In a `memoized_call`, store how many backwards braches the call
performs. Add this to `sema.branch_count` when using a memoized call. If
this exceeds the quota, perform a non-memoized call to get a correct
"exceeded X backwards branches" error.
Also, do not memoize calls which do `@setEvalBranchQuota` or similar, as
this affects global state which must apply to the caller.
Change some eval branch quotas so that the compiler itself still builds correctly.
This commit manually changes a file in Aro which is automatically
generated. The sources which generate the file are not in this repo.
Upstream Aro should make the suitable changes on their end before the
next sync of Aro sources into the Zig repo.
Versions can simply use the normal version range mechanism, or alternatively an
Abi tag if that makes more sense. For now, we only care about 4.5 anyway.
* Rename isPPC() -> isPowerPC32().
* Rename isPPC64() -> isPowerPC64().
* Add new isPowerPC() function which covers both.
There was confusion even in the standard library about what isPPC() meant. This
change makes these functions work how I think most people actually expect them
to work, and makes them consistent with isMIPS(), isSPARC(), etc.
I chose to rename from PPC to PowerPC because 1) it's more consistent with the
other functions, and 2) it'll cause loud rather than silent breakage for anyone
who might have been depending on isPPC() while misunderstanding it.
This is a fairly small hobby OS that has not seen development in 2 years. Our
current policy is that hobby OSs should use the `other` tag.
https://github.com/zhmu/ananas
What is `sparcel`, you might ask? Good question!
If you take a peek in the SPARC v8 manual, §2.2, it is quite explicit that SPARC
v8 is a big-endian architecture. No little-endian or mixed-endian support to be
found here.
On the other hand, the SPARC v9 manual, in §3.2.1.2, states that it has support
for mixed-endian operation, with big-endian mode being the default.
Ok, so `sparcel` must just be referring to SPARC v9 running in little-endian
mode, surely?
Nope:
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L226)
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L104)
So, `sparcel` in LLVM is referring to some sort of fantastical little-endian
SPARC v8 architecture. I've scoured the internet and I can find absolutely no
evidence that such a thing exists or has ever existed. In fact, I can find no
evidence that a little-endian implementation of SPARC v9 ever existed, either.
Or any SPARC version, actually!
The support was added here: https://reviews.llvm.org/D8741
Notably, there is no mention whatsoever of what CPU this might be referring to,
and no justification given for the "but some are little" comment added in the
patch.
My best guess is that this might have been some private exercise in creating a
little-endian version of SPARC that never saw the light of day. Given that SPARC
v8 explicitly doesn't support little-endian operation (let alone little-endian
instruction encoding!), and no CPU is known to be implemented as such, I think
it's very reasonable for us to just remove this support.
This is a misfeature that we inherited from LLVM:
* https://reviews.llvm.org/D61259
* https://reviews.llvm.org/D61939
(`aarch64_32` and `arm64_32` are equivalent.)
I truly have no idea why this triple passed review in LLVM. It is, to date, the
*only* tag in the architecture component that is not, in fact, an architecture.
In reality, it is just an ILP32 ABI for AArch64 (*not* AArch32).
The triples that use `aarch64_32` look like `aarch64_32-apple-watchos`. Yes,
that triple is exactly what you think; it has no ABI component. They really,
seriously did this.
Since only Apple could come up with silliness like this, it should come as no
surprise that no one else uses `aarch64_32`. Later on, a GNU ILP32 ABI for
AArch64 was developed, and support was added to LLVM:
* https://reviews.llvm.org/D94143
* https://reviews.llvm.org/D104931
Here, sanity seems to have prevailed, and a triple using this ABI looks like
`aarch64-linux-gnu_ilp32` as you would expect.
As can be seen from the diffs in this commit, there was plenty of confusion
throughout the Zig codebase about what exactly `aarch64_32` was. So let's just
remove it. In its place, we'll use `aarch64-watchos-ilp32`,
`aarch64-linux-gnuilp32`, and so on. We'll then translate these appropriately
when talking to LLVM. Hence, this commit adds the `ilp32` ABI tag (we already
have `gnuilp32`).
This was added as an architecture to LLVM's target triple parser and the Clang
driver in 2015. No backend ever materialized as far as I can see (same for GCC).
In 2016, other code referring to it started using "Myriad" instead. Ultimately,
all code related to it that isn't in the target triple parser was removed. It
seems to be a real product, just... literally no one seems to know anything
about the ISA. I figure after almost a decade with no public ISA documentation
to speak of, and no LLVM backend to reference, it's probably safe to assume that
we're not going to learn much about this ISA, making it useless for Zig.
See: 1b5767f72b
See: 84a7564b28
See: 8cfe9d8f2a
This was used for LoongArch64, where:
* `gnuf64` -> `ilp32d` / `lp64d` (full hard float)
* `gnuf32` -> `ilp32f` / `lp64f` (hard float for `f32` only)
* `gnusf` -> `ilp32` / `lp64` (soft float)
But Loongson eventually settled on just `gnu` for the first case since that's
what most people will actually be targeting outside embedded scenarios. The
`gnuf32` and `gnusf` specifiers remain in use.
Deprecated aliases that are now compile errors:
- `std.fs.MAX_PATH_BYTES` (renamed to `std.fs.max_path_bytes`)
- `std.mem.tokenize` (split into `tokenizeAny`, `tokenizeSequence`, `tokenizeScalar`)
- `std.mem.split` (split into `splitSequence`, `splitAny`, `splitScalar`)
- `std.mem.splitBackwards` (split into `splitBackwardsSequence`, `splitBackwardsAny`, `splitBackwardsScalar`)
- `std.unicode`
+ `utf16leToUtf8Alloc`, `utf16leToUtf8AllocZ`, `utf16leToUtf8`, `fmtUtf16le` (all renamed to have capitalized `Le`)
+ `utf8ToUtf16LeWithNull` (renamed to `utf8ToUtf16LeAllocZ`)
- `std.zig.CrossTarget` (moved to `std.Target.Query`)
Deprecated `lib/std/std.zig` decls were deleted instead of made a `@compileError` because the `refAllDecls` in the test block would trigger the `@compileError`. The deleted top-level `std` namespaces are:
- `std.rand` (renamed to `std.Random`)
- `std.TailQueue` (renamed to `std.DoublyLinkedList`)
- `std.ChildProcess` (renamed/moved to `std.process.Child`)
This is not exhaustive. Deprecated aliases that I didn't touch:
+ `std.io.*`
+ `std.Build.*`
+ `std.builtin.Mode`
+ `std.zig.c_translation.CIntLiteralRadix`
+ anything in `src/`
this patch renames ComptimeStringMap to StaticStringMap, makes it
accept only a single type parameter, and return a known struct type
instead of an anonymous struct. initial motivation for these changes
was to reduce the 'very long type names' issue described here
https://github.com/ziglang/zig/pull/19682.
this breaks the previous API. users will now need to write:
`const map = std.StaticStringMap(T).initComptime(kvs_list);`
* move `kvs_list` param from type param to an `initComptime()` param
* new public methods
* `keys()`, `values()` helpers
* `init(allocator)`, `deinit(allocator)` for runtime data
* `getLongestPrefix(str)`, `getLongestPrefixIndex(str)` - i'm not sure
these belong but have left in for now incase they are deemed useful
* performance notes:
* i posted some benchmarking results here:
https://github.com/travisstaloch/comptime-string-map-revised/issues/1
* i noticed a speedup reducing the size of the struct from 48 to 32
bytes and thus use u32s instead of usize for all length fields
* i noticed speedup storing KVs as a struct of arrays
* latest benchmark shows these wall_time improvements for
debug/safe/small/fast builds: -6.6% / -10.2% / -19.1% / -8.9%. full
output in link above.
Part of #19063.
Primarily, this moves Aro from deps/ to lib/compiler/ so that it can be
lazily compiled from source. src/aro_translate_c.zig is moved to
lib/compiler/aro_translate_c.zig and some of Zig CLI logic moved to a
main() function there.
aro_translate_c.zig becomes the "common" import for clang-based
translate-c.
Not all of the compiler was able to be detangled from Aro, however, so
it still, for now, remains being compiled with the main compiler
sources due to the clang-based translate-c depending on it. Once
aro-based translate-c achieves feature parity with the clang-based
translate-c implementation, the clang-based one can be removed from Zig.
Aro made it unnecessarily difficult to depend on with these .def files
and all these Zig module requirements. I looked at the .def files and
made these observations:
- The canonical source is llvm .def files.
- Therefore there is an update process to sync with llvm that involves
regenerating the .def files in Aro.
- Therefore you might as well just regenerate the .zig files directly
and check those into Aro.
- Also with a small amount of tinkering, the file size on disk of these
generated .zig files can be made many times smaller, without
compromising type safety in the usage of the data.
This would make things much easier on Zig as downstream project,
particularly we could remove those pesky stubs when bootstrapping.
I have gone ahead with these changes since they unblock me and I will
have a chat with Vexu to see what he thinks.