`getExternalExecutor` is moved from `std.zig.CrossTarget` to
`std.zig.system.NativeTargetInfo.getExternalExecutor`.
The function also now communicates a bit more information about *why*
the host is unable to execute a binary. The CLI is updated to report
this information in a useful manner.
`getExternalExecutor` is also improved to detect such patterns as:
* x86_64 is able to execute x86 binaries
* aarch64 is able to execute arm binaries
* etc.
Added qemu-hexagon support to `getExternalExecutor`.
`std.Target.canExecBinaries` of is removed; callers should use the more
powerful `getExternalExecutor` instead.
Now that `zig test` tries to run the resulting binary no matter what,
this commit has a follow-up change to the build system and docgen to
utilize the `getExternalExecutor` function and pass `--test-no-exec`
in some cases to avoid getting the error.
Additionally:
* refactor: extract NativePaths and NativeTargetInfo into their own
files named after the structs.
* small improvement to langref to reduce the complexity of the `callconv`
expression in a couple examples.
- use Bit Twiddling Hacks: Compute parity in parallel
- test cases derived from popcount.zig
- tests: compare naive approach 10_000 times with random numbers created
from naive seed 42
- compiler_rt.zig: sort by LLVM builtin order and add comments to improve structure
See #1290
- apply simpler approach than LLVM for __popcountdi2
taken from The Art of Computer Programming and generalized
- rename popcountdi2.zig to popcount.zig
- test cases derived from popcountdi2_test.zig
- tests: compare naive approach 10_000 times with
random numbers created from naive seed 42
See #1290
Add additional search paths pointing at homebrew prefixes as Apple
doesn't ship a static libncurses for linking - only a stub for dynamic
linking `libncurses.tbd`.
* wasm: Move wasm's codegen to arch/wasm/CodeGen.zig
* wasm: Define Wasm's Mir
This declares the initial most-used instructions for wasm as
well as the data that represents them.
TODO: Add binary operand opcodes.
By re-using the wasm opcode values, we can emit each opcode very easily
by simply using `@enumToInt()`. However, this poses a possible problem:
If we use all of wasm's opcodes, it leaves us no room to use synthetic opcodes such as debugging instructions.
We could use reserved opcodes, but the wasm spec may use them at some point.
TODO: Check if we should perhaps use a 16bit tag where the highest bits are used for synthetic opcodes.
* wasm: Define basic Emit structure
* wasm: Implement corresponding Emit functions for MIR
* wasm: Initial lowering to MIR
- This implements lowering to MIR from AIR for storing and loading of locals
as well as emitting immediates.
- Relocating function indexes has been simplified a lot as well as we no
longer need to patch offsets and we write a relocatable value instead.
- Locals are now emitted at the beginning of the function section entry
meaning all offsets we generate are stable.
* wasm: Lower all AIR instructions to MIR
* wasm: Implement remaining MIR instructions
* wasm: Fix function relocations
* wasm: Get all tests working
* wasm: Make `Data` 4 bytes instead of 8.
- 64bit immediates are now stored in 2 seperate u32's.
- 64bit floats are now stored in 2 seperate u32's.
- `mem_arg` is now stored as a seperate payload in extra.
Systems with multiple LLVM toolchains installed (e.g. one globally and one
in $HOME/local) would get confused and fail to compile. Being explicit
about the version required will force CMake to find the right version of LLVM.
The main purpose of this branch is to explore avoiding the
`usingnamespace` feature of the zig language, specifically with regards
to `std.os` and related functionality.
If this experiment is successful, it will provide a data point on
whether or not it would be practical to entirely remove `usingnamespace`
from the language.
In this commit, `usingnamespace` has been completely eliminated from
the Linux x86_64 compilation path, aside from io_uring.
The behavior tests pass, however that's as far as this branch goes. It is
very breaking, and a lot more work is needed before it could be
considered mergeable. I wanted to put a pull requset up early so that
zig programmers have time to provide feedback.
This is progress towards closing #6600 since it clarifies where the
actual "owner" of each declaration is, and reduces the number of
different ways to import the same declarations.
One of the main organizational strategies used here is to do namespacing
with real namespaces (e.g. structs) rather than by having declarations
share a common prefix (the C strategy). It's no coincidence that
`usingnamespace` has similar semantics to `#include` and becomes much
less necessary when using proper namespaces.
The primary purpose of this change is to eliminate one usage of
`usingnamespace` in the standard library - specifically the usage for
errno values in `std.os.linux`.
This is accomplished by truncating the `E` prefix from error values, and
making errno a proper enum.
A similar strategy can be used to eliminate some other `usingnamespace`
sites in the std lib.
When using `build-exe` or `build-lib -dynamic`, `-fcompiler-rt` means building
compiler-rt into a static library and then linking it into the executable.
When using `build-lib`, `-fcompiler-rt` means building compiler-rt into an
object file and then adding it into the static archive.
Before this commit, when using `build-obj`, zig would build compiler-rt
into an object file, and then on ELF, use `lld -r` to merge it into the
main object file. Other linker backends of LLD do not support `-r` to
merge objects, so this failed with error messages for those targets.
Now, `-fcompiler-rt` when used with `build-obj` acts as if the user puts
`_ = @import("compiler_rt");` inside their root source file. The symbols
of compiler-rt go into the same compilation unit as the root source file.
This is hooked up for stage1 only for now. Once stage2 is capable of
building compiler-rt, it should be hooked up there as well.
This commit changes the AIR file and the documentation of the memory
layout. The actual work of modifying the surrounding code (in Sema and
codegen) is not yet done.
It makes sense to have them as a dependent type since they only ever
deal with TextBlocks. Simplify Relocations to rely on symbol indices
and symbol resolver rather than pointers.
* rename files to adhere to conventions
* remove unnecessary function / optionality
* fix merge conflict
* better panic message
* remove unnecessary TODO comment
* proper namespacing of declarations
* clean up documentation comments
* no copyright header needed for a brand new zig file that is not
copied from anywhere
After giving it more thought, it doesn't make sense to separate
the two structurally. Instead, there should be two constructors
for a Dylib struct: one from binary file, and the other from a stub
file. This cleans up a lot of code and opens the way for recursive
parsing of re-exports from a dylib which are a hard requirement for
native feel when linking frameworks.
Instead of trying to fit a stub file into the frame of a Dylib struct,
I think it makes more sense to keep them as separate entities with
possibly shared interface (which would be added in the future).
This cleaned up a lot of logic in Dylib as well as Stub. Also, while
here I've made creating actual *Symbols lazy in the sense Dylib and
Stub only store hash maps of symbol names that they expose but we
defer create and referencing given dylib/stub until link time when
a symbol is actually referenced. This should reduce memory usage
and speed things up a bit.
This breaking change disambiguates between overriding the lib dir when
performing an installation with the Zig Build System, and overriding the
lib dir that the Zig installation itself uses.
- deprecates `std.Thread.spinLoopHint` and moves it to `std.atomic.spinLoopHint`
- added an Atomic(T) generic wrapper type which replaces atomic.Bool and atomic.Int
- in Atomic(T), selectively expose member functions depending on T and include bitwise atomic methods when T is an Integer
- added fence() and compilerFence() to std.atomic
The same entrypoint supports the following commands:
* ar
* ranlib
* dlltool
* lib
For now, our strategy is to bundle the (renamed) `main()` function of
llvm-ar, same as our strategy for `zig clang`. However, as Zig matures,
a goal will be to replace the dependency on LLVM with our own
implementation of this tool, so that it is available in builds of zig
that do not have LLVM extensions enabled.
This commit also categorizes the subcommands into categories in the
--help menu.
* Extracts AstGen logic from ir.cpp into astgen.cpp. Reduces the
largest file of stage1 from 33,551 lines to 25,510.
* tokenizer: rework it completely to match the stage2 tokenizer logic.
They can now be maintained together; when one is changed, the other
can be changed in the same way.
- Each token now takes up 13 bytes instead of 64 bytes. The tokenizer
does not parse char literals, string literals, integer literals,
etc into meaningful data. Instead, that happens during parsing or
astgen.
- no longer store line offsets. Error messages scan source
files to find the line/column as needed (same as stage2).
- main loop: instead of checking the loop, handle a null byte
explicitly in the switch statements. This is a nice improvement
that we may want to backport to stage2.
- delete some dead tokens, artifacts of past syntax that no longer
exists.
* Parser: fix a TODO by parsing builtin functions as tokens rather than
`@` as a separate token. This is how stage2 does it.
* Remove some debugging infrastructure. These will need to be redone,
if at all, as the code migrates to match stage2.
- remove the ast_render code.
- remove the IR debugging stuff
- remove teh token printing code
We've settled on the nomenclature for the artifacts the compiler
pipeline produces:
1. Tokens
2. AST (Abstract Syntax Tree)
3. ZIR (Zig Intermediate Representation)
4. AIR (Analyzed Intermediate Representation)
5. Machine Code
Renaming `ir` identifiers to `air` will come with the inevitable
air-memory-layout branch that I plan to start after the 0.8.0 release.
Rename include dir to match the convention:
from `wasm32-wasi` to `wasm-wasi-musl`
Add building stubs which will be used to build and cache WASI
libc sysroot.
The support is minimalistic in the sense that we only support actual
dylib files and not stubs/tbds yet, and we also don't support re-exports
just yet.
Store only globals and undefs at the linker level, while all locals
stay scoped to the actual object file they were defined in. This is
fine since the relocations referencing locals will always be resolved
first using the local symbol table before checking for the reference
within the linker's global symbol table.
This also paves the way for proper symbol resolution from within static
and dynamic libraries.
Now that we ship our own linker for MachO by default in both stage1
and stage2, we need a way to enable logs for verbose debugging.
This commit adds `ZIG_ENABLE_LOGGING` cmake option which is equivalent
to stage2's `-Dlog` flag.
To enable it when building stage1 with cmake, add:
```
cmake .. -DZIG_ENABLE_LOGGING=on
```
new pipeline `BuildMacOS_arm64`
- `vmImage: 'macOS-10.15' `
new `macos_arm64_script`
- switch from using `make` to `ninja`
- select xcode 12.4
- set zig-cache env variables
- build host-zig binary with xcode, link against llvm for x86_64 (target macos 10.15)
- build arm64-zig binary with xcode and host-zig, link against llvm for arm64 (target macos 11.0)
- ad-hoc codesign arm64 binary with linker
- use host-zig for docgen
- use host-zig for experimental std lib docs
- sync final `release/` hierarchy with `linux_script`
- use gnu-tar for good-practices (set owner, set sort)
enhance `CMakeLists.txt`
- do not build `zig0` when cross-compiling
- disable `BYPRODUCTS` directive `zig1.o` to avoid `ninja` error
see #8265
Previously, there was an option ZIG_PREFER_LLVM_CONFIG which would
override the default of not using llvm-config when cross compiling.
That option is now removed in favor of the more powerful
ZIG_USE_LLVM_CONFIG which defaults to OFF for cross compiling and ON for
native compilation. The option overrides the default.
This will be used in zig-bootstrap to improve support for native builds.
Reverts bf642204b3 and uses a different
workaround, suggested by @LemonBoy.
There is either a compiler bug or a design flaw somewhere around here.
It does not have to block this branch, but I need to understand exactly
what's going on here and make it so that nobody ever has to run into
this problem again.
This type is not widely applicable enough to be a public part of the
public interface of the std.
The current implementation in only fully utilized by the zig fmt
implementation, which could benefit by even tighter integration as
will be demonstrated in the next commit. Therefore, move the current
io.AutoIndentingStream to lib/std/zig/render.zig.
The C backend of the self hosted compiler also use this type currently,
but it does not require anywhere near its full complexity. Therefore,
implement a greatly simplified version of this interface in
src/codegen/c.zig.
* move concurrency primitives that always operate on kernel threads to
the std.Thread namespace
* remove std.SpinLock. Nobody should use this in a non-freestanding
environment; the other primitives are always preferable. In
freestanding, it will be necessary to put custom spin logic in there,
so there are no use cases for a std lib version.
* move some std lib files to the top level fields convention
* add std.Thread.spinLoopHint
* add std.Thread.Condition
* add std.Thread.Semaphore
* new implementation of std.Thread.Mutex for Windows and non-pthreads Linux
* add std.Thread.RwLock
Implementations provided by @kprotty
restore "Comply with semantic versioning pre-release format"
restore "stage2: SemVer compliance for development builds"
restore "Remove 'g' prefix from commit hash in Zig semver"
This reverts commit d96d8639e5.
This reverts commit e8810f5794.
This reverts commit 9afe5859a3.
Example version: 0.8.0-dev.460+g81b343a16
From a semantic versioning perspective, development builds will now be
considered distinct from a tagged release. The number of commits added
since the last tag is included in the pre-release component.
Updates #6466
* split std.ResetEvent into:
- ResetEvent - requires init() at runtime and it can fail. Also
requires deinit().
- StaticResetEvent - can be statically initialized and requires no
deinitialization. Initialization cannot fail.
* the POSIX sem_t implementation can in fact fail on initialization
because it is allowed to be implemented as a file descriptor.
* Completely define, clarify, and explain in detail the semantics of
these APIs. Remove the `isSet` function.
* `ResetEvent.timedWait` returns an enum instead of a possible error.
* `ResetEvent.init` takes a pointer to the ResetEvent instead of
returning a copy.
* On Darwin, `ResetEvent` is implemented using Grand Central Dispatch,
which is exposed by libSystem.
stage2 changes:
* ThreadPool: use a single, pre-initialized `ResetEvent` per worker.
* WaitGroup: now requires init() and deinit() and init() can fail.
- Add a `reset` function.
- Compilation initializes one for the work queue in creation and
re-uses it for every update.
- Rename `stop` to `finish`.
- Simplify the implementation based on the usage pattern.
We generally get away with atomic primitives, however a lock is required
around the refresh function since it traverses the Node graph, and we
need to be sure no references to Nodes remain after end() is called.
restore cmake to be capable of figuring out the zig version
restore config.h and config.zig. config.h is used to detect whether we
should propagate cmake configuration information to build.zig; however
it can be overridden with -Dstatic-llvm.
fix not passing -DZIG_LINK_MODE with zig build.
when using the cmake build path, build.zig no longer tries to call
llvm-config. Instead it relies 100% on the LLVM_LIBRARIES cmake variable.
build.zig logic reworked and simplified.
The main idea here is that there are now 2 ways to get a stage1 zig
binary:
* The cmake path. Requirements: cmake, system C++ compiler, system
LLVM, LLD, Clang libraries, compiled by the system C++ compiler.
* The zig path. Requirements: a zig installation, system LLVM, LLD,
Clang libraries, compiled by the zig installation.
Note that the former can be used to now take the latter path.
Removed config.h.in and config.zig.in. The build.zig script no longer is
coupled to the cmake script.
cmake no longer tries to determine the zig version. A build with cmake
will yield a stage1 zig binary that reports 0.0.0+zig0. This is going to
get reverted.
`zig build` now accepts `-Dstage1` which will build the stage1 compiler,
and put the stage2 backend behind a feature flag.
build.zig is simplified to only support the use case of enabling LLVM
support when the LLVM, LLD, and Clang libraries were built by zig. This
part is probably sadly going to have to get reverted to make package
maintainers happy.
Zig build system addBuildOption supports a couple new types.
The biggest reason to make this change is that the zig path is an
attractive option for doing compiler development work on Windows. It
allows people to work on the compiler without having MSVC installed,
using only a .zip file that contains Zig + LLVM/LLD/Clang libraries.
Recent versions of cmake complain about it:
<<
CMake Deprecation Warning at CMakeLists.txt:1 (cmake_minimum_required):
Compatibility with CMake < 2.8.12 will be removed from a future version of
CMake.
>>
We don't require anything from version 2.8.5, and version 2.8.12 was
released in 2011, so it is very unlikely that anyone still uses 2.8.5.
This is andrewrk's patch from ziglang#6724 (rebased)
CMake: Fix dependency problem
I don't know whether the error was expected cmake behavior or a bug.
This change seems to fix the issue. See ziglang#6724 for details.