@floatToInt now has safety-checked undefined behavior

when the integer part does not fit in the destination integer type

 * Also fix incorrect safety triggered for integer casting an
   `i32` to a `u7`. closes #1138
 * adds compiler-rt function: `__floatuntidf`
This commit is contained in:
Andrew Kelley 2018-06-19 16:06:10 -04:00
parent 0b92d689d0
commit c7804277bf
12 changed files with 291 additions and 9 deletions

View File

@ -568,6 +568,7 @@ set(ZIG_STD_FILES
"special/compiler_rt/fixunstfdi.zig"
"special/compiler_rt/fixunstfsi.zig"
"special/compiler_rt/fixunstfti.zig"
"special/compiler_rt/floatuntidf.zig"
"special/compiler_rt/muloti4.zig"
"special/compiler_rt/index.zig"
"special/compiler_rt/udivmod.zig"

View File

@ -5035,8 +5035,12 @@ test "main" {
<pre><code class="zig">@floatToInt(comptime DestType: type, float: var) DestType</code></pre>
<p>
Converts the integer part of a floating point number to the destination type.
To convert the other way, use {#link|@intToFloat#}. This cast is always safe.
</p>
<p>
If the integer part of the floating point number cannot fit in the destination type,
it invokes safety-checked {#link|Undefined Behavior#}.
</p>
{#see_also|@intToFloat#}
{#header_close#}
{#header_open|@frameAddress#}
@ -6207,7 +6211,10 @@ comptime {
{#header_close#}
{#header_open|Wrong Union Field Access#}
<p>TODO</p>
{#header_close#}
{#header_open|Out of Bounds Float To Integer Cast#}
<p>TODO</p>
{#header_close#}
{#header_close#}

View File

@ -1434,6 +1434,7 @@ enum PanicMsgId {
PanicMsgIdIncorrectAlignment,
PanicMsgIdBadUnionField,
PanicMsgIdBadEnumValue,
PanicMsgIdFloatToInt,
PanicMsgIdCount,
};

View File

@ -865,6 +865,8 @@ static Buf *panic_msg_buf(PanicMsgId msg_id) {
return buf_create_from_str("access of inactive union field");
case PanicMsgIdBadEnumValue:
return buf_create_from_str("invalid enum value");
case PanicMsgIdFloatToInt:
return buf_create_from_str("integer part of floating point value out of bounds");
}
zig_unreachable();
}
@ -1671,7 +1673,7 @@ static LLVMValueRef gen_widen_or_shorten(CodeGen *g, bool want_runtime_safety, T
return trunc_val;
}
LLVMValueRef orig_val;
if (actual_type->data.integral.is_signed) {
if (wanted_type->data.integral.is_signed) {
orig_val = LLVMBuildSExt(g->builder, trunc_val, actual_type->type_ref, "");
} else {
orig_val = LLVMBuildZExt(g->builder, trunc_val, actual_type->type_ref, "");
@ -2546,15 +2548,41 @@ static LLVMValueRef ir_render_cast(CodeGen *g, IrExecutable *executable,
} else {
return LLVMBuildUIToFP(g->builder, expr_val, wanted_type->type_ref, "");
}
case CastOpFloatToInt:
case CastOpFloatToInt: {
assert(wanted_type->id == TypeTableEntryIdInt);
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &cast_instruction->base));
bool want_safety = ir_want_runtime_safety(g, &cast_instruction->base);
LLVMValueRef result;
if (wanted_type->data.integral.is_signed) {
return LLVMBuildFPToSI(g->builder, expr_val, wanted_type->type_ref, "");
result = LLVMBuildFPToSI(g->builder, expr_val, wanted_type->type_ref, "");
} else {
return LLVMBuildFPToUI(g->builder, expr_val, wanted_type->type_ref, "");
result = LLVMBuildFPToUI(g->builder, expr_val, wanted_type->type_ref, "");
}
if (want_safety) {
LLVMValueRef back_to_float;
if (wanted_type->data.integral.is_signed) {
back_to_float = LLVMBuildSIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
} else {
back_to_float = LLVMBuildUIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
}
LLVMValueRef difference = LLVMBuildFSub(g->builder, expr_val, back_to_float, "");
LLVMValueRef one_pos = LLVMConstReal(LLVMTypeOf(expr_val), 1.0f);
LLVMValueRef one_neg = LLVMConstReal(LLVMTypeOf(expr_val), -1.0f);
LLVMValueRef ok_bit_pos = LLVMBuildFCmp(g->builder, LLVMRealOLT, difference, one_pos, "");
LLVMValueRef ok_bit_neg = LLVMBuildFCmp(g->builder, LLVMRealOGT, difference, one_neg, "");
LLVMValueRef ok_bit = LLVMBuildAnd(g->builder, ok_bit_pos, ok_bit_neg, "");
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "FloatCheckOk");
LLVMBasicBlockRef bad_block = LLVMAppendBasicBlock(g->cur_fn_val, "FloatCheckFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, bad_block);
LLVMPositionBuilderAtEnd(g->builder, bad_block);
gen_safety_crash(g, PanicMsgIdFloatToInt);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
return result;
}
case CastOpBoolToInt:
assert(wanted_type->id == TypeTableEntryIdInt);
assert(actual_type->id == TypeTableEntryIdBool);

View File

@ -9057,7 +9057,8 @@ static void copy_const_val(ConstExprValue *dest, ConstExprValue *src, bool same_
}
}
static void eval_const_expr_implicit_cast(CastOp cast_op,
static bool eval_const_expr_implicit_cast(IrAnalyze *ira, IrInstruction *source_instr,
CastOp cast_op,
ConstExprValue *other_val, TypeTableEntry *other_type,
ConstExprValue *const_val, TypeTableEntry *new_type)
{
@ -9129,6 +9130,20 @@ static void eval_const_expr_implicit_cast(CastOp cast_op,
}
case CastOpFloatToInt:
float_init_bigint(&const_val->data.x_bigint, other_val);
if (new_type->id == TypeTableEntryIdInt) {
if (!bigint_fits_in_bits(&const_val->data.x_bigint, new_type->data.integral.bit_count,
new_type->data.integral.is_signed))
{
Buf *int_buf = buf_alloc();
bigint_append_buf(int_buf, &const_val->data.x_bigint, 10);
ir_add_error(ira, source_instr,
buf_sprintf("integer value '%s' cannot be stored in type '%s'",
buf_ptr(int_buf), buf_ptr(&new_type->name)));
return false;
}
}
const_val->special = ConstValSpecialStatic;
break;
case CastOpBoolToInt:
@ -9136,6 +9151,7 @@ static void eval_const_expr_implicit_cast(CastOp cast_op,
const_val->special = ConstValSpecialStatic;
break;
}
return true;
}
static IrInstruction *ir_resolve_cast(IrAnalyze *ira, IrInstruction *source_instr, IrInstruction *value,
TypeTableEntry *wanted_type, CastOp cast_op, bool need_alloca)
@ -9145,8 +9161,11 @@ static IrInstruction *ir_resolve_cast(IrAnalyze *ira, IrInstruction *source_inst
{
IrInstruction *result = ir_create_const(&ira->new_irb, source_instr->scope,
source_instr->source_node, wanted_type);
eval_const_expr_implicit_cast(cast_op, &value->value, value->value.type,
&result->value, wanted_type);
if (!eval_const_expr_implicit_cast(ira, source_instr, cast_op, &value->value, value->value.type,
&result->value, wanted_type))
{
return ira->codegen->invalid_instruction;
}
return result;
} else {
IrInstruction *result = ir_build_cast(&ira->new_irb, source_instr->scope, source_instr->source_node, wanted_type, value, cast_op);

View File

@ -20,6 +20,10 @@ pub fn expm1(x: var) @typeOf(x) {
fn expm1_32(x_: f32) f32 {
@setFloatMode(this, builtin.FloatMode.Strict);
if (math.isNan(x_))
return math.nan(f32);
const o_threshold: f32 = 8.8721679688e+01;
const ln2_hi: f32 = 6.9313812256e-01;
const ln2_lo: f32 = 9.0580006145e-06;
@ -146,6 +150,10 @@ fn expm1_32(x_: f32) f32 {
fn expm1_64(x_: f64) f64 {
@setFloatMode(this, builtin.FloatMode.Strict);
if (math.isNan(x_))
return math.nan(f64);
const o_threshold: f64 = 7.09782712893383973096e+02;
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;

View File

@ -0,0 +1,60 @@
const builtin = @import("builtin");
const is_test = builtin.is_test;
const DBL_MANT_DIG = 53;
pub extern fn __floatuntidf(arg: u128) f64 {
@setRuntimeSafety(is_test);
if (arg == 0)
return 0.0;
var a = arg;
const N: u32 = @sizeOf(u128) * 8;
const sd = @bitCast(i32, N -% @clz(a)); // number of significant digits
var e: i32 = sd -% 1; // exponent
if (sd > DBL_MANT_DIG) {
// start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
// finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
// 12345678901234567890123456
// 1 = msb 1 bit
// P = bit DBL_MANT_DIG-1 bits to the right of 1
// Q = bit DBL_MANT_DIG bits to the right of 1
// R = "or" of all bits to the right of Q
switch (sd) {
DBL_MANT_DIG + 1 => {
a <<= 1;
},
DBL_MANT_DIG + 2 => {},
else => {
const shift_amt = @bitCast(i32, N +% (DBL_MANT_DIG + 2)) -% sd;
const shift_amt_u7 = @intCast(u7, shift_amt);
a = (a >> @intCast(u7, sd -% (DBL_MANT_DIG + 2))) |
@boolToInt((a & (u128(@maxValue(u128)) >> shift_amt_u7)) != 0);
},
}
// finish
a |= @boolToInt((a & 4) != 0); // Or P into R
a +%= 1; // round - this step may add a significant bit
a >>= 2; // dump Q and R
// a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits
if ((a & (u128(1) << DBL_MANT_DIG)) != 0) {
a >>= 1;
e +%= 1;
}
// a is now rounded to DBL_MANT_DIG bits
} else {
a <<= @intCast(u7, DBL_MANT_DIG -% sd);
// a is now rounded to DBL_MANT_DIG bits
}
const high: u64 = @bitCast(u32, (e +% 1023) << 20) | // exponent
(@truncate(u32, a >> 32) & 0x000FFFFF); // mantissa-high
const low = @truncate(u32, a); // mantissa-low
return @bitCast(f64, low | (high << 32));
}
test "import floatuntidf" {
_ = @import("floatuntidf_test.zig");
}

View File

@ -0,0 +1,81 @@
const __floatuntidf = @import("floatuntidf.zig").__floatuntidf;
const assert = @import("std").debug.assert;
fn test__floatuntidf(a: u128, expected: f64) void {
const x = __floatuntidf(a);
assert(x == expected);
}
test "floatuntidf" {
test__floatuntidf(0, 0.0);
test__floatuntidf(1, 1.0);
test__floatuntidf(2, 2.0);
test__floatuntidf(20, 20.0);
test__floatuntidf(0x7FFFFF8000000000, 0x1.FFFFFEp+62);
test__floatuntidf(0x7FFFFFFFFFFFF800, 0x1.FFFFFFFFFFFFEp+62);
test__floatuntidf(0x7FFFFF0000000000, 0x1.FFFFFCp+62);
test__floatuntidf(0x7FFFFFFFFFFFF000, 0x1.FFFFFFFFFFFFCp+62);
test__floatuntidf(make_ti(0x8000008000000000, 0), 0x1.000001p+127);
test__floatuntidf(make_ti(0x8000000000000800, 0), 0x1.0000000000001p+127);
test__floatuntidf(make_ti(0x8000010000000000, 0), 0x1.000002p+127);
test__floatuntidf(make_ti(0x8000000000001000, 0), 0x1.0000000000002p+127);
test__floatuntidf(make_ti(0x8000000000000000, 0), 0x1.000000p+127);
test__floatuntidf(make_ti(0x8000000000000001, 0), 0x1.0000000000000002p+127);
test__floatuntidf(0x0007FB72E8000000, 0x1.FEDCBAp+50);
test__floatuntidf(0x0007FB72EA000000, 0x1.FEDCBA8p+50);
test__floatuntidf(0x0007FB72EB000000, 0x1.FEDCBACp+50);
test__floatuntidf(0x0007FB72EBFFFFFF, 0x1.FEDCBAFFFFFFCp+50);
test__floatuntidf(0x0007FB72EC000000, 0x1.FEDCBBp+50);
test__floatuntidf(0x0007FB72E8000001, 0x1.FEDCBA0000004p+50);
test__floatuntidf(0x0007FB72E6000000, 0x1.FEDCB98p+50);
test__floatuntidf(0x0007FB72E7000000, 0x1.FEDCB9Cp+50);
test__floatuntidf(0x0007FB72E7FFFFFF, 0x1.FEDCB9FFFFFFCp+50);
test__floatuntidf(0x0007FB72E4000001, 0x1.FEDCB90000004p+50);
test__floatuntidf(0x0007FB72E4000000, 0x1.FEDCB9p+50);
test__floatuntidf(0x023479FD0E092DC0, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DA1, 0x1.1A3CFE870496Dp+57);
test__floatuntidf(0x023479FD0E092DB0, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DB8, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DB6, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DBF, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DC1, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DC7, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DC8, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DCF, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DD0, 0x1.1A3CFE870496Ep+57);
test__floatuntidf(0x023479FD0E092DD1, 0x1.1A3CFE870496Fp+57);
test__floatuntidf(0x023479FD0E092DD8, 0x1.1A3CFE870496Fp+57);
test__floatuntidf(0x023479FD0E092DDF, 0x1.1A3CFE870496Fp+57);
test__floatuntidf(0x023479FD0E092DE0, 0x1.1A3CFE870496Fp+57);
test__floatuntidf(make_ti(0x023479FD0E092DC0, 0), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DA1, 1), 0x1.1A3CFE870496Dp+121);
test__floatuntidf(make_ti(0x023479FD0E092DB0, 2), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DB8, 3), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DB6, 4), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DBF, 5), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DC1, 6), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DC7, 7), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DC8, 8), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DCF, 9), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DD0, 0), 0x1.1A3CFE870496Ep+121);
test__floatuntidf(make_ti(0x023479FD0E092DD1, 11), 0x1.1A3CFE870496Fp+121);
test__floatuntidf(make_ti(0x023479FD0E092DD8, 12), 0x1.1A3CFE870496Fp+121);
test__floatuntidf(make_ti(0x023479FD0E092DDF, 13), 0x1.1A3CFE870496Fp+121);
test__floatuntidf(make_ti(0x023479FD0E092DE0, 14), 0x1.1A3CFE870496Fp+121);
}
fn make_ti(high: u64, low: u64) u128 {
var result: u128 = high;
result <<= 64;
result |= low;
return result;
}

View File

@ -19,6 +19,8 @@ comptime {
@export("__unordtf2", @import("comparetf2.zig").__unordtf2, linkage);
@export("__floatuntidf", @import("floatuntidf.zig").__floatuntidf, linkage);
@export("__fixunssfsi", @import("fixunssfsi.zig").__fixunssfsi, linkage);
@export("__fixunssfdi", @import("fixunssfdi.zig").__fixunssfdi, linkage);
@export("__fixunssfti", @import("fixunssfti.zig").__fixunssfti, linkage);

View File

@ -340,11 +340,23 @@ fn testPeerErrorAndArray2(x: u8) error![]const u8 {
};
}
test "explicit cast float number literal to integer if no fraction component" {
test "@floatToInt" {
testFloatToInts();
comptime testFloatToInts();
}
fn testFloatToInts() void {
const x = i32(1e4);
assert(x == 10000);
const y = @floatToInt(i32, f32(1e4));
assert(y == 10000);
expectFloatToInt(u8, 255.1, 255);
expectFloatToInt(i8, 127.2, 127);
expectFloatToInt(i8, -128.2, -128);
}
fn expectFloatToInt(comptime T: type, f: f32, i: T) void {
assert(@floatToInt(T, f) == i);
}
test "cast u128 to f128 and back" {
@ -426,3 +438,10 @@ test "@bytesToSlice keeps pointer alignment" {
const numbers = @bytesToSlice(u32, bytes[0..]);
comptime assert(@typeOf(numbers) == []align(@alignOf(@typeOf(bytes))) u32);
}
test "@intCast i32 to u7" {
var x: u128 = @maxValue(u128);
var y: i32 = 120;
var z = x >> @intCast(u7, y);
assert(z == 0xff);
}

View File

@ -1,6 +1,23 @@
const tests = @import("tests.zig");
pub fn addCases(cases: *tests.CompileErrorContext) void {
cases.add(
"@floatToInt comptime safety",
\\comptime {
\\ _ = @floatToInt(i8, f32(-129.1));
\\}
\\comptime {
\\ _ = @floatToInt(u8, f32(-1.1));
\\}
\\comptime {
\\ _ = @floatToInt(u8, f32(256.1));
\\}
,
".tmp_source.zig:2:9: error: integer value '-129' cannot be stored in type 'i8'",
".tmp_source.zig:5:9: error: integer value '-1' cannot be stored in type 'u8'",
".tmp_source.zig:8:9: error: integer value '256' cannot be stored in type 'u8'",
);
cases.add(
"use c_void as return type of fn ptr",
\\export fn entry() void {

View File

@ -1,6 +1,45 @@
const tests = @import("tests.zig");
pub fn addCases(cases: *tests.CompareOutputContext) void {
cases.addRuntimeSafety("@floatToInt cannot fit - negative to unsigned",
\\pub fn panic(message: []const u8, stack_trace: ?*@import("builtin").StackTrace) noreturn {
\\ @import("std").os.exit(126);
\\}
\\pub fn main() void {
\\ baz(bar(-1.1));
\\}
\\fn bar(a: f32) u8 {
\\ return @floatToInt(u8, a);
\\}
\\fn baz(a: u8) void { }
);
cases.addRuntimeSafety("@floatToInt cannot fit - negative out of range",
\\pub fn panic(message: []const u8, stack_trace: ?*@import("builtin").StackTrace) noreturn {
\\ @import("std").os.exit(126);
\\}
\\pub fn main() void {
\\ baz(bar(-129.1));
\\}
\\fn bar(a: f32) i8 {
\\ return @floatToInt(i8, a);
\\}
\\fn baz(a: i8) void { }
);
cases.addRuntimeSafety("@floatToInt cannot fit - positive out of range",
\\pub fn panic(message: []const u8, stack_trace: ?*@import("builtin").StackTrace) noreturn {
\\ @import("std").os.exit(126);
\\}
\\pub fn main() void {
\\ baz(bar(256.2));
\\}
\\fn bar(a: f32) u8 {
\\ return @floatToInt(u8, a);
\\}
\\fn baz(a: u8) void { }
);
cases.addRuntimeSafety("calling panic",
\\pub fn panic(message: []const u8, stack_trace: ?*@import("builtin").StackTrace) noreturn {
\\ @import("std").os.exit(126);