crypto.keccak.State: add checks to prevent insecure transitions (#22020)

* crypto.keccak.State: don't unconditionally permute after a squeeze()

Now, squeeze() behaves like absorb()

Namely,

squeeze(x[0..t]);
squeeze(x[t..n)); with t <= n

becomes equivalent to squeeze(x[0..n]).

* keccak: in debug mode, track transitions to prevent insecure ones.

Fixes #22019
This commit is contained in:
Frank Denis 2024-11-20 11:16:09 +01:00 committed by GitHub
parent dafe1a910d
commit a5d4ad17b7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -4,6 +4,7 @@ const assert = std.debug.assert;
const math = std.math; const math = std.math;
const mem = std.mem; const mem = std.mem;
const native_endian = builtin.cpu.arch.endian(); const native_endian = builtin.cpu.arch.endian();
const mode = @import("builtin").mode;
/// The Keccak-f permutation. /// The Keccak-f permutation.
pub fn KeccakF(comptime f: u11) type { pub fn KeccakF(comptime f: u11) type {
@ -199,6 +200,46 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type
comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid state size comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid state size
comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size
// In debug mode, track transitions to prevent insecure ones.
const Op = enum { uninitialized, initialized, updated, absorb, squeeze };
const TransitionTracker = if (mode == .Debug) struct {
op: Op = .uninitialized,
fn to(tracker: *@This(), next_op: Op) void {
switch (next_op) {
.updated => {
switch (tracker.op) {
.uninitialized => @panic("cannot permute before initializing"),
else => {},
}
},
.absorb => {
switch (tracker.op) {
.squeeze => @panic("cannot absorb right after squeezing"),
else => {},
}
},
.squeeze => {
switch (tracker.op) {
.uninitialized => @panic("cannot squeeze before initializing"),
.initialized => @panic("cannot squeeze right after initializing"),
.absorb => @panic("cannot squeeze right after absorbing"),
else => {},
}
},
.uninitialized => @panic("cannot transition to uninitialized"),
.initialized => {},
}
tracker.op = next_op;
}
} else struct {
// No-op in non-debug modes.
inline fn to(tracker: *@This(), next_op: Op) void {
_ = tracker; // no-op
_ = next_op; // no-op
}
};
return struct { return struct {
const Self = @This(); const Self = @This();
@ -215,67 +256,108 @@ pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type
st: KeccakF(f) = .{}, st: KeccakF(f) = .{},
transition: TransitionTracker = .{},
/// Absorb a slice of bytes into the sponge. /// Absorb a slice of bytes into the sponge.
pub fn absorb(self: *Self, bytes_: []const u8) void { pub fn absorb(self: *Self, bytes: []const u8) void {
var bytes = bytes_; self.transition.to(.absorb);
var i: usize = 0;
if (self.offset > 0) { if (self.offset > 0) {
const left = @min(rate - self.offset, bytes.len); const left = @min(rate - self.offset, bytes.len);
@memcpy(self.buf[self.offset..][0..left], bytes[0..left]); @memcpy(self.buf[self.offset..][0..left], bytes[0..left]);
self.offset += left; self.offset += left;
if (left == bytes.len) return;
if (self.offset == rate) { if (self.offset == rate) {
self.offset = 0;
self.st.addBytes(self.buf[0..]); self.st.addBytes(self.buf[0..]);
self.st.permuteR(rounds); self.st.permuteR(rounds);
self.offset = 0;
} }
if (left == bytes.len) return; i = left;
bytes = bytes[left..];
} }
while (bytes.len >= rate) { while (i + rate < bytes.len) : (i += rate) {
self.st.addBytes(bytes[0..rate]); self.st.addBytes(bytes[i..][0..rate]);
self.st.permuteR(rounds); self.st.permuteR(rounds);
bytes = bytes[rate..];
} }
if (bytes.len > 0) { const left = bytes.len - i;
@memcpy(self.buf[0..bytes.len], bytes); if (left > 0) {
self.offset = bytes.len; @memcpy(self.buf[0..left], bytes[i..][0..left]);
} }
self.offset = left;
} }
/// Initialize the state from a slice of bytes. /// Initialize the state from a slice of bytes.
pub fn init(bytes: [f / 8]u8) Self { pub fn init(bytes: [f / 8]u8, delim: u8) Self {
return .{ .st = KeccakF(f).init(bytes) }; var st = Self{ .st = KeccakF(f).init(bytes), .delim = delim };
st.transition.to(.initialized);
return st;
} }
/// Permute the state /// Permute the state
pub fn permute(self: *Self) void { pub fn permute(self: *Self) void {
if (mode == .Debug) {
if (self.transition.op == .absorb and self.offset > 0) {
@panic("cannot permute with pending input - call fillBlock() or pad() instead");
}
}
self.transition.to(.updated);
self.st.permuteR(rounds); self.st.permuteR(rounds);
self.offset = 0; self.offset = 0;
} }
/// Align the input to the rate boundary. /// Align the input to the rate boundary and permute.
pub fn fillBlock(self: *Self) void { pub fn fillBlock(self: *Self) void {
self.transition.to(.absorb);
self.st.addBytes(self.buf[0..self.offset]); self.st.addBytes(self.buf[0..self.offset]);
self.st.permuteR(rounds); self.st.permuteR(rounds);
self.offset = 0; self.offset = 0;
self.transition.to(.updated);
} }
/// Mark the end of the input. /// Mark the end of the input.
pub fn pad(self: *Self) void { pub fn pad(self: *Self) void {
self.transition.to(.absorb);
self.st.addBytes(self.buf[0..self.offset]); self.st.addBytes(self.buf[0..self.offset]);
if (self.offset == rate) {
self.st.permuteR(rounds);
self.offset = 0;
}
self.st.addByte(self.delim, self.offset); self.st.addByte(self.delim, self.offset);
self.st.addByte(0x80, rate - 1); self.st.addByte(0x80, rate - 1);
self.st.permuteR(rounds); self.st.permuteR(rounds);
self.offset = 0; self.offset = 0;
self.transition.to(.updated);
} }
/// Squeeze a slice of bytes from the sponge. /// Squeeze a slice of bytes from the sponge.
/// The function can be called multiple times.
pub fn squeeze(self: *Self, out: []u8) void { pub fn squeeze(self: *Self, out: []u8) void {
self.transition.to(.squeeze);
var i: usize = 0; var i: usize = 0;
while (i < out.len) : (i += rate) { if (self.offset == rate) {
const left = @min(rate, out.len - i); self.st.permuteR(rounds);
self.st.extractBytes(out[i..][0..left]); } else if (self.offset > 0) {
@branchHint(.unlikely);
var buf: [rate]u8 = undefined;
self.st.extractBytes(buf[0..]);
const left = @min(rate - self.offset, out.len);
@memcpy(out[0..left], buf[self.offset..][0..left]);
self.offset += left;
if (left == out.len) return;
if (self.offset == rate) {
self.offset = 0;
self.st.permuteR(rounds); self.st.permuteR(rounds);
} }
i = left;
}
while (i + rate < out.len) : (i += rate) {
self.st.extractBytes(out[i..][0..rate]);
self.st.permuteR(rounds);
}
const left = out.len - i;
if (left > 0) {
self.st.extractBytes(out[i..][0..left]);
}
self.offset = left;
} }
}; };
} }
@ -298,3 +380,26 @@ test "Keccak-f800" {
}; };
try std.testing.expectEqualSlices(u32, &st.st, &expected); try std.testing.expectEqualSlices(u32, &st.st, &expected);
} }
test "squeeze" {
var st = State(800, 256, 22).init([_]u8{0x80} ** 100, 0x01);
var out0: [15]u8 = undefined;
var out1: [out0.len]u8 = undefined;
st.permute();
var st0 = st;
st0.squeeze(out0[0..]);
var st1 = st;
st1.squeeze(out1[0 .. out1.len / 2]);
st1.squeeze(out1[out1.len / 2 ..]);
try std.testing.expectEqualSlices(u8, &out0, &out1);
var out2: [100]u8 = undefined;
var out3: [out2.len]u8 = undefined;
var st2 = st;
st2.squeeze(out2[0..]);
var st3 = st;
st3.squeeze(out3[0 .. out2.len / 2]);
st3.squeeze(out3[out2.len / 2 ..]);
try std.testing.expectEqualSlices(u8, &out2, &out3);
}