mirror of
https://github.com/ziglang/zig.git
synced 2025-02-12 23:50:18 +00:00
std.os.linux.tls: Refactor and improve documentation.
* Elaborate on the sub-variants of Variant I. * Clarify the use of the TCB term. * Rename a bunch of stuff to be more accurate/descriptive. * Follow Zig's style around namespacing more. * Use a structure for the ABI TCB. No functional change intended.
This commit is contained in:
parent
38e0f049c5
commit
b52e054261
@ -1261,9 +1261,9 @@ const LinuxThreadImpl = struct {
|
||||
bytes = std.mem.alignForward(usize, bytes, page_size);
|
||||
stack_offset = bytes;
|
||||
|
||||
bytes = std.mem.alignForward(usize, bytes, linux.tls.tls_image.alloc_align);
|
||||
bytes = std.mem.alignForward(usize, bytes, linux.tls.area_desc.alignment);
|
||||
tls_offset = bytes;
|
||||
bytes += linux.tls.tls_image.alloc_size;
|
||||
bytes += linux.tls.area_desc.size;
|
||||
|
||||
bytes = std.mem.alignForward(usize, bytes, @alignOf(Instance));
|
||||
instance_offset = bytes;
|
||||
@ -1304,12 +1304,12 @@ const LinuxThreadImpl = struct {
|
||||
};
|
||||
|
||||
// Prepare the TLS segment and prepare a user_desc struct when needed on x86
|
||||
var tls_ptr = linux.tls.prepareTLS(mapped[tls_offset..]);
|
||||
var tls_ptr = linux.tls.prepareArea(mapped[tls_offset..]);
|
||||
var user_desc: if (target.cpu.arch == .x86) linux.user_desc else void = undefined;
|
||||
if (target.cpu.arch == .x86) {
|
||||
defer tls_ptr = @intFromPtr(&user_desc);
|
||||
user_desc = .{
|
||||
.entry_number = linux.tls.tls_image.gdt_entry_number,
|
||||
.entry_number = linux.tls.area_desc.gdt_entry_number,
|
||||
.base_addr = tls_ptr,
|
||||
.limit = 0xfffff,
|
||||
.flags = .{
|
||||
|
@ -1,3 +1,14 @@
|
||||
//! This file implements the two TLS variants [1] used by ELF-based systems. Note that, in reality,
|
||||
//! Variant I has two sub-variants.
|
||||
//!
|
||||
//! It is important to understand that the term TCB (Thread Control Block) is overloaded here.
|
||||
//! Official ABI documentation uses it simply to mean the ABI TCB, i.e. a small area of ABI-defined
|
||||
//! data, usually one or two words (see the `AbiTcb` type below). People will also often use TCB to
|
||||
//! refer to the libc TCB, which can be any size and contain anything. (One could even omit it!) We
|
||||
//! refer to the latter as the Zig TCB; see the `ZigTcb` type below.
|
||||
//!
|
||||
//! [1] https://www.akkadia.org/drepper/tls.pdf
|
||||
|
||||
const std = @import("std");
|
||||
const mem = std.mem;
|
||||
const elf = std.elf;
|
||||
@ -7,56 +18,58 @@ const native_arch = @import("builtin").cpu.arch;
|
||||
const linux = std.os.linux;
|
||||
const posix = std.posix;
|
||||
|
||||
// This file implements the two TLS variants [1] used by ELF-based systems.
|
||||
//
|
||||
// The variant I has the following layout in memory:
|
||||
// -------------------------------------------------------
|
||||
// | DTV | Zig | DTV | Alignment | TLS |
|
||||
// | storage | thread data | pointer | | block |
|
||||
// ------------------------^------------------------------
|
||||
// `-- The thread pointer register points here
|
||||
//
|
||||
// In this case we allocate additional space for our control structure that's
|
||||
// placed _before_ the DTV pointer together with the DTV.
|
||||
//
|
||||
// NOTE: Some systems such as power64 or mips use this variant with a twist: the
|
||||
// alignment is not present and the tp and DTV addresses are offset by a
|
||||
// constant.
|
||||
//
|
||||
// On the other hand the variant II has the following layout in memory:
|
||||
// ---------------------------------------
|
||||
// | TLS | TCB | Zig | DTV |
|
||||
// | block | | thread data | storage |
|
||||
// --------^------------------------------
|
||||
// `-- The thread pointer register points here
|
||||
//
|
||||
// The structure of the TCB is not defined by the ABI so we reserve enough space
|
||||
// for a single pointer as some architectures such as x86 and x86_64 need a
|
||||
// pointer to the TCB block itself at the address pointed by the tp.
|
||||
//
|
||||
// In this case the control structure and DTV are placed one after another right
|
||||
// after the TLS block data.
|
||||
//
|
||||
// At the moment the DTV is very simple since we only support static TLS, all we
|
||||
// need is a two word vector to hold the number of entries (1) and the address
|
||||
// of the first TLS block.
|
||||
//
|
||||
// [1] https://www.akkadia.org/drepper/tls.pdf
|
||||
|
||||
const TLSVariant = enum {
|
||||
VariantI,
|
||||
VariantII,
|
||||
/// Represents an ELF TLS variant.
|
||||
///
|
||||
/// In all variants, the TP and the TLS blocks must be aligned to the `p_align` value in the
|
||||
/// `PT_TLS` ELF program header. Everything else has natural alignment.
|
||||
///
|
||||
/// The location of the DTV does not actually matter. For simplicity, we put it in the TLS area, but
|
||||
/// there is no actual ABI requirement that it reside there.
|
||||
const Variant = enum {
|
||||
/// The original Variant I:
|
||||
///
|
||||
/// ----------------------------------------
|
||||
/// | DTV | Zig TCB | ABI TCB | TLS Blocks |
|
||||
/// ----------------^-----------------------
|
||||
/// `-- The TP register points here.
|
||||
///
|
||||
/// The layout in this variant necessitates separate alignment of both the TP and the TLS
|
||||
/// blocks.
|
||||
///
|
||||
/// The first word in the ABI TCB points to the DTV. For some architectures, there may be a
|
||||
/// second word with an unspecified meaning.
|
||||
I_original,
|
||||
/// The modified Variant I:
|
||||
///
|
||||
/// ---------------------------------------------------
|
||||
/// | DTV | Zig TCB | ABI TCB | [Offset] | TLS Blocks |
|
||||
/// -------------------------------------^-------------
|
||||
/// `-- The TP register points here.
|
||||
///
|
||||
/// The offset (which can be zero) is applied to the TP only; there is never physical gap
|
||||
/// between the ABI TCB and the TLS blocks. This implies that we only need to align the TP.
|
||||
///
|
||||
/// The first (and only) word in the ABI TCB points to the DTV.
|
||||
I_modified,
|
||||
/// Variant II:
|
||||
///
|
||||
/// ----------------------------------------
|
||||
/// | TLS Blocks | ABI TCB | Zig TCB | DTV |
|
||||
/// -------------^--------------------------
|
||||
/// `-- The TP register points here.
|
||||
///
|
||||
/// The first (and only) word in the ABI TCB points to the ABI TCB itself.
|
||||
II,
|
||||
};
|
||||
|
||||
const tls_variant = switch (native_arch) {
|
||||
const current_variant: Variant = switch (native_arch) {
|
||||
.arm,
|
||||
.armeb,
|
||||
.thumb,
|
||||
.thumbeb,
|
||||
.aarch64,
|
||||
.aarch64_be,
|
||||
.riscv32,
|
||||
.riscv64,
|
||||
.thumb,
|
||||
.thumbeb,
|
||||
=> .I_original,
|
||||
.mips,
|
||||
.mipsel,
|
||||
.mips64,
|
||||
@ -65,73 +78,126 @@ const tls_variant = switch (native_arch) {
|
||||
.powerpcle,
|
||||
.powerpc64,
|
||||
.powerpc64le,
|
||||
=> TLSVariant.VariantI,
|
||||
.x86_64, .x86, .sparc64 => TLSVariant.VariantII,
|
||||
else => @compileError("undefined tls_variant for this architecture"),
|
||||
.riscv32,
|
||||
.riscv64,
|
||||
=> .I_modified,
|
||||
.sparc64,
|
||||
.x86,
|
||||
.x86_64,
|
||||
=> .II,
|
||||
else => @compileError("undefined TLS variant for this architecture"),
|
||||
};
|
||||
|
||||
// Controls how many bytes are reserved for the Thread Control Block
|
||||
const tls_tcb_size = switch (native_arch) {
|
||||
// ARM EABI mandates enough space for two pointers: the first one points to
|
||||
// the DTV while the second one is unspecified but reserved
|
||||
.arm, .armeb, .thumb, .thumbeb, .aarch64, .aarch64_be => 2 * @sizeOf(usize),
|
||||
// One pointer-sized word that points either to the DTV or the TCB itself
|
||||
else => @sizeOf(usize),
|
||||
};
|
||||
|
||||
// Controls if the TP points to the end of the TCB instead of its beginning
|
||||
const tls_tp_points_past_tcb = switch (native_arch) {
|
||||
.riscv32, .riscv64, .mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le => true,
|
||||
else => false,
|
||||
};
|
||||
|
||||
// Some architectures add some offset to the tp and dtv addresses in order to
|
||||
// make the generated code more efficient
|
||||
|
||||
const tls_tp_offset = switch (native_arch) {
|
||||
.mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le => 0x7000,
|
||||
/// The Offset value for the modified Variant I.
|
||||
const current_tp_offset = switch (native_arch) {
|
||||
.mips,
|
||||
.mipsel,
|
||||
.mips64,
|
||||
.mips64el,
|
||||
.powerpc,
|
||||
.powerpcle,
|
||||
.powerpc64,
|
||||
.powerpc64le,
|
||||
=> 0x7000,
|
||||
else => 0,
|
||||
};
|
||||
|
||||
const tls_dtv_offset = switch (native_arch) {
|
||||
.mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le => 0x8000,
|
||||
.riscv32, .riscv64 => 0x800,
|
||||
/// Usually only used by the modified Variant I.
|
||||
const current_dtv_offset = switch (native_arch) {
|
||||
.mips,
|
||||
.mipsel,
|
||||
.mips64,
|
||||
.mips64el,
|
||||
.powerpc,
|
||||
.powerpcle,
|
||||
.powerpc64,
|
||||
.powerpc64le,
|
||||
=> 0x8000,
|
||||
.riscv32,
|
||||
.riscv64,
|
||||
=> 0x800,
|
||||
else => 0,
|
||||
};
|
||||
|
||||
// Per-thread storage for Zig's use
|
||||
const CustomData = struct {
|
||||
/// Per-thread storage for the ELF TLS ABI.
|
||||
const AbiTcb = switch (current_variant) {
|
||||
.I_original, .I_modified => switch (native_arch) {
|
||||
// ARM EABI mandates enough space for two pointers: the first one points to the DTV as
|
||||
// usual, while the second one is unspecified.
|
||||
.aarch64,
|
||||
.aarch64_be,
|
||||
.arm,
|
||||
.armeb,
|
||||
.thumb,
|
||||
.thumbeb,
|
||||
=> extern struct {
|
||||
/// This is offset by `current_dtv_offset`.
|
||||
dtv: usize,
|
||||
reserved: ?*anyopaque,
|
||||
},
|
||||
else => extern struct {
|
||||
/// This is offset by `current_dtv_offset`.
|
||||
dtv: usize,
|
||||
},
|
||||
},
|
||||
.II => extern struct {
|
||||
/// This is self-referential.
|
||||
self: *AbiTcb,
|
||||
},
|
||||
};
|
||||
|
||||
/// Per-thread storage for Zig's use. Currently unused.
|
||||
const ZigTcb = struct {
|
||||
dummy: usize,
|
||||
};
|
||||
|
||||
// Dynamic Thread Vector
|
||||
const DTV = extern struct {
|
||||
entries: usize,
|
||||
tls_block: [1][*]u8,
|
||||
/// Dynamic Thread Vector as specified in the ELF TLS ABI. Ordinarily, there is a block pointer per
|
||||
/// dynamically-loaded module, but since we only support static TLS, we only need one block pointer.
|
||||
const Dtv = extern struct {
|
||||
len: usize = 1,
|
||||
tls_block: [*]u8,
|
||||
};
|
||||
|
||||
// Holds all the information about the process TLS image
|
||||
const TLSImage = struct {
|
||||
init_data: []const u8,
|
||||
alloc_size: usize,
|
||||
alloc_align: usize,
|
||||
tcb_offset: usize,
|
||||
dtv_offset: usize,
|
||||
data_offset: usize,
|
||||
data_size: usize,
|
||||
// Only used on the x86 architecture
|
||||
/// Describes a process's TLS area. The area encompasses the DTV, both TCBs, and the TLS block, with
|
||||
/// the exact layout of these being dependent primarily on `current_variant`.
|
||||
const AreaDesc = struct {
|
||||
size: usize,
|
||||
alignment: usize,
|
||||
|
||||
dtv: struct {
|
||||
/// Offset into the TLS area.
|
||||
offset: usize,
|
||||
},
|
||||
|
||||
abi_tcb: struct {
|
||||
/// Offset into the TLS area.
|
||||
offset: usize,
|
||||
},
|
||||
|
||||
block: struct {
|
||||
/// The initial data to be copied into the TLS block. Note that this may be smaller than
|
||||
/// `size`, in which case any remaining data in the TLS block is simply left uninitialized.
|
||||
init: []const u8,
|
||||
/// Offset into the TLS area.
|
||||
offset: usize,
|
||||
/// This is the effective size of the TLS block, which may be greater than `init.len`.
|
||||
size: usize,
|
||||
},
|
||||
|
||||
/// Only used on the 32-bit x86 architecture (not x86_64, nor x32).
|
||||
gdt_entry_number: usize,
|
||||
};
|
||||
|
||||
pub var tls_image: TLSImage = undefined;
|
||||
pub var area_desc: AreaDesc = undefined;
|
||||
|
||||
pub fn setThreadPointer(addr: usize) void {
|
||||
@setRuntimeSafety(false);
|
||||
@disableInstrumentation();
|
||||
|
||||
switch (native_arch) {
|
||||
.x86 => {
|
||||
var user_desc: linux.user_desc = .{
|
||||
.entry_number = tls_image.gdt_entry_number,
|
||||
.entry_number = area_desc.gdt_entry_number,
|
||||
.base_addr = addr,
|
||||
.limit = 0xfffff,
|
||||
.flags = .{
|
||||
@ -148,7 +214,7 @@ pub fn setThreadPointer(addr: usize) void {
|
||||
|
||||
const gdt_entry_number = user_desc.entry_number;
|
||||
// We have to keep track of our slot as it's also needed for clone()
|
||||
tls_image.gdt_entry_number = gdt_entry_number;
|
||||
area_desc.gdt_entry_number = gdt_entry_number;
|
||||
// Update the %gs selector
|
||||
asm volatile ("movl %[gs_val], %%gs"
|
||||
:
|
||||
@ -206,7 +272,7 @@ pub fn setThreadPointer(addr: usize) void {
|
||||
}
|
||||
}
|
||||
|
||||
fn initTLS(phdrs: []elf.Phdr) void {
|
||||
fn computeAreaDesc(phdrs: []elf.Phdr) void {
|
||||
@setRuntimeSafety(false);
|
||||
@disableInstrumentation();
|
||||
|
||||
@ -221,72 +287,85 @@ fn initTLS(phdrs: []elf.Phdr) void {
|
||||
}
|
||||
}
|
||||
|
||||
var tls_align_factor: usize = undefined;
|
||||
var tls_data: []const u8 = undefined;
|
||||
var tls_data_alloc_size: usize = undefined;
|
||||
var align_factor: usize = undefined;
|
||||
var block_init: []const u8 = undefined;
|
||||
var block_size: usize = undefined;
|
||||
|
||||
if (tls_phdr) |phdr| {
|
||||
// The effective size in memory is represented by p_memsz, the length of
|
||||
// the data stored in the PT_TLS segment is p_filesz and may be less
|
||||
// than the former
|
||||
tls_align_factor = phdr.p_align;
|
||||
tls_data = @as([*]u8, @ptrFromInt(img_base + phdr.p_vaddr))[0..phdr.p_filesz];
|
||||
tls_data_alloc_size = phdr.p_memsz;
|
||||
align_factor = phdr.p_align;
|
||||
|
||||
// The effective size in memory is represented by `p_memsz`; the length of the data stored
|
||||
// in the `PT_TLS` segment is `p_filesz` and may be less than the former.
|
||||
block_init = @as([*]u8, @ptrFromInt(img_base + phdr.p_vaddr))[0..phdr.p_filesz];
|
||||
block_size = phdr.p_memsz;
|
||||
} else {
|
||||
tls_align_factor = @alignOf(usize);
|
||||
tls_data = &[_]u8{};
|
||||
tls_data_alloc_size = 0;
|
||||
align_factor = @alignOf(usize);
|
||||
|
||||
block_init = &[_]u8{};
|
||||
block_size = 0;
|
||||
}
|
||||
|
||||
// Offsets into the allocated TLS area
|
||||
var tcb_offset: usize = undefined;
|
||||
// Offsets into the allocated TLS area.
|
||||
var dtv_offset: usize = undefined;
|
||||
var data_offset: usize = undefined;
|
||||
// Compute the total size of the ABI-specific data plus our own control
|
||||
// structures. All the offset calculated here assume a well-aligned base
|
||||
// address.
|
||||
const alloc_size = switch (tls_variant) {
|
||||
.VariantI => blk: {
|
||||
var abi_tcb_offset: usize = undefined;
|
||||
var block_offset: usize = undefined;
|
||||
|
||||
// Compute the total size of the ABI-specific data plus our own `ZigTcb` structure. All the
|
||||
// offsets calculated here assume a well-aligned base address.
|
||||
const area_size = switch (current_variant) {
|
||||
.I_original, .I_modified => blk: {
|
||||
var l: usize = 0;
|
||||
dtv_offset = l;
|
||||
l += @sizeOf(DTV);
|
||||
// Add some padding here so that the thread pointer (tcb_offset) is
|
||||
// aligned to p_align and the CustomData structure can be found by
|
||||
// simply subtracting its @sizeOf from the tp value
|
||||
const delta = (l + @sizeOf(CustomData)) & (tls_align_factor - 1);
|
||||
l += @sizeOf(Dtv);
|
||||
// Add some padding here so that the TP (`abi_tcb_offset`) is aligned to `align_factor`
|
||||
// and the `ZigTcb` structure can be found by simply subtracting `@sizeOf(ZigTcb)` from
|
||||
// the TP.
|
||||
const delta = (l + @sizeOf(ZigTcb)) & (align_factor - 1);
|
||||
if (delta > 0)
|
||||
l += tls_align_factor - delta;
|
||||
l += @sizeOf(CustomData);
|
||||
tcb_offset = l;
|
||||
l += alignForward(tls_tcb_size, tls_align_factor);
|
||||
data_offset = l;
|
||||
l += tls_data_alloc_size;
|
||||
l += align_factor - delta;
|
||||
l += @sizeOf(ZigTcb);
|
||||
abi_tcb_offset = l;
|
||||
l += alignForward(@sizeOf(AbiTcb), align_factor);
|
||||
block_offset = l;
|
||||
l += block_size;
|
||||
break :blk l;
|
||||
},
|
||||
.VariantII => blk: {
|
||||
.II => blk: {
|
||||
var l: usize = 0;
|
||||
data_offset = l;
|
||||
l += alignForward(tls_data_alloc_size, tls_align_factor);
|
||||
// The thread pointer is aligned to p_align
|
||||
tcb_offset = l;
|
||||
l += tls_tcb_size;
|
||||
// The CustomData structure is right after the TCB with no padding
|
||||
// in between so it can be easily found
|
||||
l += @sizeOf(CustomData);
|
||||
l = alignForward(l, @alignOf(DTV));
|
||||
block_offset = l;
|
||||
l += alignForward(block_size, align_factor);
|
||||
// The TP is aligned to `align_factor`.
|
||||
abi_tcb_offset = l;
|
||||
l += @sizeOf(AbiTcb);
|
||||
// The `ZigTcb` structure is right after the `AbiTcb` with no padding in between so it
|
||||
// can be easily found.
|
||||
l += @sizeOf(ZigTcb);
|
||||
// It doesn't really matter where we put the DTV, so give it natural alignment.
|
||||
l = alignForward(l, @alignOf(Dtv));
|
||||
dtv_offset = l;
|
||||
l += @sizeOf(DTV);
|
||||
l += @sizeOf(Dtv);
|
||||
break :blk l;
|
||||
},
|
||||
};
|
||||
|
||||
tls_image = TLSImage{
|
||||
.init_data = tls_data,
|
||||
.alloc_size = alloc_size,
|
||||
.alloc_align = tls_align_factor,
|
||||
.tcb_offset = tcb_offset,
|
||||
.dtv_offset = dtv_offset,
|
||||
.data_offset = data_offset,
|
||||
.data_size = tls_data_alloc_size,
|
||||
area_desc = .{
|
||||
.size = area_size,
|
||||
.alignment = align_factor,
|
||||
|
||||
.dtv = .{
|
||||
.offset = dtv_offset,
|
||||
},
|
||||
|
||||
.abi_tcb = .{
|
||||
.offset = abi_tcb_offset,
|
||||
},
|
||||
|
||||
.block = .{
|
||||
.init = block_init,
|
||||
.offset = block_offset,
|
||||
.size = block_size,
|
||||
},
|
||||
|
||||
.gdt_entry_number = @as(usize, @bitCast(@as(isize, -1))),
|
||||
};
|
||||
}
|
||||
@ -306,78 +385,80 @@ inline fn alignPtrCast(comptime T: type, ptr: [*]u8) *T {
|
||||
return @ptrCast(@alignCast(ptr));
|
||||
}
|
||||
|
||||
/// Initializes all the fields of the static TLS area and returns the computed
|
||||
/// architecture-specific value of the thread-pointer register
|
||||
///
|
||||
/// This function is inline because thread local storage is not set up yet.
|
||||
pub fn prepareTLS(area: []u8) usize {
|
||||
/// Initializes all the fields of the static TLS area and returns the computed architecture-specific
|
||||
/// value of the TP register.
|
||||
pub fn prepareArea(area: []u8) usize {
|
||||
@setRuntimeSafety(false);
|
||||
@disableInstrumentation();
|
||||
// Clear the area we're going to use, just to be safe
|
||||
@memset(area, 0);
|
||||
// Prepare the DTV
|
||||
const dtv = alignPtrCast(DTV, area.ptr + tls_image.dtv_offset);
|
||||
dtv.entries = 1;
|
||||
dtv.tls_block[0] = area.ptr + tls_dtv_offset + tls_image.data_offset;
|
||||
// Prepare the TCB
|
||||
const tcb_ptr = alignPtrCast([*]u8, area.ptr + tls_image.tcb_offset);
|
||||
tcb_ptr.* = switch (tls_variant) {
|
||||
.VariantI => area.ptr + tls_image.dtv_offset,
|
||||
.VariantII => area.ptr + tls_image.tcb_offset,
|
||||
};
|
||||
// Copy the data
|
||||
@memcpy(area[tls_image.data_offset..][0..tls_image.init_data.len], tls_image.init_data);
|
||||
|
||||
// Return the corrected value (if needed) for the tp register.
|
||||
// Overflow here is not a problem, the pointer arithmetic involving the tp
|
||||
// is done with wrapping semantics.
|
||||
return @intFromPtr(area.ptr) +% tls_tp_offset +%
|
||||
if (tls_tp_points_past_tcb) tls_image.data_offset else tls_image.tcb_offset;
|
||||
// Clear the area we're going to use, just to be safe.
|
||||
@memset(area, 0);
|
||||
|
||||
// Prepare the ABI TCB.
|
||||
const abi_tcb = alignPtrCast(AbiTcb, area.ptr + area_desc.abi_tcb.offset);
|
||||
switch (current_variant) {
|
||||
.I_original, .I_modified => abi_tcb.dtv = @intFromPtr(area.ptr + area_desc.dtv.offset),
|
||||
.II => abi_tcb.self = abi_tcb,
|
||||
}
|
||||
|
||||
// Prepare the DTV.
|
||||
const dtv = alignPtrCast(Dtv, area.ptr + area_desc.dtv.offset);
|
||||
dtv.len = 1;
|
||||
dtv.tls_block = area.ptr + current_dtv_offset + area_desc.block.offset;
|
||||
|
||||
// Copy the initial data.
|
||||
@memcpy(area[area_desc.block.offset..][0..area_desc.block.init.len], area_desc.block.init);
|
||||
|
||||
// Return the corrected value (if needed) for the TP register. Overflow here is not a problem;
|
||||
// the pointer arithmetic involving the TP is done with wrapping semantics.
|
||||
return @intFromPtr(area.ptr) +% switch (current_variant) {
|
||||
.I_original, .II => area_desc.abi_tcb.offset,
|
||||
.I_modified => area_desc.block.offset +% current_tp_offset,
|
||||
};
|
||||
}
|
||||
|
||||
// The main motivation for the size chosen here is this is how much ends up being
|
||||
// requested for the thread local variables of the std.crypto.random implementation.
|
||||
// I'm not sure why it ends up being so much; the struct itself is only 64 bytes.
|
||||
// I think it has to do with being page aligned and LLVM or LLD is not smart enough
|
||||
// to lay out the TLS data in a space conserving way. Anyway I think it's fine
|
||||
// because it's less than 3 pages of memory, and putting it in the ELF like this
|
||||
// is equivalent to moving the mmap call below into the kernel, avoiding syscall
|
||||
// overhead.
|
||||
var main_thread_tls_buffer: [0x2100]u8 align(mem.page_size) = undefined;
|
||||
// The main motivation for the size chosen here is that this is how much ends up being requested for
|
||||
// the thread-local variables of the `std.crypto.random` implementation. I'm not sure why it ends up
|
||||
// being so much; the struct itself is only 64 bytes. I think it has to do with being page-aligned
|
||||
// and LLVM or LLD is not smart enough to lay out the TLS data in a space-conserving way. Anyway, I
|
||||
// think it's fine because it's less than 3 pages of memory, and putting it in the ELF like this is
|
||||
// equivalent to moving the `mmap` call below into the kernel, avoiding syscall overhead.
|
||||
var main_thread_area_buffer: [0x2100]u8 align(mem.page_size) = undefined;
|
||||
|
||||
pub fn initStaticTLS(phdrs: []elf.Phdr) void {
|
||||
/// Computes the layout of the static TLS area, allocates the area, initializes all of its fields,
|
||||
/// and assigns the architecture-specific value to the TP register.
|
||||
pub fn initStatic(phdrs: []elf.Phdr) void {
|
||||
@setRuntimeSafety(false);
|
||||
@disableInstrumentation();
|
||||
|
||||
initTLS(phdrs);
|
||||
computeAreaDesc(phdrs);
|
||||
|
||||
const tls_area = blk: {
|
||||
// Fast path for the common case where the TLS data is really small,
|
||||
// avoid an allocation and use our local buffer.
|
||||
if (tls_image.alloc_align <= mem.page_size and
|
||||
tls_image.alloc_size <= main_thread_tls_buffer.len)
|
||||
{
|
||||
break :blk main_thread_tls_buffer[0..tls_image.alloc_size];
|
||||
const area = blk: {
|
||||
// Fast path for the common case where the TLS data is really small, avoid an allocation and
|
||||
// use our local buffer.
|
||||
if (area_desc.alignment <= mem.page_size and area_desc.size <= main_thread_area_buffer.len) {
|
||||
break :blk main_thread_area_buffer[0..area_desc.size];
|
||||
}
|
||||
|
||||
const begin_addr = mmap(
|
||||
null,
|
||||
tls_image.alloc_size + tls_image.alloc_align - 1,
|
||||
area_desc.size + area_desc.alignment - 1,
|
||||
posix.PROT.READ | posix.PROT.WRITE,
|
||||
.{ .TYPE = .PRIVATE, .ANONYMOUS = true },
|
||||
-1,
|
||||
0,
|
||||
);
|
||||
if (@as(isize, @bitCast(begin_addr)) < 0) @trap();
|
||||
const alloc_tls_area: [*]align(mem.page_size) u8 = @ptrFromInt(begin_addr);
|
||||
|
||||
const area_ptr: [*]align(mem.page_size) u8 = @ptrFromInt(begin_addr);
|
||||
|
||||
// Make sure the slice is correctly aligned.
|
||||
const begin_aligned_addr = alignForward(begin_addr, tls_image.alloc_align);
|
||||
const begin_aligned_addr = alignForward(begin_addr, area_desc.alignment);
|
||||
const start = begin_aligned_addr - begin_addr;
|
||||
break :blk alloc_tls_area[start..][0..tls_image.alloc_size];
|
||||
break :blk area_ptr[start..][0..area_desc.size];
|
||||
};
|
||||
|
||||
const tp_value = prepareTLS(tls_area);
|
||||
const tp_value = prepareArea(area);
|
||||
setThreadPointer(tp_value);
|
||||
}
|
||||
|
||||
|
@ -456,7 +456,7 @@ fn posixCallMainAndExit(argc_argv_ptr: [*]usize) callconv(.C) noreturn {
|
||||
}
|
||||
|
||||
// Initialize the TLS area.
|
||||
std.os.linux.tls.initStaticTLS(phdrs);
|
||||
std.os.linux.tls.initStatic(phdrs);
|
||||
}
|
||||
|
||||
// The way Linux executables represent stack size is via the PT_GNU_STACK
|
||||
|
Loading…
Reference in New Issue
Block a user