mirror of
https://github.com/godotengine/godot.git
synced 2024-11-22 12:12:28 +00:00
423 lines
14 KiB
C++
423 lines
14 KiB
C++
/**************************************************************************/
|
|
/* immediate_mesh.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "immediate_mesh.h"
|
|
|
|
void ImmediateMesh::surface_begin(PrimitiveType p_primitive, const Ref<Material> &p_material) {
|
|
ERR_FAIL_COND_MSG(surface_active, "Already creating a new surface.");
|
|
active_surface_data.primitive = p_primitive;
|
|
active_surface_data.material = p_material;
|
|
surface_active = true;
|
|
}
|
|
void ImmediateMesh::surface_set_color(const Color &p_color) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
|
|
if (!uses_colors) {
|
|
colors.resize(vertices.size());
|
|
for (Color &color : colors) {
|
|
color = p_color;
|
|
}
|
|
uses_colors = true;
|
|
}
|
|
|
|
current_color = p_color;
|
|
}
|
|
void ImmediateMesh::surface_set_normal(const Vector3 &p_normal) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
|
|
if (!uses_normals) {
|
|
normals.resize(vertices.size());
|
|
for (Vector3 &normal : normals) {
|
|
normal = p_normal;
|
|
}
|
|
uses_normals = true;
|
|
}
|
|
|
|
current_normal = p_normal;
|
|
}
|
|
void ImmediateMesh::surface_set_tangent(const Plane &p_tangent) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
if (!uses_tangents) {
|
|
tangents.resize(vertices.size());
|
|
for (Plane &tangent : tangents) {
|
|
tangent = p_tangent;
|
|
}
|
|
uses_tangents = true;
|
|
}
|
|
|
|
current_tangent = p_tangent;
|
|
}
|
|
void ImmediateMesh::surface_set_uv(const Vector2 &p_uv) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
if (!uses_uvs) {
|
|
uvs.resize(vertices.size());
|
|
for (Vector2 &uv : uvs) {
|
|
uv = p_uv;
|
|
}
|
|
uses_uvs = true;
|
|
}
|
|
|
|
current_uv = p_uv;
|
|
}
|
|
void ImmediateMesh::surface_set_uv2(const Vector2 &p_uv2) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
if (!uses_uv2s) {
|
|
uv2s.resize(vertices.size());
|
|
for (Vector2 &uv : uv2s) {
|
|
uv = p_uv2;
|
|
}
|
|
uses_uv2s = true;
|
|
}
|
|
|
|
current_uv2 = p_uv2;
|
|
}
|
|
void ImmediateMesh::surface_add_vertex(const Vector3 &p_vertex) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
ERR_FAIL_COND_MSG(vertices.size() && active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface.");
|
|
|
|
if (uses_colors) {
|
|
colors.push_back(current_color);
|
|
}
|
|
if (uses_normals) {
|
|
normals.push_back(current_normal);
|
|
}
|
|
if (uses_tangents) {
|
|
tangents.push_back(current_tangent);
|
|
}
|
|
if (uses_uvs) {
|
|
uvs.push_back(current_uv);
|
|
}
|
|
if (uses_uv2s) {
|
|
uv2s.push_back(current_uv2);
|
|
}
|
|
vertices.push_back(p_vertex);
|
|
}
|
|
|
|
void ImmediateMesh::surface_add_vertex_2d(const Vector2 &p_vertex) {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
ERR_FAIL_COND_MSG(vertices.size() && !active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface.");
|
|
|
|
if (uses_colors) {
|
|
colors.push_back(current_color);
|
|
}
|
|
if (uses_normals) {
|
|
normals.push_back(current_normal);
|
|
}
|
|
if (uses_tangents) {
|
|
tangents.push_back(current_tangent);
|
|
}
|
|
if (uses_uvs) {
|
|
uvs.push_back(current_uv);
|
|
}
|
|
if (uses_uv2s) {
|
|
uv2s.push_back(current_uv2);
|
|
}
|
|
Vector3 v(p_vertex.x, p_vertex.y, 0);
|
|
vertices.push_back(v);
|
|
|
|
active_surface_data.vertex_2d = true;
|
|
}
|
|
|
|
void ImmediateMesh::surface_end() {
|
|
ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it.");
|
|
ERR_FAIL_COND_MSG(vertices.is_empty(), "No vertices were added, surface can't be created.");
|
|
|
|
uint64_t format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION;
|
|
|
|
uint32_t vertex_stride = 0;
|
|
if (active_surface_data.vertex_2d) {
|
|
format |= ARRAY_FLAG_USE_2D_VERTICES;
|
|
vertex_stride = sizeof(float) * 2;
|
|
} else {
|
|
vertex_stride = sizeof(float) * 3;
|
|
}
|
|
uint32_t normal_tangent_stride = 0;
|
|
uint32_t normal_offset = 0;
|
|
if (uses_normals) {
|
|
format |= ARRAY_FORMAT_NORMAL;
|
|
normal_offset = vertex_stride * vertices.size();
|
|
normal_tangent_stride += sizeof(uint32_t);
|
|
}
|
|
uint32_t tangent_offset = 0;
|
|
if (uses_tangents || uses_normals) {
|
|
format |= ARRAY_FORMAT_TANGENT;
|
|
tangent_offset = vertex_stride * vertices.size() + normal_tangent_stride;
|
|
normal_tangent_stride += sizeof(uint32_t);
|
|
}
|
|
|
|
AABB aabb;
|
|
|
|
{
|
|
surface_vertex_create_cache.resize((vertex_stride + normal_tangent_stride) * vertices.size());
|
|
uint8_t *surface_vertex_ptr = surface_vertex_create_cache.ptrw();
|
|
for (uint32_t i = 0; i < vertices.size(); i++) {
|
|
{
|
|
float *vtx = (float *)&surface_vertex_ptr[i * vertex_stride];
|
|
vtx[0] = vertices[i].x;
|
|
vtx[1] = vertices[i].y;
|
|
if (!active_surface_data.vertex_2d) {
|
|
vtx[2] = vertices[i].z;
|
|
}
|
|
if (i == 0) {
|
|
aabb = AABB(vertices[i], SMALL_VEC3); // Must have a bit of size.
|
|
} else {
|
|
aabb.expand_to(vertices[i]);
|
|
}
|
|
}
|
|
if (uses_normals) {
|
|
uint32_t *normal = (uint32_t *)&surface_vertex_ptr[i * normal_tangent_stride + normal_offset];
|
|
|
|
Vector2 n = normals[i].octahedron_encode();
|
|
|
|
uint32_t value = 0;
|
|
value |= (uint16_t)CLAMP(n.x * 65535, 0, 65535);
|
|
value |= (uint16_t)CLAMP(n.y * 65535, 0, 65535) << 16;
|
|
|
|
*normal = value;
|
|
}
|
|
if (uses_tangents || uses_normals) {
|
|
uint32_t *tangent = (uint32_t *)&surface_vertex_ptr[i * normal_tangent_stride + tangent_offset];
|
|
Vector2 t;
|
|
if (uses_tangents) {
|
|
t = tangents[i].normal.octahedron_tangent_encode(tangents[i].d);
|
|
} else {
|
|
Vector3 tan = Vector3(normals[i].z, -normals[i].x, normals[i].y).cross(normals[i].normalized()).normalized();
|
|
t = tan.octahedron_tangent_encode(1.0);
|
|
}
|
|
|
|
uint32_t value = 0;
|
|
value |= (uint16_t)CLAMP(t.x * 65535, 0, 65535);
|
|
value |= (uint16_t)CLAMP(t.y * 65535, 0, 65535) << 16;
|
|
if (value == 4294901760) {
|
|
// (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
|
|
// So we sanitize here.
|
|
value = 4294967295;
|
|
}
|
|
|
|
*tangent = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (uses_colors || uses_uvs || uses_uv2s) {
|
|
uint32_t attribute_stride = 0;
|
|
|
|
if (uses_colors) {
|
|
format |= ARRAY_FORMAT_COLOR;
|
|
attribute_stride += sizeof(uint8_t) * 4;
|
|
}
|
|
uint32_t uv_offset = 0;
|
|
if (uses_uvs) {
|
|
format |= ARRAY_FORMAT_TEX_UV;
|
|
uv_offset = attribute_stride;
|
|
attribute_stride += sizeof(float) * 2;
|
|
}
|
|
uint32_t uv2_offset = 0;
|
|
if (uses_uv2s) {
|
|
format |= ARRAY_FORMAT_TEX_UV2;
|
|
uv2_offset = attribute_stride;
|
|
attribute_stride += sizeof(float) * 2;
|
|
}
|
|
|
|
surface_attribute_create_cache.resize(vertices.size() * attribute_stride);
|
|
|
|
uint8_t *surface_attribute_ptr = surface_attribute_create_cache.ptrw();
|
|
|
|
for (uint32_t i = 0; i < vertices.size(); i++) {
|
|
if (uses_colors) {
|
|
uint8_t *color8 = (uint8_t *)&surface_attribute_ptr[i * attribute_stride];
|
|
|
|
color8[0] = uint8_t(CLAMP(colors[i].r * 255.0, 0.0, 255.0));
|
|
color8[1] = uint8_t(CLAMP(colors[i].g * 255.0, 0.0, 255.0));
|
|
color8[2] = uint8_t(CLAMP(colors[i].b * 255.0, 0.0, 255.0));
|
|
color8[3] = uint8_t(CLAMP(colors[i].a * 255.0, 0.0, 255.0));
|
|
}
|
|
if (uses_uvs) {
|
|
float *uv = (float *)&surface_attribute_ptr[i * attribute_stride + uv_offset];
|
|
|
|
uv[0] = uvs[i].x;
|
|
uv[1] = uvs[i].y;
|
|
}
|
|
|
|
if (uses_uv2s) {
|
|
float *uv2 = (float *)&surface_attribute_ptr[i * attribute_stride + uv2_offset];
|
|
|
|
uv2[0] = uv2s[i].x;
|
|
uv2[1] = uv2s[i].y;
|
|
}
|
|
}
|
|
}
|
|
|
|
RS::SurfaceData sd;
|
|
|
|
sd.primitive = RS::PrimitiveType(active_surface_data.primitive);
|
|
sd.format = format;
|
|
sd.vertex_data = surface_vertex_create_cache;
|
|
if (uses_colors || uses_uvs || uses_uv2s) {
|
|
sd.attribute_data = surface_attribute_create_cache;
|
|
}
|
|
sd.vertex_count = vertices.size();
|
|
sd.aabb = aabb;
|
|
if (active_surface_data.material.is_valid()) {
|
|
sd.material = active_surface_data.material->get_rid();
|
|
}
|
|
|
|
RS::get_singleton()->mesh_add_surface(mesh, sd);
|
|
|
|
active_surface_data.aabb = aabb;
|
|
|
|
active_surface_data.format = format;
|
|
active_surface_data.array_len = vertices.size();
|
|
|
|
surfaces.push_back(active_surface_data);
|
|
|
|
colors.clear();
|
|
normals.clear();
|
|
tangents.clear();
|
|
uvs.clear();
|
|
uv2s.clear();
|
|
vertices.clear();
|
|
|
|
uses_colors = false;
|
|
uses_normals = false;
|
|
uses_tangents = false;
|
|
uses_uvs = false;
|
|
uses_uv2s = false;
|
|
|
|
surface_active = false;
|
|
}
|
|
|
|
void ImmediateMesh::clear_surfaces() {
|
|
RS::get_singleton()->mesh_clear(mesh);
|
|
surfaces.clear();
|
|
surface_active = false;
|
|
|
|
colors.clear();
|
|
normals.clear();
|
|
tangents.clear();
|
|
uvs.clear();
|
|
uv2s.clear();
|
|
vertices.clear();
|
|
|
|
uses_colors = false;
|
|
uses_normals = false;
|
|
uses_tangents = false;
|
|
uses_uvs = false;
|
|
uses_uv2s = false;
|
|
}
|
|
|
|
int ImmediateMesh::get_surface_count() const {
|
|
return surfaces.size();
|
|
}
|
|
int ImmediateMesh::surface_get_array_len(int p_idx) const {
|
|
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), -1);
|
|
return surfaces[p_idx].array_len;
|
|
}
|
|
int ImmediateMesh::surface_get_array_index_len(int p_idx) const {
|
|
return 0;
|
|
}
|
|
Array ImmediateMesh::surface_get_arrays(int p_surface) const {
|
|
ERR_FAIL_INDEX_V(p_surface, int(surfaces.size()), Array());
|
|
return RS::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
|
|
}
|
|
TypedArray<Array> ImmediateMesh::surface_get_blend_shape_arrays(int p_surface) const {
|
|
return TypedArray<Array>();
|
|
}
|
|
Dictionary ImmediateMesh::surface_get_lods(int p_surface) const {
|
|
return Dictionary();
|
|
}
|
|
BitField<Mesh::ArrayFormat> ImmediateMesh::surface_get_format(int p_idx) const {
|
|
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), 0);
|
|
return surfaces[p_idx].format;
|
|
}
|
|
Mesh::PrimitiveType ImmediateMesh::surface_get_primitive_type(int p_idx) const {
|
|
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), PRIMITIVE_MAX);
|
|
return surfaces[p_idx].primitive;
|
|
}
|
|
void ImmediateMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
|
|
ERR_FAIL_INDEX(p_idx, int(surfaces.size()));
|
|
surfaces[p_idx].material = p_material;
|
|
RID mat;
|
|
if (p_material.is_valid()) {
|
|
mat = p_material->get_rid();
|
|
}
|
|
RS::get_singleton()->mesh_surface_set_material(mesh, p_idx, mat);
|
|
}
|
|
Ref<Material> ImmediateMesh::surface_get_material(int p_idx) const {
|
|
ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), Ref<Material>());
|
|
return surfaces[p_idx].material;
|
|
}
|
|
int ImmediateMesh::get_blend_shape_count() const {
|
|
return 0;
|
|
}
|
|
StringName ImmediateMesh::get_blend_shape_name(int p_index) const {
|
|
return StringName();
|
|
}
|
|
void ImmediateMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
|
|
}
|
|
|
|
AABB ImmediateMesh::get_aabb() const {
|
|
AABB aabb;
|
|
for (uint32_t i = 0; i < surfaces.size(); i++) {
|
|
if (i == 0) {
|
|
aabb = surfaces[i].aabb;
|
|
} else {
|
|
aabb = aabb.merge(surfaces[i].aabb);
|
|
}
|
|
}
|
|
return aabb;
|
|
}
|
|
|
|
void ImmediateMesh::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("surface_begin", "primitive", "material"), &ImmediateMesh::surface_begin, DEFVAL(Ref<Material>()));
|
|
ClassDB::bind_method(D_METHOD("surface_set_color", "color"), &ImmediateMesh::surface_set_color);
|
|
ClassDB::bind_method(D_METHOD("surface_set_normal", "normal"), &ImmediateMesh::surface_set_normal);
|
|
ClassDB::bind_method(D_METHOD("surface_set_tangent", "tangent"), &ImmediateMesh::surface_set_tangent);
|
|
ClassDB::bind_method(D_METHOD("surface_set_uv", "uv"), &ImmediateMesh::surface_set_uv);
|
|
ClassDB::bind_method(D_METHOD("surface_set_uv2", "uv2"), &ImmediateMesh::surface_set_uv2);
|
|
ClassDB::bind_method(D_METHOD("surface_add_vertex", "vertex"), &ImmediateMesh::surface_add_vertex);
|
|
ClassDB::bind_method(D_METHOD("surface_add_vertex_2d", "vertex"), &ImmediateMesh::surface_add_vertex_2d);
|
|
ClassDB::bind_method(D_METHOD("surface_end"), &ImmediateMesh::surface_end);
|
|
|
|
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ImmediateMesh::clear_surfaces);
|
|
}
|
|
|
|
RID ImmediateMesh::get_rid() const {
|
|
return mesh;
|
|
}
|
|
|
|
ImmediateMesh::ImmediateMesh() {
|
|
mesh = RS::get_singleton()->mesh_create();
|
|
}
|
|
ImmediateMesh::~ImmediateMesh() {
|
|
ERR_FAIL_NULL(RenderingServer::get_singleton());
|
|
RS::get_singleton()->free(mesh);
|
|
}
|