Merge pull request #1775 from tgschultz/stdlib-serialization

Added serialization, bitstreams, traits for int sign, TagPayloadType, some fixes to std
This commit is contained in:
Andrew Kelley 2019-02-01 13:05:34 -05:00 committed by GitHub
commit bbe857be96
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 1144 additions and 8 deletions

View File

@ -8,6 +8,8 @@ const debug = std.debug;
const assert = debug.assert;
const os = std.os;
const mem = std.mem;
const meta = std.meta;
const trait = meta.trait;
const Buffer = std.Buffer;
const fmt = std.fmt;
const File = std.os.File;
@ -463,6 +465,153 @@ pub const SliceInStream = struct {
}
};
/// Creates a stream which allows for reading bit fields from another stream
pub fn BitInStream(endian: builtin.Endian, comptime Error: type) type {
return struct {
const Self = @This();
in_stream: *Stream,
bit_buffer: u7,
bit_count: u3,
stream: Stream,
pub const Stream = InStream(Error);
const u8_bit_count = comptime meta.bitCount(u8);
const u7_bit_count = comptime meta.bitCount(u7);
const u4_bit_count = comptime meta.bitCount(u4);
pub fn init(in_stream: *Stream) Self {
return Self{
.in_stream = in_stream,
.bit_buffer = 0,
.bit_count = 0,
.stream = Stream{ .readFn = read },
};
}
/// Reads `bits` bits from the stream and returns a specified unsigned int type
/// containing them in the least significant end, returning an error if the
/// specified number of bits could not be read.
pub fn readBitsNoEof(self: *Self, comptime U: type, bits: usize) !U {
var n: usize = undefined;
const result = try self.readBits(U, bits, &n);
if (n < bits) return error.EndOfStream;
return result;
}
/// Reads `bits` bits from the stream and returns a specified unsigned int type
/// containing them in the least significant end. The number of bits successfully
/// read is placed in `out_bits`, as reaching the end of the stream is not an error.
pub fn readBits(self: *Self, comptime U: type, bits: usize, out_bits: *usize) Error!U {
debug.assert(trait.isUnsignedInt(U));
//by extending the buffer to a minimum of u8 we can cover a number of edge cases
// related to shifting and casting.
const u_bit_count = comptime meta.bitCount(U);
const buf_bit_count = bc: {
debug.assert(u_bit_count >= bits);
break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
};
const Buf = @IntType(false, buf_bit_count);
const BufShift = math.Log2Int(Buf);
out_bits.* = usize(0);
if (U == u0 or bits == 0) return 0;
var out_buffer = Buf(0);
if (self.bit_count > 0) {
const n = if (self.bit_count >= bits) @intCast(u3, bits) else self.bit_count;
const shift = u7_bit_count - n;
switch (endian) {
builtin.Endian.Big => {
out_buffer = Buf(self.bit_buffer >> shift);
self.bit_buffer <<= n;
},
builtin.Endian.Little => {
const value = (self.bit_buffer << shift) >> shift;
out_buffer = Buf(value);
self.bit_buffer >>= n;
},
}
self.bit_count -= n;
out_bits.* = n;
}
//at this point we know bit_buffer is empty
//copy bytes until we have enough bits, then leave the rest in bit_buffer
while (out_bits.* < bits) {
const n = bits - out_bits.*;
const next_byte = self.in_stream.readByte() catch |err| {
if (err == error.EndOfStream) {
return @intCast(U, out_buffer);
}
//@BUG: See #1810. Not sure if the bug is that I have to do this for some
// streams, or that I don't for streams with emtpy errorsets.
return @errSetCast(Error, err);
};
switch (endian) {
builtin.Endian.Big => {
if (n >= u8_bit_count) {
out_buffer <<= @intCast(u3, u8_bit_count - 1);
out_buffer <<= 1;
out_buffer |= Buf(next_byte);
out_bits.* += u8_bit_count;
continue;
}
const shift = @intCast(u3, u8_bit_count - n);
out_buffer <<= @intCast(BufShift, n);
out_buffer |= Buf(next_byte >> shift);
out_bits.* += n;
self.bit_buffer = @truncate(u7, next_byte << @intCast(u3, n - 1));
self.bit_count = shift;
},
builtin.Endian.Little => {
if (n >= u8_bit_count) {
out_buffer |= Buf(next_byte) << @intCast(BufShift, out_bits.*);
out_bits.* += u8_bit_count;
continue;
}
const shift = @intCast(u3, u8_bit_count - n);
const value = (next_byte << shift) >> shift;
out_buffer |= Buf(value) << @intCast(BufShift, out_bits.*);
out_bits.* += n;
self.bit_buffer = @truncate(u7, next_byte >> @intCast(u3, n));
self.bit_count = shift;
},
}
}
return @intCast(U, out_buffer);
}
pub fn alignToByte(self: *Self) void {
self.bit_buffer = 0;
self.bit_count = 0;
}
pub fn read(self_stream: *Stream, buffer: []u8) Error!usize {
var self = @fieldParentPtr(Self, "stream", self_stream);
var out_bits: usize = undefined;
var out_bits_total = usize(0);
//@NOTE: I'm not sure this is a good idea, maybe alignToByte should be forced
if (self.bit_count > 0) {
for (buffer) |*b, i| {
b.* = try self.readBits(u8, u8_bit_count, &out_bits);
out_bits_total += out_bits;
}
const incomplete_byte = @boolToInt(out_bits_total % u8_bit_count > 0);
return (out_bits_total / u8_bit_count) + incomplete_byte;
}
return self.in_stream.read(buffer);
}
};
}
/// This is a simple OutStream that writes to a slice, and returns an error
/// when it runs out of space.
pub const SliceOutStream = struct {
@ -656,6 +805,137 @@ pub const BufferOutStream = struct {
}
};
/// Creates a stream which allows for writing bit fields to another stream
pub fn BitOutStream(endian: builtin.Endian, comptime Error: type) type {
return struct {
const Self = @This();
out_stream: *Stream,
bit_buffer: u8,
bit_count: u4,
stream: Stream,
pub const Stream = OutStream(Error);
const u8_bit_count = comptime meta.bitCount(u8);
const u4_bit_count = comptime meta.bitCount(u4);
pub fn init(out_stream: *Stream) Self {
return Self{
.out_stream = out_stream,
.bit_buffer = 0,
.bit_count = 0,
.stream = Stream{ .writeFn = write },
};
}
/// Write the specified number of bits to the stream from the least significant bits of
/// the specified unsigned int value. Bits will only be written to the stream when there
/// are enough to fill a byte.
pub fn writeBits(self: *Self, value: var, bits: usize) Error!void {
if (bits == 0) return;
const U = @typeOf(value);
debug.assert(trait.isUnsignedInt(U));
//by extending the buffer to a minimum of u8 we can cover a number of edge cases
// related to shifting and casting.
const u_bit_count = comptime meta.bitCount(U);
const buf_bit_count = bc: {
debug.assert(u_bit_count >= bits);
break :bc if (u_bit_count <= u8_bit_count) u8_bit_count else u_bit_count;
};
const Buf = @IntType(false, buf_bit_count);
const BufShift = math.Log2Int(Buf);
const buf_value = @intCast(Buf, value);
const high_byte_shift = @intCast(BufShift, buf_bit_count - u8_bit_count);
var in_buffer = switch (endian) {
builtin.Endian.Big => buf_value << @intCast(BufShift, buf_bit_count - bits),
builtin.Endian.Little => buf_value,
};
var in_bits = bits;
if (self.bit_count > 0) {
const bits_remaining = u8_bit_count - self.bit_count;
const n = @intCast(u3, if (bits_remaining > bits) bits else bits_remaining);
switch (endian) {
builtin.Endian.Big => {
const shift = @intCast(BufShift, high_byte_shift + self.bit_count);
const v = @intCast(u8, in_buffer >> shift);
self.bit_buffer |= v;
in_buffer <<= n;
},
builtin.Endian.Little => {
const v = @truncate(u8, in_buffer) << @intCast(u3, self.bit_count);
self.bit_buffer |= v;
in_buffer >>= n;
},
}
self.bit_count += n;
in_bits -= n;
//if we didn't fill the buffer, it's because bits < bits_remaining;
if (self.bit_count != u8_bit_count) return;
try self.out_stream.writeByte(self.bit_buffer);
self.bit_buffer = 0;
self.bit_count = 0;
}
//at this point we know bit_buffer is empty
//copy bytes until we can't fill one anymore, then leave the rest in bit_buffer
while (in_bits >= u8_bit_count) {
switch (endian) {
builtin.Endian.Big => {
const v = @intCast(u8, in_buffer >> high_byte_shift);
try self.out_stream.writeByte(v);
in_buffer <<= @intCast(u3, u8_bit_count - 1);
in_buffer <<= 1;
},
builtin.Endian.Little => {
const v = @truncate(u8, in_buffer);
try self.out_stream.writeByte(v);
in_buffer >>= @intCast(u3, u8_bit_count - 1);
in_buffer >>= 1;
},
}
in_bits -= u8_bit_count;
}
if (in_bits > 0) {
self.bit_count = @intCast(u4, in_bits);
self.bit_buffer = switch (endian) {
builtin.Endian.Big => @truncate(u8, in_buffer >> high_byte_shift),
builtin.Endian.Little => @truncate(u8, in_buffer),
};
}
}
/// Flush any remaining bits to the stream.
pub fn flushBits(self: *Self) !void {
if (self.bit_count == 0) return;
try self.out_stream.writeByte(self.bit_buffer);
self.bit_buffer = 0;
self.bit_count = 0;
}
pub fn write(self_stream: *Stream, buffer: []const u8) Error!void {
var self = @fieldParentPtr(Self, "stream", self_stream);
//@NOTE: I'm not sure this is a good idea, maybe flushBits should be forced
if (self.bit_count > 0) {
for (buffer) |b, i|
try self.writeBits(b, u8_bit_count);
return;
}
return self.out_stream.write(buffer);
}
};
}
pub const BufferedAtomicFile = struct {
atomic_file: os.AtomicFile,
file_stream: os.File.OutStream,
@ -696,11 +976,6 @@ pub const BufferedAtomicFile = struct {
}
};
test "import io tests" {
comptime {
_ = @import("io_test.zig");
}
}
pub fn readLine(buf: *std.Buffer) ![]u8 {
var stdin = try getStdIn();
@ -772,3 +1047,364 @@ test "io.readLineSliceFrom" {
debug.assert(mem.eql(u8, "Line 1", try readLineSliceFrom(stream, buf[0..])));
debug.assertError(readLineSliceFrom(stream, buf[0..]), error.OutOfMemory);
}
/// Creates a deserializer that deserializes types from any stream.
/// If `is_packed` is true, the data stream is treated as bit-packed,
/// otherwise data is expected to be packed to the smallest byte.
/// Types may implement a custom deserialization routine with a
/// function named `deserialize` in the form of:
/// pub fn deserialize(self: *Self, deserializer: var) !void
/// which will be called when the deserializer is used to deserialize
/// that type. It will pass a pointer to the type instance to deserialize
/// into and a pointer to the deserializer struct.
pub fn Deserializer(endian: builtin.Endian, is_packed: bool, comptime Error: type) type {
return struct {
const Self = @This();
in_stream: if (is_packed) BitInStream(endian, Stream.Error) else *Stream,
pub const Stream = InStream(Error);
pub fn init(in_stream: *Stream) Self {
return Self{ .in_stream = switch (is_packed) {
true => BitInStream(endian, Stream.Error).init(in_stream),
else => in_stream,
} };
}
pub fn alignToByte(self: *Self) void {
if(!is_packed) return;
self.in_stream.alignToByte();
}
//@BUG: inferred error issue. See: #1386
fn deserializeInt(self: *Self, comptime T: type) (Stream.Error || error{EndOfStream})!T {
debug.assert(trait.is(builtin.TypeId.Int)(T) or trait.is(builtin.TypeId.Float)(T));
const u8_bit_count = comptime meta.bitCount(u8);
const t_bit_count = comptime meta.bitCount(T);
const U = @IntType(false, t_bit_count);
const Log2U = math.Log2Int(U);
const int_size = @sizeOf(U);
if (is_packed) {
const result = try self.in_stream.readBitsNoEof(U, t_bit_count);
return @bitCast(T, result);
}
var buffer: [int_size]u8 = undefined;
const read_size = try self.in_stream.read(buffer[0..]);
if (read_size < int_size) return error.EndOfStream;
if (int_size == 1) return @bitCast(T, buffer[0]);
var result = U(0);
for (buffer) |byte, i| {
switch (endian) {
builtin.Endian.Big => {
result = (result << @intCast(u4, u8_bit_count)) | byte;
},
builtin.Endian.Little => {
result |= U(byte) << @intCast(Log2U, u8_bit_count * i);
},
}
}
return @bitCast(T, result);
}
//@TODO: Replace this with @unionInit or whatever when it is added
// see: #1315
fn setTag(ptr: var, tag: var) void {
const T = @typeOf(ptr);
comptime debug.assert(trait.isPtrTo(builtin.TypeId.Union)(T));
const U = meta.Child(T);
const info = @typeInfo(U).Union;
if (info.tag_type) |TagType| {
debug.assert(TagType == @typeOf(tag));
var ptr_tag = ptr: {
if (@alignOf(TagType) >= @alignOf(U)) break :ptr @ptrCast(*TagType, ptr);
const offset = comptime max: {
var max_field_size: comptime_int = 0;
for (info.fields) |field_info| {
const field_size = @sizeOf(field_info.field_type);
max_field_size = math.max(max_field_size, field_size);
}
break :max math.max(max_field_size, @alignOf(U));
};
break :ptr @intToPtr(*TagType, @ptrToInt(ptr) + offset);
};
ptr_tag.* = tag;
}
}
/// Deserializes and returns data of the specified type from the stream
pub fn deserialize(self: *Self, comptime T: type) !T {
var value: T = undefined;
try self.deserializeInto(&value);
return value;
}
/// Deserializes data into the type pointed to by `ptr`
pub fn deserializeInto(self: *Self, ptr: var) !void {
const T = @typeOf(ptr);
debug.assert(trait.is(builtin.TypeId.Pointer)(T));
if (comptime trait.isSlice(T) or comptime trait.isPtrTo(builtin.TypeId.Array)(T)) {
for (ptr) |*v|
try self.deserializeInto(v);
return;
}
comptime debug.assert(trait.isSingleItemPtr(T));
const C = comptime meta.Child(T);
const child_type_id = @typeId(C);
//custom deserializer: fn(self: *Self, deserializer: var) !void
if (comptime trait.hasFn("deserialize")(C)) return C.deserialize(ptr, self);
if (comptime trait.isPacked(C) and !is_packed) {
var packed_deserializer = Deserializer(endian, true, Error).init(self.in_stream);
return packed_deserializer.deserializeInto(ptr);
}
switch (child_type_id) {
builtin.TypeId.Void => return,
builtin.TypeId.Bool => ptr.* = (try self.deserializeInt(u1)) > 0,
builtin.TypeId.Float, builtin.TypeId.Int => ptr.* = try self.deserializeInt(C),
builtin.TypeId.Struct => {
const info = @typeInfo(C).Struct;
inline for (info.fields) |*field_info| {
const name = field_info.name;
const FieldType = field_info.field_type;
if (FieldType == void or FieldType == u0) continue;
//it doesn't make any sense to read pointers
if (comptime trait.is(builtin.TypeId.Pointer)(FieldType)) {
@compileError("Will not " ++ "read field " ++ name ++ " of struct " ++
@typeName(C) ++ " because it " ++ "is of pointer-type " ++
@typeName(FieldType) ++ ".");
}
try self.deserializeInto(&@field(ptr, name));
}
},
builtin.TypeId.Union => {
const info = @typeInfo(C).Union;
if (info.tag_type) |TagType| {
//we avoid duplicate iteration over the enum tags
// by getting the int directly and casting it without
// safety. If it is bad, it will be caught anyway.
const TagInt = @TagType(TagType);
const tag = try self.deserializeInt(TagInt);
{
@setRuntimeSafety(false);
//See: #1315
setTag(ptr, @intToEnum(TagType, tag));
}
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == tag) {
const name = field_info.name;
const FieldType = field_info.field_type;
@field(ptr, name) = FieldType(undefined);
try self.deserializeInto(&@field(ptr, name));
return;
}
}
//This is reachable if the enum data is bad
return error.InvalidEnumTag;
}
@compileError("Cannot meaningfully deserialize " ++ @typeName(C) ++
" because it is an untagged union Use a custom deserialize().");
},
builtin.TypeId.Optional => {
const OC = comptime meta.Child(C);
const exists = (try self.deserializeInt(u1)) > 0;
if (!exists) {
ptr.* = null;
return;
}
//The way non-pointer optionals are implemented ensures a pointer to them
// will point to the value. The flag is stored at the end of that data.
var val_ptr = @ptrCast(*OC, ptr);
try self.deserializeInto(val_ptr);
//This bit ensures the null flag isn't set. Any actual copying should be
// optimized out... I hope.
ptr.* = val_ptr.*;
},
builtin.TypeId.Enum => {
var value = try self.deserializeInt(@TagType(C));
ptr.* = try meta.intToEnum(C, value);
},
else => {
@compileError("Cannot deserialize " ++ @tagName(child_type_id) ++ " types (unimplemented).");
},
}
}
};
}
/// Creates a serializer that serializes types to any stream.
/// If `is_packed` is true, the data will be bit-packed into the stream.
/// Note that the you must call `serializer.flush()` when you are done
/// writing bit-packed data in order ensure any unwritten bits are committed.
/// If `is_packed` is false, data is packed to the smallest byte. In the case
/// of packed structs, the struct will written bit-packed and with the specified
/// endianess, after which data will resume being written at the next byte boundary.
/// Types may implement a custom serialization routine with a
/// function named `serialize` in the form of:
/// pub fn serialize(self: Self, serializer: var) !void
/// which will be called when the serializer is used to serialize that type. It will
/// pass a const pointer to the type instance to be serialized and a pointer
/// to the serializer struct.
pub fn Serializer(endian: builtin.Endian, is_packed: bool, comptime Error: type) type {
return struct {
const Self = @This();
out_stream: if (is_packed) BitOutStream(endian, Stream.Error) else *Stream,
pub const Stream = OutStream(Error);
pub fn init(out_stream: *Stream) Self {
return Self{ .out_stream = switch (is_packed) {
true => BitOutStream(endian, Stream.Error).init(out_stream),
else => out_stream,
} };
}
/// Flushes any unwritten bits to the stream
pub fn flush(self: *Self) Stream.Error!void {
if (is_packed) return self.out_stream.flushBits();
}
fn serializeInt(self: *Self, value: var) !void {
const T = @typeOf(value);
debug.assert(trait.is(builtin.TypeId.Int)(T) or trait.is(builtin.TypeId.Float)(T));
const t_bit_count = comptime meta.bitCount(T);
const u8_bit_count = comptime meta.bitCount(u8);
const U = @IntType(false, t_bit_count);
const Log2U = math.Log2Int(U);
const int_size = @sizeOf(U);
const u_value = @bitCast(U, value);
if (is_packed) return self.out_stream.writeBits(u_value, t_bit_count);
var buffer: [int_size]u8 = undefined;
if (int_size == 1) buffer[0] = u_value;
for (buffer) |*byte, i| {
const idx = switch (endian) {
builtin.Endian.Big => int_size - i - 1,
builtin.Endian.Little => i,
};
const shift = @intCast(Log2U, idx * u8_bit_count);
const v = u_value >> shift;
byte.* = if (t_bit_count < u8_bit_count) v else @truncate(u8, v);
}
try self.out_stream.write(buffer);
}
/// Serializes the passed value into the stream
pub fn serialize(self: *Self, value: var) !void {
const T = comptime @typeOf(value);
if (comptime trait.isIndexable(T)) {
for (value) |v|
try self.serialize(v);
return;
}
//custom serializer: fn(self: Self, serializer: var) !void
if (comptime trait.hasFn("serialize")(T)) return T.serialize(value, self);
if (comptime trait.isPacked(T) and !is_packed) {
var packed_serializer = Serializer(endian, true, Error).init(self.out_stream);
try packed_serializer.serialize(value);
try packed_serializer.flush();
return;
}
switch (@typeId(T)) {
builtin.TypeId.Void => return,
builtin.TypeId.Bool => try self.serializeInt(u1(@boolToInt(value))),
builtin.TypeId.Float, builtin.TypeId.Int => try self.serializeInt(value),
builtin.TypeId.Struct => {
const info = @typeInfo(T);
inline for (info.Struct.fields) |*field_info| {
const name = field_info.name;
const FieldType = field_info.field_type;
if (FieldType == void or FieldType == u0) continue;
//It doesn't make sense to write pointers
if (comptime trait.is(builtin.TypeId.Pointer)(FieldType)) {
@compileError("Will not " ++ "serialize field " ++ name ++
" of struct " ++ @typeName(T) ++ " because it " ++
"is of pointer-type " ++ @typeName(FieldType) ++ ".");
}
try self.serialize(@field(value, name));
}
},
builtin.TypeId.Union => {
const info = @typeInfo(T).Union;
if (info.tag_type) |TagType| {
const active_tag = meta.activeTag(value);
try self.serialize(active_tag);
//This inline loop is necessary because active_tag is a runtime
// value, but @field requires a comptime value. Our alternative
// is to check each field for a match
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == @enumToInt(active_tag)) {
const name = field_info.name;
const FieldType = field_info.field_type;
try self.serialize(@field(value, name));
return;
}
}
unreachable;
}
@compileError("Cannot meaningfully serialize " ++ @typeName(T) ++
" because it is an untagged union Use a custom serialize().");
},
builtin.TypeId.Optional => {
if (value == null) {
try self.serializeInt(u1(@boolToInt(false)));
return;
}
try self.serializeInt(u1(@boolToInt(true)));
const OC = comptime meta.Child(T);
//The way non-pointer optionals are implemented ensures a pointer to them
// will point to the value. The flag is stored at the end of that data.
var val_ptr = @ptrCast(*const OC, &value);
try self.serialize(val_ptr.*);
},
builtin.TypeId.Enum => {
try self.serializeInt(@enumToInt(value));
},
else => @compileError("Cannot serialize " ++ @tagName(@typeId(T)) ++ " types (unimplemented)."),
}
}
};
}
test "import io tests" {
comptime {
_ = @import("io_test.zig");
}
}

View File

@ -1,5 +1,7 @@
const std = @import("index.zig");
const io = std.io;
const meta = std.meta;
const trait = std.trait;
const DefaultPrng = std.rand.DefaultPrng;
const assert = std.debug.assert;
const assertError = std.debug.assertError;
@ -132,3 +134,438 @@ test "SliceOutStream" {
assertError(ss.stream.write("Hello world!"), error.OutOfSpace);
assert(mem.eql(u8, ss.getWritten(), "Hello worl"));
}
test "BitInStream" {
const mem_be = []u8{ 0b11001101, 0b00001011 };
const mem_le = []u8{ 0b00011101, 0b10010101 };
var mem_in_be = io.SliceInStream.init(mem_be[0..]);
const InError = io.SliceInStream.Error;
var bit_stream_be = io.BitInStream(builtin.Endian.Big, InError).init(&mem_in_be.stream);
var out_bits: usize = undefined;
assert(1 == try bit_stream_be.readBits(u2, 1, &out_bits));
assert(out_bits == 1);
assert(2 == try bit_stream_be.readBits(u5, 2, &out_bits));
assert(out_bits == 2);
assert(3 == try bit_stream_be.readBits(u128, 3, &out_bits));
assert(out_bits == 3);
assert(4 == try bit_stream_be.readBits(u8, 4, &out_bits));
assert(out_bits == 4);
assert(5 == try bit_stream_be.readBits(u9, 5, &out_bits));
assert(out_bits == 5);
assert(1 == try bit_stream_be.readBits(u1, 1, &out_bits));
assert(out_bits == 1);
mem_in_be.pos = 0;
bit_stream_be.bit_count = 0;
assert(0b110011010000101 == try bit_stream_be.readBits(u15, 15, &out_bits));
assert(out_bits == 15);
mem_in_be.pos = 0;
bit_stream_be.bit_count = 0;
assert(0b1100110100001011 == try bit_stream_be.readBits(u16, 16, &out_bits));
assert(out_bits == 16);
_ = try bit_stream_be.readBits(u0, 0, &out_bits);
assert(0 == try bit_stream_be.readBits(u1, 1, &out_bits));
assert(out_bits == 0);
assertError(bit_stream_be.readBitsNoEof(u1, 1), error.EndOfStream);
var mem_in_le = io.SliceInStream.init(mem_le[0..]);
var bit_stream_le = io.BitInStream(builtin.Endian.Little, InError).init(&mem_in_le.stream);
assert(1 == try bit_stream_le.readBits(u2, 1, &out_bits));
assert(out_bits == 1);
assert(2 == try bit_stream_le.readBits(u5, 2, &out_bits));
assert(out_bits == 2);
assert(3 == try bit_stream_le.readBits(u128, 3, &out_bits));
assert(out_bits == 3);
assert(4 == try bit_stream_le.readBits(u8, 4, &out_bits));
assert(out_bits == 4);
assert(5 == try bit_stream_le.readBits(u9, 5, &out_bits));
assert(out_bits == 5);
assert(1 == try bit_stream_le.readBits(u1, 1, &out_bits));
assert(out_bits == 1);
mem_in_le.pos = 0;
bit_stream_le.bit_count = 0;
assert(0b001010100011101 == try bit_stream_le.readBits(u15, 15, &out_bits));
assert(out_bits == 15);
mem_in_le.pos = 0;
bit_stream_le.bit_count = 0;
assert(0b1001010100011101 == try bit_stream_le.readBits(u16, 16, &out_bits));
assert(out_bits == 16);
_ = try bit_stream_le.readBits(u0, 0, &out_bits);
assert(0 == try bit_stream_le.readBits(u1, 1, &out_bits));
assert(out_bits == 0);
assertError(bit_stream_le.readBitsNoEof(u1, 1), error.EndOfStream);
}
test "BitOutStream" {
var mem_be = []u8{0} ** 2;
var mem_le = []u8{0} ** 2;
var mem_out_be = io.SliceOutStream.init(mem_be[0..]);
const OutError = io.SliceOutStream.Error;
var bit_stream_be = io.BitOutStream(builtin.Endian.Big, OutError).init(&mem_out_be.stream);
try bit_stream_be.writeBits(u2(1), 1);
try bit_stream_be.writeBits(u5(2), 2);
try bit_stream_be.writeBits(u128(3), 3);
try bit_stream_be.writeBits(u8(4), 4);
try bit_stream_be.writeBits(u9(5), 5);
try bit_stream_be.writeBits(u1(1), 1);
assert(mem_be[0] == 0b11001101 and mem_be[1] == 0b00001011);
mem_out_be.pos = 0;
try bit_stream_be.writeBits(u15(0b110011010000101), 15);
try bit_stream_be.flushBits();
assert(mem_be[0] == 0b11001101 and mem_be[1] == 0b00001010);
mem_out_be.pos = 0;
try bit_stream_be.writeBits(u32(0b110011010000101), 16);
assert(mem_be[0] == 0b01100110 and mem_be[1] == 0b10000101);
try bit_stream_be.writeBits(u0(0), 0);
var mem_out_le = io.SliceOutStream.init(mem_le[0..]);
var bit_stream_le = io.BitOutStream(builtin.Endian.Little, OutError).init(&mem_out_le.stream);
try bit_stream_le.writeBits(u2(1), 1);
try bit_stream_le.writeBits(u5(2), 2);
try bit_stream_le.writeBits(u128(3), 3);
try bit_stream_le.writeBits(u8(4), 4);
try bit_stream_le.writeBits(u9(5), 5);
try bit_stream_le.writeBits(u1(1), 1);
assert(mem_le[0] == 0b00011101 and mem_le[1] == 0b10010101);
mem_out_le.pos = 0;
try bit_stream_le.writeBits(u15(0b110011010000101), 15);
try bit_stream_le.flushBits();
assert(mem_le[0] == 0b10000101 and mem_le[1] == 0b01100110);
mem_out_le.pos = 0;
try bit_stream_le.writeBits(u32(0b1100110100001011), 16);
assert(mem_le[0] == 0b00001011 and mem_le[1] == 0b11001101);
try bit_stream_le.writeBits(u0(0), 0);
}
test "BitStreams with File Stream" {
const tmp_file_name = "temp_test_file.txt";
{
var file = try os.File.openWrite(tmp_file_name);
defer file.close();
var file_out = file.outStream();
var file_out_stream = &file_out.stream;
const OutError = os.File.WriteError;
var bit_stream = io.BitOutStream(builtin.endian, OutError).init(file_out_stream);
try bit_stream.writeBits(u2(1), 1);
try bit_stream.writeBits(u5(2), 2);
try bit_stream.writeBits(u128(3), 3);
try bit_stream.writeBits(u8(4), 4);
try bit_stream.writeBits(u9(5), 5);
try bit_stream.writeBits(u1(1), 1);
try bit_stream.flushBits();
}
{
var file = try os.File.openRead(tmp_file_name);
defer file.close();
var file_in = file.inStream();
var file_in_stream = &file_in.stream;
const InError = os.File.ReadError;
var bit_stream = io.BitInStream(builtin.endian, InError).init(file_in_stream);
var out_bits: usize = undefined;
assert(1 == try bit_stream.readBits(u2, 1, &out_bits));
assert(out_bits == 1);
assert(2 == try bit_stream.readBits(u5, 2, &out_bits));
assert(out_bits == 2);
assert(3 == try bit_stream.readBits(u128, 3, &out_bits));
assert(out_bits == 3);
assert(4 == try bit_stream.readBits(u8, 4, &out_bits));
assert(out_bits == 4);
assert(5 == try bit_stream.readBits(u9, 5, &out_bits));
assert(out_bits == 5);
assert(1 == try bit_stream.readBits(u1, 1, &out_bits));
assert(out_bits == 1);
assertError(bit_stream.readBitsNoEof(u1, 1), error.EndOfStream);
}
try os.deleteFile(tmp_file_name);
}
fn testIntSerializerDeserializer(comptime endian: builtin.Endian, comptime is_packed: bool) !void {
//@NOTE: if this test is taking too long, reduce the maximum tested bitsize
const max_test_bitsize = 128;
const total_bytes = comptime blk: {
var bytes = 0;
comptime var i = 0;
while (i <= max_test_bitsize) : (i += 1) bytes += (i / 8) + @boolToInt(i % 8 > 0);
break :blk bytes * 2;
};
var data_mem: [total_bytes]u8 = undefined;
var out = io.SliceOutStream.init(data_mem[0..]);
const OutError = io.SliceOutStream.Error;
var out_stream = &out.stream;
var serializer = io.Serializer(endian, is_packed, OutError).init(out_stream);
var in = io.SliceInStream.init(data_mem[0..]);
const InError = io.SliceInStream.Error;
var in_stream = &in.stream;
var deserializer = io.Deserializer(endian, is_packed, InError).init(in_stream);
comptime var i = 0;
inline while (i <= max_test_bitsize) : (i += 1) {
const U = @IntType(false, i);
const S = @IntType(true, i);
try serializer.serializeInt(U(i));
if (i != 0) try serializer.serializeInt(S(-1)) else try serializer.serialize(S(0));
}
try serializer.flush();
i = 0;
inline while (i <= max_test_bitsize) : (i += 1) {
const U = @IntType(false, i);
const S = @IntType(true, i);
const x = try deserializer.deserializeInt(U);
const y = try deserializer.deserializeInt(S);
assert(x == U(i));
if (i != 0) assert(y == S(-1)) else assert(y == 0);
}
const u8_bit_count = comptime meta.bitCount(u8);
//0 + 1 + 2 + ... n = (n * (n + 1)) / 2
//and we have each for unsigned and signed, so * 2
const total_bits = (max_test_bitsize * (max_test_bitsize + 1));
const extra_packed_byte = @boolToInt(total_bits % u8_bit_count > 0);
const total_packed_bytes = (total_bits / u8_bit_count) + extra_packed_byte;
assert(in.pos == if (is_packed) total_packed_bytes else total_bytes);
}
test "Serializer/Deserializer Int" {
try testIntSerializerDeserializer(builtin.Endian.Big, false);
try testIntSerializerDeserializer(builtin.Endian.Little, false);
try testIntSerializerDeserializer(builtin.Endian.Big, true);
try testIntSerializerDeserializer(builtin.Endian.Little, true);
}
fn testIntSerializerDeserializerInfNaN(comptime endian: builtin.Endian,
comptime is_packed: bool) !void
{
const mem_size = (16*2 + 32*2 + 64*2 + 128*2) / comptime meta.bitCount(u8);
var data_mem: [mem_size]u8 = undefined;
var out = io.SliceOutStream.init(data_mem[0..]);
const OutError = io.SliceOutStream.Error;
var out_stream = &out.stream;
var serializer = io.Serializer(endian, is_packed, OutError).init(out_stream);
var in = io.SliceInStream.init(data_mem[0..]);
const InError = io.SliceInStream.Error;
var in_stream = &in.stream;
var deserializer = io.Deserializer(endian, is_packed, InError).init(in_stream);
//@TODO: isInf/isNan not currently implemented for f128.
try serializer.serialize(std.math.nan(f16));
try serializer.serialize(std.math.inf(f16));
try serializer.serialize(std.math.nan(f32));
try serializer.serialize(std.math.inf(f32));
try serializer.serialize(std.math.nan(f64));
try serializer.serialize(std.math.inf(f64));
//try serializer.serialize(std.math.nan(f128));
//try serializer.serialize(std.math.inf(f128));
const nan_check_f16 = try deserializer.deserialize(f16);
const inf_check_f16 = try deserializer.deserialize(f16);
const nan_check_f32 = try deserializer.deserialize(f32);
const inf_check_f32 = try deserializer.deserialize(f32);
const nan_check_f64 = try deserializer.deserialize(f64);
const inf_check_f64 = try deserializer.deserialize(f64);
//const nan_check_f128 = try deserializer.deserialize(f128);
//const inf_check_f128 = try deserializer.deserialize(f128);
assert(std.math.isNan(nan_check_f16));
assert(std.math.isInf(inf_check_f16));
assert(std.math.isNan(nan_check_f32));
assert(std.math.isInf(inf_check_f32));
assert(std.math.isNan(nan_check_f64));
assert(std.math.isInf(inf_check_f64));
//assert(std.math.isNan(nan_check_f128));
//assert(std.math.isInf(inf_check_f128));
}
test "Serializer/Deserializer Int: Inf/NaN" {
try testIntSerializerDeserializerInfNaN(builtin.Endian.Big, false);
try testIntSerializerDeserializerInfNaN(builtin.Endian.Little, false);
try testIntSerializerDeserializerInfNaN(builtin.Endian.Big, true);
try testIntSerializerDeserializerInfNaN(builtin.Endian.Little, true);
}
fn testAlternateSerializer(self: var, serializer: var) !void {
try serializer.serialize(self.f_f16);
}
fn testSerializerDeserializer(comptime endian: builtin.Endian, comptime is_packed: bool) !void {
const ColorType = enum(u4) {
RGB8 = 1,
RA16 = 2,
R32 = 3,
};
const TagAlign = union(enum(u32)) {
A: u8,
B: u8,
C: u8,
};
const Color = union(ColorType) {
RGB8: struct {
r: u8,
g: u8,
b: u8,
a: u8,
},
RA16: struct {
r: u16,
a: u16,
},
R32: u32,
};
const PackedStruct = packed struct {
f_i3: i3,
f_u2: u2,
};
//to test custom serialization
const Custom = struct {
f_f16: f16,
f_unused_u32: u32,
pub fn deserialize(self: *@This(), deserializer: var) !void {
try deserializer.deserializeInto(&self.f_f16);
self.f_unused_u32 = 47;
}
pub const serialize = testAlternateSerializer;
};
const MyStruct = struct {
f_i3: i3,
f_u8: u8,
f_tag_align: TagAlign,
f_u24: u24,
f_i19: i19,
f_void: void,
f_f32: f32,
f_f128: f128,
f_packed_0: PackedStruct,
f_i7arr: [10]i7,
f_of64n: ?f64,
f_of64v: ?f64,
f_color_type: ColorType,
f_packed_1: PackedStruct,
f_custom: Custom,
f_color: Color,
};
const my_inst = MyStruct{
.f_i3 = -1,
.f_u8 = 8,
.f_tag_align = TagAlign{ .B = 148 },
.f_u24 = 24,
.f_i19 = 19,
.f_void = {},
.f_f32 = 32.32,
.f_f128 = 128.128,
.f_packed_0 = PackedStruct{ .f_i3 = -1, .f_u2 = 2 },
.f_i7arr = [10]i7{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },
.f_of64n = null,
.f_of64v = 64.64,
.f_color_type = ColorType.R32,
.f_packed_1 = PackedStruct{ .f_i3 = 1, .f_u2 = 1 },
.f_custom = Custom{ .f_f16 = 38.63, .f_unused_u32 = 47 },
.f_color = Color{ .R32 = 123822 },
};
var data_mem: [@sizeOf(MyStruct)]u8 = undefined;
var out = io.SliceOutStream.init(data_mem[0..]);
const OutError = io.SliceOutStream.Error;
var out_stream = &out.stream;
var serializer = io.Serializer(endian, is_packed, OutError).init(out_stream);
var in = io.SliceInStream.init(data_mem[0..]);
const InError = io.SliceInStream.Error;
var in_stream = &in.stream;
var deserializer = io.Deserializer(endian, is_packed, InError).init(in_stream);
try serializer.serialize(my_inst);
const my_copy = try deserializer.deserialize(MyStruct);
assert(meta.eql(my_copy, my_inst));
}
test "Serializer/Deserializer generic" {
try testSerializerDeserializer(builtin.Endian.Big, false);
try testSerializerDeserializer(builtin.Endian.Little, false);
try testSerializerDeserializer(builtin.Endian.Big, true);
try testSerializerDeserializer(builtin.Endian.Little, true);
}
fn testBadData(comptime endian: builtin.Endian, comptime is_packed: bool) !void {
const E = enum(u14) {
One = 1,
Two = 2,
};
const A = struct {
e: E,
};
const C = union(E) {
One: u14,
Two: f16,
};
var data_mem: [4]u8 = undefined;
var out = io.SliceOutStream.init(data_mem[0..]);
const OutError = io.SliceOutStream.Error;
var out_stream = &out.stream;
var serializer = io.Serializer(endian, is_packed, OutError).init(out_stream);
var in = io.SliceInStream.init(data_mem[0..]);
const InError = io.SliceInStream.Error;
var in_stream = &in.stream;
var deserializer = io.Deserializer(endian, is_packed, InError).init(in_stream);
try serializer.serialize(u14(3));
assertError(deserializer.deserialize(A), error.InvalidEnumTag);
out.pos = 0;
try serializer.serialize(u14(3));
try serializer.serialize(u14(88));
assertError(deserializer.deserialize(C), error.InvalidEnumTag);
}
test "Deserializer bad data" {
try testBadData(builtin.Endian.Big, false);
try testBadData(builtin.Endian.Little, false);
try testBadData(builtin.Endian.Big, true);
try testBadData(builtin.Endian.Little, true);
}

View File

@ -95,7 +95,7 @@ test "std.meta.stringToEnum" {
debug.assert(null == stringToEnum(E1, "C"));
}
pub fn bitCount(comptime T: type) u32 {
pub fn bitCount(comptime T: type) comptime_int {
return switch (@typeInfo(T)) {
TypeId.Int => |info| info.bits,
TypeId.Float => |info| info.bits,
@ -108,7 +108,7 @@ test "std.meta.bitCount" {
debug.assert(bitCount(f32) == 32);
}
pub fn alignment(comptime T: type) u29 {
pub fn alignment(comptime T: type) comptime_int {
//@alignOf works on non-pointer types
const P = if (comptime trait.is(TypeId.Pointer)(T)) T else *T;
return @typeInfo(P).Pointer.alignment;
@ -386,6 +386,33 @@ test "std.meta.activeTag" {
debug.assert(activeTag(u) == UE.Float);
}
///Given a tagged union type, and an enum, return the type of the union
/// field corresponding to the enum tag.
pub fn TagPayloadType(comptime U: type, tag: var) type {
const Tag = @typeOf(tag);
debug.assert(trait.is(builtin.TypeId.Union)(U));
debug.assert(trait.is(builtin.TypeId.Enum)(Tag));
const info = @typeInfo(U).Union;
inline for (info.fields) |field_info| {
if (field_info.enum_field.?.value == @enumToInt(tag)) return field_info.field_type;
}
unreachable;
}
test "std.meta.TagPayloadType" {
const Event = union(enum) {
Moved: struct {
from: i32,
to: i32,
},
};
const MovedEvent = TagPayloadType(Event, Event.Moved);
var e: Event = undefined;
debug.assert(MovedEvent == @typeOf(e.Moved));
}
///Compares two of any type for equality. Containers are compared on a field-by-field basis,
/// where possible. Pointers are not followed.
pub fn eql(a: var, b: @typeOf(a)) bool {
@ -439,6 +466,11 @@ pub fn eql(a: var, b: @typeOf(a)) bool {
builtin.TypeInfo.Pointer.Size.Slice => return a.ptr == b.ptr and a.len == b.len,
}
},
builtin.TypeId.Optional => {
if(a == null and b == null) return true;
if(a == null or b == null) return false;
return eql(a.?, b.?);
},
else => return a == b,
}
}
@ -452,7 +484,7 @@ test "std.meta.eql" {
const U = union(enum) {
s: S,
f: f32,
f: ?f32,
};
const s_1 = S{

View File

@ -231,6 +231,37 @@ test "std.meta.trait.isPacked" {
debug.assert(!isPacked(u8));
}
///
pub fn isUnsignedInt(comptime T: type) bool {
return switch (@typeId(T)) {
builtin.TypeId.Int => !@typeInfo(T).Int.is_signed,
else => false,
};
}
test "isUnsignedInt" {
debug.assert(isUnsignedInt(u32) == true);
debug.assert(isUnsignedInt(comptime_int) == false);
debug.assert(isUnsignedInt(i64) == false);
debug.assert(isUnsignedInt(f64) == false);
}
///
pub fn isSignedInt(comptime T: type) bool {
return switch (@typeId(T)) {
builtin.TypeId.ComptimeInt => true,
builtin.TypeId.Int => @typeInfo(T).Int.is_signed,
else => false,
};
}
test "isSignedInt" {
debug.assert(isSignedInt(u32) == false);
debug.assert(isSignedInt(comptime_int) == true);
debug.assert(isSignedInt(i64) == true);
debug.assert(isSignedInt(f64) == false);
}
///
pub fn isSingleItemPtr(comptime T: type) bool {
if (comptime is(builtin.TypeId.Pointer)(T)) {