squeeze(self: *Self, out: []u8) void {
|
||||
self.transition.to(.squeeze);
|
||||
var i: usize = 0;
|
||||
while (i < out.len) : (i += rate) {
|
||||
const left = @min(rate, out.len - i);
|
||||
self.st.extractBytes(out[i..][0..left]);
|
||||
if (self.offset == rate) {
|
||||
self.st.permuteR(rounds);
|
||||
} else if (self.offset > 0) {
|
||||
@branchHint(.unlikely);
|
||||
var buf: [rate]u8 = undefined;
|
||||
self.st.extractBytes(buf[0..]);
|
||||
const left = @min(rate - self.offset, out.len);
|
||||
@memcpy(out[0..left], buf[self.offset..][0..left]);
|
||||
self.offset += left;
|
||||
if (left == out.len) return;
|
||||
if (self.offset == rate) {
|
||||
self.offset = 0;
|
||||
self.st.permuteR(rounds);
|
||||
}
|
||||
i = left;
|
||||
}
|
||||
while (i + rate < out.len) : (i += rate) {
|
||||
self.st.extractBytes(out[i..][0..rate]);
|
||||
self.st.permuteR(rounds);
|
||||
}
|
||||
const left = out.len - i;
|
||||
if (left > 0) {
|
||||
self.st.extractBytes(out[i..][0..left]);
|
||||
}
|
||||
self.offset = left;
|
||||
}
|
||||
};
|
||||
}
|
||||
@ -298,3 +380,26 @@ test "Keccak-f800" {
|
||||
};
|
||||
try std.testing.expectEqualSlices(u32, &st.st, &expected);
|
||||
}
|
||||
|
||||
test "squeeze" {
|
||||
var st = State(800, 256, 22).init([_]u8{0x80} ** 100, 0x01);
|
||||
|
||||
var out0: [15]u8 = undefined;
|
||||
var out1: [out0.len]u8 = undefined;
|
||||
st.permute();
|
||||
var st0 = st;
|
||||
st0.squeeze(out0[0..]);
|
||||
var st1 = st;
|
||||
st1.squeeze(out1[0 .. out1.len / 2]);
|
||||
st1.squeeze(out1[out1.len / 2 ..]);
|
||||
try std.testing.expectEqualSlices(u8, &out0, &out1);
|
||||
|
||||
var out2: [100]u8 = undefined;
|
||||
var out3: [out2.len]u8 = undefined;
|
||||
var st2 = st;
|
||||
st2.squeeze(out2[0..]);
|
||||
var st3 = st;
|
||||
st3.squeeze(out3[0 .. out2.len / 2]);
|
||||
st3.squeeze(out3[out2.len / 2 ..]);
|
||||
try std.testing.expectEqualSlices(u8, &out2, &out3);
|
||||
}
|
||||
|
@ -48,7 +48,8 @@ fn read(ma: *MemoryAccessor, address: usize, buf: []u8) bool {
|
||||
switch (linux.E.init(bytes_read)) {
|
||||
.SUCCESS => return bytes_read == buf.len,
|
||||
.FAULT => return false,
|
||||
.INVAL, .PERM, .SRCH => unreachable, // own pid is always valid
|
||||
.INVAL, .SRCH => unreachable, // own pid is always valid
|
||||
.PERM => {}, // Known to happen in containers.
|
||||
.NOMEM => {},
|
||||
.NOSYS => {}, // QEMU is known not to implement this syscall.
|
||||
else => unreachable, // unexpected
|
||||
|
@ -312,18 +312,29 @@ pub fn create(arena: Allocator, options: CreateOptions) !*Package.Module {
|
||||
if (!options.global.use_llvm) break :b null;
|
||||
|
||||
var buf = std.ArrayList(u8).init(arena);
|
||||
for (target.cpu.arch.allFeaturesList(), 0..) |feature, index_usize| {
|
||||
const index = @as(std.Target.Cpu.Feature.Set.Index, @intCast(index_usize));
|
||||
const is_enabled = target.cpu.features.isEnabled(index);
|
||||
var disabled_features = std.ArrayList(u8).init(arena);
|
||||
defer disabled_features.deinit();
|
||||
|
||||
// Append disabled features after enabled ones, so that their effects aren't overwritten.
|
||||
for (target.cpu.arch.allFeaturesList()) |feature| {
|
||||
if (feature.llvm_name) |llvm_name| {
|
||||
const plus_or_minus = "-+"[@intFromBool(is_enabled)];
|
||||
try buf.ensureUnusedCapacity(2 + llvm_name.len);
|
||||
buf.appendAssumeCapacity(plus_or_minus);
|
||||
buf.appendSliceAssumeCapacity(llvm_name);
|
||||
buf.appendSliceAssumeCapacity(",");
|
||||
const is_enabled = target.cpu.features.isEnabled(feature.index);
|
||||
|
||||
if (is_enabled) {
|
||||
try buf.ensureUnusedCapacity(2 + llvm_name.len);
|
||||
buf.appendAssumeCapacity('+');
|
||||
buf.appendSliceAssumeCapacity(llvm_name);
|
||||
buf.appendAssumeCapacity(',');
|
||||
} else {
|
||||
try disabled_features.ensureUnusedCapacity(2 + llvm_name.len);
|
||||
disabled_features.appendAssumeCapacity('-');
|
||||
disabled_features.appendSliceAssumeCapacity(llvm_name);
|
||||
disabled_features.appendAssumeCapacity(',');
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
try buf.appendSlice(disabled_features.items);
|
||||
if (buf.items.len == 0) break :b "";
|
||||
assert(std.mem.endsWith(u8, buf.items, ","));
|
||||
buf.items[buf.items.len - 1] = 0;
|
||||
|
@ -35076,6 +35076,7 @@ fn resolvePeerTypesInner(
|
||||
|
||||
ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const;
|
||||
ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile;
|
||||
ptr_info.flags.is_allowzero = ptr_info.flags.is_allowzero or peer_info.flags.is_allowzero;
|
||||
|
||||
const peer_sentinel: InternPool.Index = switch (peer_info.flags.size) {
|
||||
.One => switch (ip.indexToKey(peer_info.child)) {
|
||||
|
@ -2200,39 +2200,77 @@ test "peer type resolution: pointer attributes are combined correctly" {
|
||||
var buf_a align(4) = "foo".*;
|
||||
var buf_b align(4) = "bar".*;
|
||||
var buf_c align(4) = "baz".*;
|
||||
var buf_d align(4) = "qux".*;
|
||||
|
||||
const a: [*:0]align(4) const u8 = &buf_a;
|
||||
const b: *align(2) volatile [3:0]u8 = &buf_b;
|
||||
const c: [*:0]align(4) u8 = &buf_c;
|
||||
const d: [*:0]allowzero align(4) u8 = &buf_d;
|
||||
|
||||
comptime assert(@TypeOf(a, b, c) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, c, b) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, a, c) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, c, a) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, a, b) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, b, a) == [*:0]align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, b, c, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, b, d, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, c, b, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, c, d, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, d, b, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(a, d, c, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
|
||||
comptime assert(@TypeOf(b, a, c, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, a, d, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, c, a, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, c, d, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, d, c, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(b, d, a, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
|
||||
comptime assert(@TypeOf(c, a, b, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, a, d, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, b, a, d) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, b, d, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, d, b, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(c, d, a, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
|
||||
comptime assert(@TypeOf(d, a, b, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(d, a, c, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(d, b, a, c) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(d, b, c, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(d, c, b, a) == [*:0]allowzero align(2) const volatile u8);
|
||||
comptime assert(@TypeOf(d, c, a, b) == [*:0]allowzero align(2) const volatile u8);
|
||||
|
||||
var x: u8 = 0;
|
||||
_ = &x;
|
||||
const r1 = switch (x) {
|
||||
0 => a,
|
||||
1 => b,
|
||||
else => c,
|
||||
2 => c,
|
||||
else => d,
|
||||
};
|
||||
const r2 = switch (x) {
|
||||
0 => b,
|
||||
1 => a,
|
||||
else => c,
|
||||
2 => c,
|
||||
else => d,
|
||||
};
|
||||
const r3 = switch (x) {
|
||||
0 => c,
|
||||
1 => a,
|
||||
else => b,
|
||||
2 => b,
|
||||
else => d,
|
||||
};
|
||||
const r4 = switch (x) {
|
||||
0 => d,
|
||||
1 => a,
|
||||
2 => b,
|
||||
else => c,
|
||||
};
|
||||
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(r1)), "foo");
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(r2)), "bar");
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(r3)), "baz");
|
||||
const NonAllowZero = comptime blk: {
|
||||
var ti = @typeInfo(@TypeOf(r1, r2, r3, r4));
|
||||
ti.pointer.is_allowzero = false;
|
||||
break :blk @Type(ti);
|
||||
};
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(@as(NonAllowZero, @ptrCast(r1)))), "foo");
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(@as(NonAllowZero, @ptrCast(r2)))), "bar");
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(@as(NonAllowZero, @ptrCast(r3)))), "baz");
|
||||
try expectEqualSlices(u8, std.mem.span(@volatileCast(@as(NonAllowZero, @ptrCast(r4)))), "qux");
|
||||
}
|
||||
|
||||
test "peer type resolution: arrays of compatible types" {
|
||||
|
Loading…
Reference in New Issue
Block a user