godot/modules/assimp/editor_scene_importer_assimp.cpp
2019-04-06 14:19:38 -07:00

2182 lines
80 KiB
C++

/*************************************************************************/
/* editor_scene_importer_assimp.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "assimp/DefaultLogger.hpp"
#include "assimp/Importer.hpp"
#include "assimp/LogStream.hpp"
#include "assimp/Logger.hpp"
#include "assimp/SceneCombiner.h"
#include "assimp/cexport.h"
#include "assimp/cimport.h"
#include "assimp/matrix4x4.h"
#include "assimp/pbrmaterial.h"
#include "assimp/postprocess.h"
#include "assimp/scene.h"
#include "core/bind/core_bind.h"
#include "core/io/image_loader.h"
#include "editor/editor_file_system.h"
#include "editor/import/resource_importer_scene.h"
#include "editor_scene_importer_assimp.h"
#include "editor_settings.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/3d/mesh_instance.h"
#include "scene/animation/animation_player.h"
#include "scene/main/node.h"
#include "scene/resources/material.h"
#include "scene/resources/surface_tool.h"
#include "zutil.h"
#include <string>
void EditorSceneImporterAssimp::get_extensions(List<String> *r_extensions) const {
const String import_setting_string = "filesystem/import/open_asset_import/";
Map<String, ImportFormat> import_format;
{
Vector<String> exts;
exts.push_back("fbx");
ImportFormat import = { exts, true };
import_format.insert("fbx", import);
}
{
Vector<String> exts;
exts.push_back("pmx");
ImportFormat import = { exts, true };
import_format.insert("mmd", import);
}
for (Map<String, ImportFormat>::Element *E = import_format.front(); E; E = E->next()) {
_register_project_setting_import(E->key(), import_setting_string, E->get().extensions, r_extensions, E->get().is_default);
}
}
void EditorSceneImporterAssimp::_register_project_setting_import(const String generic, const String import_setting_string, const Vector<String> &exts, List<String> *r_extensions, const bool p_enabled) const {
const String use_generic = "use_" + generic;
_GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true);
if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) {
for (int32_t i = 0; i < exts.size(); i++) {
r_extensions->push_back(exts[i]);
}
}
}
uint32_t EditorSceneImporterAssimp::get_import_flags() const {
return IMPORT_SCENE;
}
AssimpStream::AssimpStream() {
// empty
}
AssimpStream::~AssimpStream() {
// empty
}
void AssimpStream::write(const char *message) {
print_verbose(String("Open Asset Import: ") + String(message).strip_edges());
}
void EditorSceneImporterAssimp::_bind_methods() {
}
Node *EditorSceneImporterAssimp::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) {
Assimp::Importer importer;
std::wstring w_path = ProjectSettings::get_singleton()->globalize_path(p_path).c_str();
std::string s_path(w_path.begin(), w_path.end());
importer.SetPropertyBool(AI_CONFIG_PP_FD_REMOVE, true);
// Cannot remove pivot points because the static mesh will be in the wrong place
importer.SetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, true);
int32_t max_bone_weights = 4;
//if (p_flags & IMPORT_ANIMATION_EIGHT_WEIGHTS) {
// const int eight_bones = 8;
// importer.SetPropertyBool(AI_CONFIG_PP_LBW_MAX_WEIGHTS, eight_bones);
// max_bone_weights = eight_bones;
//}
importer.SetPropertyInteger(AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT);
//importer.SetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD, 1.0f);
int32_t post_process_Steps = aiProcess_CalcTangentSpace |
//aiProcess_FlipUVs |
//aiProcess_FlipWindingOrder |
aiProcess_DropNormals |
aiProcess_GenSmoothNormals |
aiProcess_JoinIdenticalVertices |
aiProcess_ImproveCacheLocality |
aiProcess_LimitBoneWeights |
//aiProcess_RemoveRedundantMaterials | // Causes a crash
aiProcess_SplitLargeMeshes |
aiProcess_Triangulate |
aiProcess_GenUVCoords |
//aiProcess_FindDegenerates |
aiProcess_SortByPType |
aiProcess_FindInvalidData |
aiProcess_TransformUVCoords |
aiProcess_FindInstances |
//aiProcess_FixInfacingNormals |
//aiProcess_ValidateDataStructure |
aiProcess_OptimizeMeshes |
//aiProcess_OptimizeGraph |
//aiProcess_Debone |
aiProcess_EmbedTextures |
aiProcess_SplitByBoneCount |
0;
const aiScene *scene = importer.ReadFile(s_path.c_str(),
post_process_Steps);
ERR_EXPLAIN(String("Open Asset Import failed to open: ") + String(importer.GetErrorString()));
ERR_FAIL_COND_V(scene == NULL, NULL);
return _generate_scene(p_path, scene, p_flags, p_bake_fps, max_bone_weights);
}
template <class T>
struct EditorSceneImporterAssetImportInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T bezier(T start, T control_1, T control_2, T end, float t) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = t * t;
real_t t3 = t2 * t;
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
}
};
//thank you for existing, partial specialization
template <>
struct EditorSceneImporterAssetImportInterpolate<Quat> {
Quat lerp(const Quat &a, const Quat &b, float c) const {
ERR_FAIL_COND_V(!a.is_normalized(), Quat());
ERR_FAIL_COND_V(!b.is_normalized(), Quat());
return a.slerp(b, c).normalized();
}
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
ERR_FAIL_COND_V(!p1.is_normalized(), Quat());
ERR_FAIL_COND_V(!p2.is_normalized(), Quat());
return p1.slerp(p2, c).normalized();
}
Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
ERR_FAIL_COND_V(!start.is_normalized(), Quat());
ERR_FAIL_COND_V(!end.is_normalized(), Quat());
return start.slerp(end, t).normalized();
}
};
template <class T>
T EditorSceneImporterAssimp::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time, AssetImportAnimation::Interpolation p_interp) {
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time)
break;
idx++;
}
EditorSceneImporterAssetImportInterpolate<T> interp;
switch (p_interp) {
case AssetImportAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case AssetImportAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case AssetImportAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case AssetImportAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
T from = p_values[idx * 3 + 1];
T c1 = from + p_values[idx * 3 + 2];
T to = p_values[idx * 3 + 4];
T c2 = to + p_values[idx * 3 + 3];
return interp.bezier(from, c1, c2, to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
Spatial *EditorSceneImporterAssimp::_generate_scene(const String &p_path, const aiScene *scene, const uint32_t p_flags, int p_bake_fps, const int32_t p_max_bone_weights) {
ERR_FAIL_COND_V(scene == NULL, NULL);
Spatial *root = memnew(Spatial);
AnimationPlayer *ap = NULL;
if (p_flags & IMPORT_ANIMATION) {
ap = memnew(AnimationPlayer);
root->add_child(ap);
ap->set_owner(root);
ap->set_name(TTR("AnimationPlayer"));
}
Set<String> bone_names;
Set<String> light_names;
Set<String> camera_names;
real_t factor = 1.0f;
String ext = p_path.get_file().get_extension().to_lower();
if ((ext == "fbx")) {
if (scene->mMetaData != NULL) {
scene->mMetaData->Get("UnitScaleFactor", factor);
factor = factor * 0.01f;
}
}
for (size_t l = 0; l < scene->mNumLights; l++) {
Light *light = NULL;
aiLight *ai_light = scene->mLights[l];
ERR_CONTINUE(ai_light == NULL);
if (ai_light->mType == aiLightSource_DIRECTIONAL) {
light = memnew(DirectionalLight);
Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z);
dir.normalize();
Transform xform;
Quat quat;
quat.set_euler(dir);
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
pos = factor * pos;
xform.origin = pos;
light->set_transform(xform);
} else if (ai_light->mType == aiLightSource_POINT) {
light = memnew(OmniLight);
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
Transform xform;
xform.origin = pos;
pos = factor * pos;
light->set_transform(xform);
// No idea for energy
light->set_param(Light::PARAM_ATTENUATION, 0.0f);
} else if (ai_light->mType == aiLightSource_SPOT) {
light = memnew(SpotLight);
Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z);
pos = factor * pos;
Transform xform;
xform.origin = pos;
Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z);
dir.normalize();
Quat quat;
quat.set_euler(dir);
xform.basis = quat;
light->set_transform(xform);
// No idea for energy
light->set_param(Light::PARAM_ATTENUATION, 0.0f);
}
ERR_CONTINUE(light == NULL);
light->set_color(Color(ai_light->mColorDiffuse.r, ai_light->mColorDiffuse.g, ai_light->mColorDiffuse.b));
root->add_child(light);
light->set_name(_ai_string_to_string(ai_light->mName));
light->set_owner(root);
light_names.insert(_ai_string_to_string(scene->mLights[l]->mName));
}
for (size_t c = 0; c < scene->mNumCameras; c++) {
aiCamera *ai_camera = scene->mCameras[c];
Camera *camera = memnew(Camera);
float near = ai_camera->mClipPlaneNear;
if (Math::is_equal_approx(near, 0.0f)) {
near = 0.1f;
}
camera->set_perspective(Math::rad2deg(ai_camera->mHorizontalFOV) * 2.0f, near, ai_camera->mClipPlaneFar);
Vector3 pos = Vector3(ai_camera->mPosition.x, ai_camera->mPosition.y, ai_camera->mPosition.z);
Vector3 look_at = Vector3(ai_camera->mLookAt.y, ai_camera->mLookAt.x, ai_camera->mLookAt.z).normalized();
Quat quat;
quat.set_euler(look_at);
Transform xform;
xform.basis = quat;
xform.set_origin(pos);
root->add_child(camera);
camera->set_transform(xform);
camera->set_name(_ai_string_to_string(ai_camera->mName));
camera->set_owner(root);
camera_names.insert(_ai_string_to_string(scene->mCameras[c]->mName));
}
Map<Skeleton *, MeshInstance *> skeletons;
Map<String, Transform> bone_rests;
Vector<MeshInstance *> meshes;
int32_t mesh_count = 0;
Skeleton *s = memnew(Skeleton);
Set<String> removed_bones;
Map<String, Map<uint32_t, String> > path_morph_mesh_names;
_generate_node(p_path, scene, scene->mRootNode, root, root, bone_names, light_names, camera_names, skeletons, bone_rests, meshes, mesh_count, s, p_max_bone_weights, removed_bones, path_morph_mesh_names);
for (Map<Skeleton *, MeshInstance *>::Element *E = skeletons.front(); E; E = E->next()) {
E->key()->localize_rests();
}
Set<String> removed_nodes;
Set<Node *> keep_nodes;
_keep_node(p_path, root, root, keep_nodes);
_fill_kept_node(keep_nodes);
_filter_node(p_path, root, root, keep_nodes, removed_nodes);
if (p_flags & IMPORT_ANIMATION) {
for (size_t i = 0; i < scene->mNumAnimations; i++) {
_import_animation(p_path, meshes, scene, ap, i, p_bake_fps, skeletons, removed_nodes, removed_bones, path_morph_mesh_names);
}
List<StringName> animation_names;
ap->get_animation_list(&animation_names);
if (animation_names.empty()) {
root->remove_child(ap);
memdelete(ap);
}
}
return root;
}
void EditorSceneImporterAssimp::_fill_kept_node(Set<Node *> &keep_nodes) {
for (Set<Node *>::Element *E = keep_nodes.front(); E; E = E->next()) {
Node *node = E->get();
while (node != NULL) {
if (keep_nodes.has(node) == false) {
keep_nodes.insert(node);
}
node = node->get_parent();
}
}
}
String EditorSceneImporterAssimp::_find_skeleton_bone_root(Map<Skeleton *, MeshInstance *> &skeletons, Map<MeshInstance *, String> &meshes, Spatial *root) {
for (Map<Skeleton *, MeshInstance *>::Element *E = skeletons.front(); E; E = E->next()) {
if (meshes.has(E->get())) {
String name = meshes[E->get()];
if (name != "") {
return name;
}
}
}
return "";
}
void EditorSceneImporterAssimp::_set_bone_parent(Skeleton *s, Node *p_owner, aiNode *p_node) {
for (int32_t j = 0; j < s->get_bone_count(); j++) {
String bone_name = s->get_bone_name(j);
const aiNode *ai_bone_node = _ai_find_node(p_node, bone_name);
if (ai_bone_node == NULL) {
continue;
}
ai_bone_node = ai_bone_node->mParent;
while (ai_bone_node != NULL) {
int32_t node_parent_index = -1;
String parent_bone_name = _ai_string_to_string(ai_bone_node->mName);
node_parent_index = s->find_bone(parent_bone_name);
if (node_parent_index != -1) {
s->set_bone_parent(j, node_parent_index);
break;
}
ai_bone_node = ai_bone_node->mParent;
}
}
}
void EditorSceneImporterAssimp::_insert_animation_track(const aiScene *p_scene, const String p_path, int p_bake_fps, Ref<Animation> animation, float ticks_per_second, float length, const Skeleton *sk, const aiNodeAnim *track, String node_name, NodePath node_path) {
if (track->mNumRotationKeys || track->mNumPositionKeys || track->mNumScalingKeys) {
//make transform track
int track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_TRANSFORM);
animation->track_set_path(track_idx, node_path);
//first determine animation length
for (size_t i = 0; i < track->mNumRotationKeys; i++) {
length = MAX(length, track->mRotationKeys[i].mTime / ticks_per_second);
}
for (size_t i = 0; i < track->mNumPositionKeys; i++) {
length = MAX(length, track->mPositionKeys[i].mTime / ticks_per_second);
}
for (size_t i = 0; i < track->mNumScalingKeys; i++) {
length = MAX(length, track->mScalingKeys[i].mTime / ticks_per_second);
}
float increment = 1.0 / float(p_bake_fps);
float time = 0.0;
Vector3 base_pos;
Quat base_rot;
Vector3 base_scale = Vector3(1, 1, 1);
if (track->mNumRotationKeys != 0) {
aiQuatKey key = track->mRotationKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
real_t w = key.mValue.w;
Quat q(x, y, z, w);
q = q.normalized();
base_rot = q;
}
if (track->mNumPositionKeys != 0) {
aiVectorKey key = track->mPositionKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
base_pos = Vector3(x, y, z);
}
if (track->mNumScalingKeys != 0) {
aiVectorKey key = track->mScalingKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
base_scale = Vector3(x, y, z);
}
bool last = false;
Vector<Vector3> pos_values;
Vector<float> pos_times;
Vector<Vector3> scale_values;
Vector<float> scale_times;
Vector<Quat> rot_values;
Vector<float> rot_times;
for (size_t p = 0; p < track->mNumPositionKeys; p++) {
aiVector3D pos = track->mPositionKeys[p].mValue;
pos_values.push_back(Vector3(pos.x, pos.y, pos.z));
pos_times.push_back(track->mPositionKeys[p].mTime / ticks_per_second);
}
for (size_t r = 0; r < track->mNumRotationKeys; r++) {
aiQuaternion quat = track->mRotationKeys[r].mValue;
rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized());
rot_times.push_back(track->mRotationKeys[r].mTime / ticks_per_second);
}
for (size_t sc = 0; sc < track->mNumScalingKeys; sc++) {
aiVector3D scale = track->mScalingKeys[sc].mValue;
scale_values.push_back(Vector3(scale.x, scale.y, scale.z));
scale_times.push_back(track->mScalingKeys[sc].mTime / ticks_per_second);
}
while (true) {
Vector3 pos = base_pos;
Quat rot = base_rot;
Vector3 scale = base_scale;
if (pos_values.size()) {
pos = _interpolate_track<Vector3>(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (rot_values.size()) {
rot = _interpolate_track<Quat>(rot_times, rot_values, time, AssetImportAnimation::INTERP_LINEAR).normalized();
}
if (scale_values.size()) {
scale = _interpolate_track<Vector3>(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR);
}
if (sk != NULL && sk->find_bone(node_name) != -1) {
Transform xform;
xform.basis.set_quat_scale(rot, scale);
xform.origin = pos;
int bone = sk->find_bone(node_name);
Transform rest_xform = sk->get_bone_rest(bone);
xform = rest_xform.affine_inverse() * xform;
rot = xform.basis.get_rotation_quat();
scale = xform.basis.get_scale();
pos = xform.origin;
}
{
Transform xform;
xform.basis.set_quat_scale(rot, scale);
xform.origin = pos;
Transform anim_xform;
String ext = p_path.get_file().get_extension().to_lower();
if (ext == "fbx") {
real_t factor = 1.0f;
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("UnitScaleFactor", factor);
}
anim_xform = anim_xform.scaled(Vector3(factor, factor, factor));
}
xform = anim_xform * xform;
rot = xform.basis.get_rotation_quat();
scale = xform.basis.get_scale();
pos = xform.origin;
}
rot.normalize();
animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR);
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
}
}
void EditorSceneImporterAssimp::_import_animation(const String p_path, const Vector<MeshInstance *> p_meshes, const aiScene *p_scene, AnimationPlayer *ap, int32_t p_index, int p_bake_fps, Map<Skeleton *, MeshInstance *> p_skeletons, const Set<String> p_removed_nodes, const Set<String> removed_bones, const Map<String, Map<uint32_t, String> > p_path_morph_mesh_names) {
String name = "Animation";
aiAnimation const *anim = NULL;
if (p_index != -1) {
anim = p_scene->mAnimations[p_index];
if (anim->mName.length > 0) {
name = _ai_anim_string_to_string(anim->mName);
}
}
Ref<Animation> animation;
animation.instance();
float length = 0.0f;
animation->set_name(name);
float ticks_per_second = p_scene->mAnimations[p_index]->mTicksPerSecond;
if (p_scene->mMetaData != NULL && Math::is_equal_approx(ticks_per_second, 0.0f)) {
int32_t time_mode = 0;
p_scene->mMetaData->Get("TimeMode", time_mode);
ticks_per_second = _get_fbx_fps(time_mode, p_scene);
}
if ((p_path.get_file().get_extension().to_lower() == "glb" || p_path.get_file().get_extension().to_lower() == "gltf") && Math::is_equal_approx(ticks_per_second, 0.0f)) {
ticks_per_second = 1000.0f;
}
if (Math::is_equal_approx(ticks_per_second, 0.0f)) {
ticks_per_second = 25.0f;
}
length = anim->mDuration / ticks_per_second;
if (anim) {
Map<String, Vector<const aiNodeAnim *> > node_tracks;
for (size_t i = 0; i < anim->mNumChannels; i++) {
const aiNodeAnim *track = anim->mChannels[i];
String node_name = _ai_string_to_string(track->mNodeName);
NodePath node_path = node_name;
bool is_bone = false;
if (node_name.split(ASSIMP_FBX_KEY).size() > 1) {
String p_track_type = node_name.split(ASSIMP_FBX_KEY)[1];
if (p_track_type == "_Translation" || p_track_type == "_Rotation" || p_track_type == "_Scaling") {
continue;
}
}
for (Map<Skeleton *, MeshInstance *>::Element *E = p_skeletons.front(); E; E = E->next()) {
Skeleton *sk = E->key();
const String path = ap->get_owner()->get_path_to(sk);
if (path.empty()) {
continue;
}
if (sk->find_bone(node_name) == -1) {
continue;
}
node_path = path + ":" + node_name;
ERR_CONTINUE(ap->get_owner()->has_node(node_path) == false);
_insert_animation_track(p_scene, p_path, p_bake_fps, animation, ticks_per_second, length, sk, track, node_name, node_path);
is_bone = true;
}
if (is_bone) {
continue;
}
Node *node = ap->get_owner()->find_node(node_name);
if (node == NULL) {
continue;
}
if (p_removed_nodes.has(node_name)) {
continue;
}
const String path = ap->get_owner()->get_path_to(node);
if (path.empty()) {
print_verbose("Can't animate path");
continue;
}
node_path = path;
if (ap->get_owner()->has_node(node_path) == false) {
continue;
}
_insert_animation_track(p_scene, p_path, p_bake_fps, animation, ticks_per_second, length, NULL, track, node_name, node_path);
}
for (size_t i = 0; i < anim->mNumChannels; i++) {
const aiNodeAnim *track = anim->mChannels[i];
String node_name = _ai_string_to_string(track->mNodeName);
Vector<String> split_name = node_name.split(ASSIMP_FBX_KEY);
String bare_name = split_name[0];
Node *node = ap->get_owner()->find_node(bare_name);
if (node != NULL && split_name.size() > 1) {
Map<String, Vector<const aiNodeAnim *> >::Element *E = node_tracks.find(bare_name);
Vector<const aiNodeAnim *> ai_tracks;
if (E) {
ai_tracks = E->get();
ai_tracks.push_back(anim->mChannels[i]);
} else {
ai_tracks.push_back(anim->mChannels[i]);
}
node_tracks.insert(bare_name, ai_tracks);
}
}
for (Map<Skeleton *, MeshInstance *>::Element *E = p_skeletons.front(); E; E = E->next()) {
Skeleton *sk = E->key();
Map<String, Vector<const aiNodeAnim *> > anim_tracks;
for (int32_t i = 0; i < sk->get_bone_count(); i++) {
String _bone_name = sk->get_bone_name(i);
Vector<const aiNodeAnim *> ai_tracks;
if (sk->find_bone(_bone_name) == -1) {
continue;
}
for (size_t j = 0; j < anim->mNumChannels; j++) {
if (_ai_string_to_string(anim->mChannels[j]->mNodeName).split(ASSIMP_FBX_KEY).size() == 1) {
continue;
}
String track_name = _ai_string_to_string(anim->mChannels[j]->mNodeName).split(ASSIMP_FBX_KEY)[0];
if (track_name != _bone_name) {
continue;
}
if (sk->find_bone(_bone_name) == -1) {
continue;
}
ai_tracks.push_back(anim->mChannels[j]);
}
if (ai_tracks.size() == 0) {
continue;
}
anim_tracks.insert(_bone_name, ai_tracks);
}
for (Map<String, Vector<const aiNodeAnim *> >::Element *F = anim_tracks.front(); F; F = F->next()) {
_insert_pivot_anim_track(p_meshes, F->key(), F->get(), ap, sk, length, ticks_per_second, animation, p_bake_fps, p_path, p_scene);
}
}
for (Map<String, Vector<const aiNodeAnim *> >::Element *E = node_tracks.front(); E; E = E->next()) {
if (p_removed_nodes.has(E->key())) {
continue;
}
if (removed_bones.find(E->key())) {
continue;
}
_insert_pivot_anim_track(p_meshes, E->key(), E->get(), ap, NULL, length, ticks_per_second, animation, p_bake_fps, p_path, p_scene);
}
for (size_t i = 0; i < anim->mNumMorphMeshChannels; i++) {
const aiMeshMorphAnim *anim_mesh = anim->mMorphMeshChannels[i];
const String prop_name = _ai_string_to_string(anim_mesh->mName);
const String mesh_name = prop_name.split("*")[0];
if (p_removed_nodes.has(mesh_name)) {
continue;
}
ERR_CONTINUE(prop_name.split("*").size() != 2);
const MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(ap->get_owner()->find_node(mesh_name));
ERR_CONTINUE(mesh_instance == NULL);
if (ap->get_owner()->find_node(mesh_instance->get_name()) == NULL) {
print_verbose("Can't find mesh in scene: " + mesh_instance->get_name());
continue;
}
const String path = ap->get_owner()->get_path_to(mesh_instance);
if (path.empty()) {
print_verbose("Can't find mesh in scene");
continue;
}
Ref<Mesh> mesh = mesh_instance->get_mesh();
ERR_CONTINUE(mesh.is_null());
const Map<String, Map<uint32_t, String> >::Element *E = p_path_morph_mesh_names.find(mesh_name);
ERR_CONTINUE(E == NULL);
for (size_t k = 0; k < anim_mesh->mNumKeys; k++) {
for (size_t j = 0; j < anim_mesh->mKeys[k].mNumValuesAndWeights; j++) {
const Map<uint32_t, String>::Element *F = E->get().find(anim_mesh->mKeys[k].mValues[j]);
ERR_CONTINUE(F == NULL);
const String prop = "blend_shapes/" + F->get();
const NodePath node_path = String(path) + ":" + prop;
ERR_CONTINUE(ap->get_owner()->has_node(node_path) == false);
int32_t blend_track_idx = -1;
if (animation->find_track(node_path) == -1) {
blend_track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_VALUE);
animation->track_set_interpolation_type(blend_track_idx, Animation::INTERPOLATION_LINEAR);
animation->track_set_path(blend_track_idx, node_path);
} else {
blend_track_idx = animation->find_track(node_path);
}
float t = anim_mesh->mKeys[k].mTime / ticks_per_second;
float w = anim_mesh->mKeys[k].mWeights[j];
animation->track_insert_key(blend_track_idx, t, w);
}
}
}
}
animation->set_length(length);
if (animation->get_track_count()) {
ap->add_animation(name, animation);
}
}
void EditorSceneImporterAssimp::_insert_pivot_anim_track(const Vector<MeshInstance *> p_meshes, const String p_node_name, Vector<const aiNodeAnim *> F, AnimationPlayer *ap, Skeleton *sk, float &length, float ticks_per_second, Ref<Animation> animation, int p_bake_fps, const String &p_path, const aiScene *p_scene) {
NodePath node_path;
if (sk != NULL) {
const String path = ap->get_owner()->get_path_to(sk);
if (path.empty()) {
return;
}
if (sk->find_bone(p_node_name) == -1) {
return;
}
node_path = path + ":" + p_node_name;
} else {
Node *node = ap->get_owner()->find_node(p_node_name);
if (node == NULL) {
return;
}
const String path = ap->get_owner()->get_path_to(node);
node_path = path;
}
if (node_path.is_empty()) {
return;
}
Vector<Vector3> pos_values;
Vector<float> pos_times;
Vector<Vector3> scale_values;
Vector<float> scale_times;
Vector<Quat> rot_values;
Vector<float> rot_times;
Vector3 base_pos;
Quat base_rot;
Vector3 base_scale = Vector3(1, 1, 1);
bool is_translation = false;
bool is_rotation = false;
bool is_scaling = false;
for (int32_t k = 0; k < F.size(); k++) {
String p_track_type = _ai_string_to_string(F[k]->mNodeName).split(ASSIMP_FBX_KEY)[1];
if (p_track_type == "_Translation") {
is_translation = is_translation || true;
} else if (p_track_type == "_Rotation") {
is_rotation = is_rotation || true;
} else if (p_track_type == "_Scaling") {
is_scaling = is_scaling || true;
} else {
continue;
}
ERR_CONTINUE(ap->get_owner()->has_node(node_path) == false);
if (F[k]->mNumRotationKeys || F[k]->mNumPositionKeys || F[k]->mNumScalingKeys) {
if (is_rotation) {
for (size_t i = 0; i < F[k]->mNumRotationKeys; i++) {
length = MAX(length, F[k]->mRotationKeys[i].mTime / ticks_per_second);
}
}
if (is_translation) {
for (size_t i = 0; i < F[k]->mNumPositionKeys; i++) {
length = MAX(length, F[k]->mPositionKeys[i].mTime / ticks_per_second);
}
}
if (is_scaling) {
for (size_t i = 0; i < F[k]->mNumScalingKeys; i++) {
length = MAX(length, F[k]->mScalingKeys[i].mTime / ticks_per_second);
}
}
if (is_rotation == false && is_translation == false && is_scaling == false) {
return;
}
if (is_rotation) {
if (F[k]->mNumRotationKeys != 0) {
aiQuatKey key = F[k]->mRotationKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
real_t w = key.mValue.w;
Quat q(x, y, z, w);
q = q.normalized();
base_rot = q;
}
}
if (is_translation) {
if (F[k]->mNumPositionKeys != 0) {
aiVectorKey key = F[k]->mPositionKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
base_pos = Vector3(x, y, z);
}
}
if (is_scaling) {
if (F[k]->mNumScalingKeys != 0) {
aiVectorKey key = F[k]->mScalingKeys[0];
real_t x = key.mValue.x;
real_t y = key.mValue.y;
real_t z = key.mValue.z;
base_scale = Vector3(x, y, z);
}
}
if (is_translation) {
for (size_t p = 0; p < F[k]->mNumPositionKeys; p++) {
aiVector3D pos = F[k]->mPositionKeys[p].mValue;
pos_values.push_back(Vector3(pos.x, pos.y, pos.z));
pos_times.push_back(F[k]->mPositionKeys[p].mTime / ticks_per_second);
}
}
if (is_rotation) {
for (size_t r = 0; r < F[k]->mNumRotationKeys; r++) {
aiQuaternion quat = F[k]->mRotationKeys[r].mValue;
rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized());
rot_times.push_back(F[k]->mRotationKeys[r].mTime / ticks_per_second);
}
}
if (is_scaling) {
for (size_t sc = 0; sc < F[k]->mNumScalingKeys; sc++) {
aiVector3D scale = F[k]->mScalingKeys[sc].mValue;
scale_values.push_back(Vector3(scale.x, scale.y, scale.z));
scale_times.push_back(F[k]->mScalingKeys[sc].mTime / ticks_per_second);
}
}
}
}
int32_t track_idx = animation->get_track_count();
animation->add_track(Animation::TYPE_TRANSFORM);
animation->track_set_path(track_idx, node_path);
float increment = 1.0 / float(p_bake_fps);
float time = 0.0;
bool last = false;
while (true) {
Vector3 pos = Vector3();
Quat rot = Quat();
Vector3 scale = Vector3(1.0f, 1.0f, 1.0f);
if (is_translation && pos_values.size()) {
pos = _interpolate_track<Vector3>(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR);
Transform anim_xform;
String ext = p_path.get_file().get_extension().to_lower();
if (ext == "fbx") {
aiNode *ai_node = _ai_find_node(p_scene->mRootNode, p_node_name);
Transform mesh_xform = _get_global_ai_node_transform(p_scene, ai_node);
pos = mesh_xform.origin + pos;
real_t factor = 1.0f;
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("UnitScaleFactor", factor);
factor = factor * 0.01f;
}
pos = pos * factor;
}
}
if (is_rotation && rot_values.size()) {
rot = _interpolate_track<Quat>(rot_times, rot_values, time, AssetImportAnimation::INTERP_LINEAR).normalized();
}
if (is_scaling && scale_values.size()) {
scale = _interpolate_track<Vector3>(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR);
}
animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR);
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) {
break;
}
time += increment;
if (time >= length) {
last = true;
time = length;
}
}
}
float EditorSceneImporterAssimp::_get_fbx_fps(int32_t time_mode, const aiScene *p_scene) {
switch (time_mode) {
case AssetImportFbx::TIME_MODE_DEFAULT: return 24; //hack
case AssetImportFbx::TIME_MODE_120: return 120;
case AssetImportFbx::TIME_MODE_100: return 100;
case AssetImportFbx::TIME_MODE_60: return 60;
case AssetImportFbx::TIME_MODE_50: return 50;
case AssetImportFbx::TIME_MODE_48: return 48;
case AssetImportFbx::TIME_MODE_30: return 30;
case AssetImportFbx::TIME_MODE_30_DROP: return 30;
case AssetImportFbx::TIME_MODE_NTSC_DROP_FRAME: return 29.9700262f;
case AssetImportFbx::TIME_MODE_NTSC_FULL_FRAME: return 29.9700262f;
case AssetImportFbx::TIME_MODE_PAL: return 25;
case AssetImportFbx::TIME_MODE_CINEMA: return 24;
case AssetImportFbx::TIME_MODE_1000: return 1000;
case AssetImportFbx::TIME_MODE_CINEMA_ND: return 23.976f;
case AssetImportFbx::TIME_MODE_CUSTOM:
int32_t frame_rate;
p_scene->mMetaData->Get("FrameRate", frame_rate);
return frame_rate;
}
return 0;
}
Transform EditorSceneImporterAssimp::_get_global_ai_node_transform(const aiScene *p_scene, const aiNode *p_current_node) {
aiNode const *current_node = p_current_node;
Transform xform;
while (current_node != NULL) {
xform = _ai_matrix_transform(current_node->mTransformation) * xform;
current_node = current_node->mParent;
}
return xform;
}
void EditorSceneImporterAssimp::_generate_node_bone(const aiScene *p_scene, const aiNode *p_node, Map<String, bool> &p_mesh_bones, Skeleton *p_skeleton, const String p_path, const int32_t p_max_bone_weights) {
for (size_t i = 0; i < p_node->mNumMeshes; i++) {
const unsigned int mesh_idx = p_node->mMeshes[i];
const aiMesh *ai_mesh = p_scene->mMeshes[mesh_idx];
for (size_t j = 0; j < ai_mesh->mNumBones; j++) {
String bone_name = _ai_string_to_string(ai_mesh->mBones[j]->mName);
if (p_skeleton->find_bone(bone_name) != -1) {
continue;
}
p_mesh_bones.insert(bone_name, true);
p_skeleton->add_bone(bone_name);
int32_t idx = p_skeleton->find_bone(bone_name);
Transform xform = _ai_matrix_transform(ai_mesh->mBones[j]->mOffsetMatrix);
String ext = p_path.get_file().get_extension().to_lower();
if (ext == "fbx") {
Transform mesh_xform = _get_global_ai_node_transform(p_scene, p_node);
mesh_xform.basis = Basis();
xform = mesh_xform.affine_inverse() * xform;
}
p_skeleton->set_bone_rest(idx, xform.affine_inverse());
}
}
}
void EditorSceneImporterAssimp::_generate_node_bone_parents(const aiScene *p_scene, const aiNode *p_node, Map<String, bool> &p_mesh_bones, Skeleton *p_skeleton, const MeshInstance *p_mi) {
for (size_t i = 0; i < p_node->mNumMeshes; i++) {
const unsigned int mesh_idx = p_node->mMeshes[i];
const aiMesh *ai_mesh = p_scene->mMeshes[mesh_idx];
for (size_t j = 0; j < ai_mesh->mNumBones; j++) {
aiNode *bone_node = p_scene->mRootNode->FindNode(ai_mesh->mBones[j]->mName);
ERR_CONTINUE(bone_node == NULL);
aiNode *bone_node_parent = bone_node->mParent;
while (bone_node_parent != NULL) {
String bone_parent_name = _ai_string_to_string(bone_node_parent->mName);
bone_parent_name = bone_parent_name.split(ASSIMP_FBX_KEY)[0];
if (bone_parent_name == p_mi->get_name()) {
break;
}
if (p_mi->get_parent() == NULL) {
break;
}
if (bone_parent_name == p_mi->get_parent()->get_name()) {
break;
}
if (bone_node_parent->mParent == p_scene->mRootNode) {
break;
}
if (p_skeleton->find_bone(bone_parent_name) == -1) {
p_mesh_bones.insert(bone_parent_name, true);
}
bone_node_parent = bone_node_parent->mParent;
}
}
}
}
void EditorSceneImporterAssimp::_calculate_skeleton_root(Skeleton *s, const aiScene *p_scene, aiNode *&p_ai_skeleton_root, Map<String, bool> &mesh_bones, const aiNode *p_node) {
if (s->get_bone_count() > 0) {
String bone_name = s->get_bone_name(0);
p_ai_skeleton_root = _ai_find_node(p_scene->mRootNode, bone_name);
for (size_t i = 0; i < p_scene->mRootNode->mNumChildren; i++) {
if (p_ai_skeleton_root == NULL) {
break;
}
aiNode *found = p_scene->mRootNode->mChildren[i]->FindNode(p_ai_skeleton_root->mName);
if (found) {
p_ai_skeleton_root = p_scene->mRootNode->mChildren[i];
break;
}
}
}
if (p_ai_skeleton_root == NULL) {
p_ai_skeleton_root = p_scene->mRootNode->FindNode(p_node->mName);
while (p_ai_skeleton_root && p_ai_skeleton_root->mParent && p_ai_skeleton_root->mParent != p_scene->mRootNode) {
p_ai_skeleton_root = p_scene->mRootNode->FindNode(p_ai_skeleton_root->mName)->mParent;
}
}
p_ai_skeleton_root = _ai_find_node(p_scene->mRootNode, _ai_string_to_string(p_ai_skeleton_root->mName).split(ASSIMP_FBX_KEY)[0]);
}
void EditorSceneImporterAssimp::_fill_skeleton(const aiScene *p_scene, const aiNode *p_node, Spatial *p_current, Node *p_owner, Skeleton *p_skeleton, const Map<String, bool> p_mesh_bones, const Map<String, Transform> &p_bone_rests, Set<String> p_tracks, const String p_path, Set<String> &r_removed_bones) {
String node_name = _ai_string_to_string(p_node->mName);
if (p_mesh_bones.find(node_name) != NULL && p_skeleton->find_bone(node_name) == -1) {
r_removed_bones.insert(node_name);
p_skeleton->add_bone(node_name);
int32_t idx = p_skeleton->find_bone(node_name);
Transform xform = _get_global_ai_node_transform(p_scene, p_node);
xform = _format_rot_xform(p_path, p_scene) * xform;
p_skeleton->set_bone_rest(idx, xform);
}
for (size_t i = 0; i < p_node->mNumChildren; i++) {
_fill_skeleton(p_scene, p_node->mChildren[i], p_current, p_owner, p_skeleton, p_mesh_bones, p_bone_rests, p_tracks, p_path, r_removed_bones);
}
}
void EditorSceneImporterAssimp::_keep_node(const String &p_path, Node *p_current, Node *p_owner, Set<Node *> &r_keep_nodes) {
if (p_current == p_owner) {
r_keep_nodes.insert(p_current);
}
if (p_current->get_class() != Spatial().get_class()) {
r_keep_nodes.insert(p_current);
}
for (int i = 0; i < p_current->get_child_count(); i++) {
_keep_node(p_path, p_current->get_child(i), p_owner, r_keep_nodes);
}
}
void EditorSceneImporterAssimp::_filter_node(const String &p_path, Node *p_current, Node *p_owner, const Set<Node *> p_keep_nodes, Set<String> &r_removed_nodes) {
if (p_keep_nodes.has(p_current) == false) {
r_removed_nodes.insert(p_current->get_name());
p_current->queue_delete();
}
for (int i = 0; i < p_current->get_child_count(); i++) {
_filter_node(p_path, p_current->get_child(i), p_owner, p_keep_nodes, r_removed_nodes);
}
}
void EditorSceneImporterAssimp::_generate_node(const String &p_path, const aiScene *p_scene, const aiNode *p_node, Node *p_parent, Node *p_owner, Set<String> &r_bone_name, Set<String> p_light_names, Set<String> p_camera_names, Map<Skeleton *, MeshInstance *> &r_skeletons, const Map<String, Transform> &p_bone_rests, Vector<MeshInstance *> &r_mesh_instances, int32_t &r_mesh_count, Skeleton *p_skeleton, const int32_t p_max_bone_weights, Set<String> &r_removed_bones, Map<String, Map<uint32_t, String> > &r_name_morph_mesh_names) {
Spatial *child_node = NULL;
if (p_node == NULL) {
return;
}
String node_name = _ai_string_to_string(p_node->mName);
real_t factor = 1.0f;
String ext = p_path.get_file().get_extension().to_lower();
if (ext == "fbx") {
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("UnitScaleFactor", factor);
factor = factor * 0.01f;
}
}
{
Transform xform = _ai_matrix_transform(p_node->mTransformation);
child_node = memnew(Spatial);
p_parent->add_child(child_node);
child_node->set_owner(p_owner);
if (p_node == p_scene->mRootNode) {
if ((ext == "fbx") && p_node == p_scene->mRootNode) {
xform = xform.scaled(Vector3(factor, factor, factor));
Transform format_xform = _format_rot_xform(p_path, p_scene);
xform = format_xform * xform;
}
}
child_node->set_transform(xform * child_node->get_transform());
}
if (p_node->mNumMeshes > 0) {
MeshInstance *mesh_node = memnew(MeshInstance);
p_parent->add_child(mesh_node);
mesh_node->set_owner(p_owner);
mesh_node->set_transform(child_node->get_transform());
{
Map<String, bool> mesh_bones;
p_skeleton->set_use_bones_in_world_transform(true);
_generate_node_bone(p_scene, p_node, mesh_bones, p_skeleton, p_path, p_max_bone_weights);
Set<String> tracks;
_get_track_set(p_scene, tracks);
aiNode *skeleton_root = NULL;
_calculate_skeleton_root(p_skeleton, p_scene, skeleton_root, mesh_bones, p_node);
_generate_node_bone_parents(p_scene, p_node, mesh_bones, p_skeleton, mesh_node);
if (p_skeleton->get_bone_count() > 0) {
_fill_skeleton(p_scene, skeleton_root, mesh_node, p_owner, p_skeleton, mesh_bones, p_bone_rests, tracks, p_path, r_removed_bones);
_set_bone_parent(p_skeleton, p_owner, p_scene->mRootNode);
}
MeshInstance *mi = Object::cast_to<MeshInstance>(mesh_node);
if (mi) {
r_mesh_instances.push_back(mi);
}
_add_mesh_to_mesh_instance(p_node, p_scene, p_skeleton, p_path, mesh_node, p_owner, r_bone_name, r_mesh_count, p_max_bone_weights, r_name_morph_mesh_names);
}
if (mesh_node != NULL && p_skeleton->get_bone_count() > 0 && p_owner->find_node(p_skeleton->get_name()) == NULL) {
Node *node = p_owner->find_node(_ai_string_to_string(p_scene->mRootNode->mName));
ERR_FAIL_COND(node == NULL);
node->add_child(p_skeleton);
p_skeleton->set_owner(p_owner);
if (ext == "fbx") {
Transform mesh_xform = _get_global_ai_node_transform(p_scene, p_node);
mesh_xform.origin = Vector3();
p_skeleton->set_transform(mesh_xform);
}
r_skeletons.insert(p_skeleton, mesh_node);
}
for (size_t i = 0; i < p_node->mNumMeshes; i++) {
if (p_scene->mMeshes[p_node->mMeshes[i]]->HasBones()) {
mesh_node->set_name(node_name);
// Meshes without skeletons must not have skeletons
mesh_node->set_skeleton_path(String(mesh_node->get_path_to(p_owner)) + "/" + p_owner->get_path_to(p_skeleton));
}
}
child_node->get_parent()->remove_child(child_node);
memdelete(child_node);
child_node = mesh_node;
} else if (p_light_names.has(node_name)) {
Spatial *light_node = Object::cast_to<Light>(p_owner->find_node(node_name));
ERR_FAIL_COND(light_node == NULL);
if (!p_parent->has_node(light_node->get_path())) {
p_parent->add_child(light_node);
}
light_node->set_owner(p_owner);
light_node->set_transform(child_node->get_transform().scaled(Vector3(factor, factor, factor)) *
light_node->get_transform().scaled(Vector3(factor, factor, factor)));
child_node->get_parent()->remove_child(child_node);
memdelete(child_node);
child_node = light_node;
} else if (p_camera_names.has(node_name)) {
Spatial *camera_node = Object::cast_to<Camera>(p_owner->find_node(node_name));
ERR_FAIL_COND(camera_node == NULL);
if (!p_parent->has_node(camera_node->get_path())) {
p_parent->add_child(camera_node);
}
camera_node->set_owner(p_owner);
camera_node->set_transform(child_node->get_transform().scaled(Vector3(factor, factor, factor)) *
camera_node->get_transform().scaled(Vector3(factor, factor, factor)));
camera_node->scale(Vector3(factor, factor, factor));
child_node->get_parent()->remove_child(child_node);
memdelete(child_node);
child_node = camera_node;
}
child_node->set_name(node_name);
for (size_t i = 0; i < p_node->mNumChildren; i++) {
_generate_node(p_path, p_scene, p_node->mChildren[i], child_node, p_owner, r_bone_name, p_light_names, p_camera_names, r_skeletons, p_bone_rests, r_mesh_instances, r_mesh_count, p_skeleton, p_max_bone_weights, r_removed_bones, r_name_morph_mesh_names);
}
}
aiNode *EditorSceneImporterAssimp::_ai_find_node(aiNode *ai_child_node, const String bone_name) {
if (_ai_string_to_string(ai_child_node->mName) == bone_name) {
return ai_child_node;
}
aiNode *target = NULL;
for (size_t i = 0; i < ai_child_node->mNumChildren; i++) {
target = _ai_find_node(ai_child_node->mChildren[i], bone_name);
if (target != NULL) {
return target;
}
}
return target;
}
Transform EditorSceneImporterAssimp::_format_rot_xform(const String p_path, const aiScene *p_scene) {
String ext = p_path.get_file().get_extension().to_lower();
Transform xform;
int32_t up_axis = 0;
Vector3 up_axis_vec3 = Vector3();
int32_t front_axis = 0;
Vector3 front_axis_vec3 = Vector3();
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("UpAxis", up_axis);
if (up_axis == AssetImportFbx::UP_VECTOR_AXIS_X) {
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("FrontAxis", front_axis);
if (front_axis == AssetImportFbx::FRONT_PARITY_EVEN) {
// y
} else if (front_axis == AssetImportFbx::FRONT_PARITY_ODD) {
// z
//front_axis_vec3 = Vector3(0.0f, Math::deg2rad(-180.f), 0.0f);
}
}
} else if (up_axis == AssetImportFbx::UP_VECTOR_AXIS_Y) {
up_axis_vec3 = Vector3(Math::deg2rad(-90.f), 0.0f, 0.0f);
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("FrontAxis", front_axis);
if (front_axis == AssetImportFbx::FRONT_PARITY_EVEN) {
// x
} else if (front_axis == AssetImportFbx::FRONT_PARITY_ODD) {
// z
}
}
} else if (up_axis == AssetImportFbx::UP_VECTOR_AXIS_Z) {
up_axis_vec3 = Vector3(0.0f, Math ::deg2rad(90.f), 0.0f);
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("FrontAxis", front_axis);
if (front_axis == AssetImportFbx::FRONT_PARITY_EVEN) {
// x
} else if (front_axis == AssetImportFbx::FRONT_PARITY_ODD) {
// y
}
}
}
}
int32_t up_axis_sign = 0;
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("UpAxisSign", up_axis_sign);
up_axis_vec3 = up_axis_vec3 * up_axis_sign;
}
int32_t front_axis_sign = 0;
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("FrontAxisSign", front_axis_sign);
front_axis_vec3 = front_axis_vec3 * front_axis_sign;
}
int32_t coord_axis = 0;
Vector3 coord_axis_vec3 = Vector3();
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("CoordAxis", coord_axis);
if (coord_axis == AssetImportFbx::COORD_LEFT) {
} else if (coord_axis == AssetImportFbx::COORD_RIGHT) {
}
}
int32_t coord_axis_sign = 0;
if (p_scene->mMetaData != NULL) {
p_scene->mMetaData->Get("CoordAxisSign", coord_axis_sign);
}
Quat up_quat;
up_quat.set_euler(up_axis_vec3);
Quat coord_quat;
coord_quat.set_euler(coord_axis_vec3);
Quat front_quat;
front_quat.set_euler(front_axis_vec3);
xform.basis.set_quat(up_quat * coord_quat * front_quat);
return xform;
}
void EditorSceneImporterAssimp::_get_track_set(const aiScene *p_scene, Set<String> &tracks) {
for (size_t i = 0; i < p_scene->mNumAnimations; i++) {
for (size_t j = 0; j < p_scene->mAnimations[i]->mNumChannels; j++) {
aiString ai_name = p_scene->mAnimations[i]->mChannels[j]->mNodeName;
String name = _ai_string_to_string(ai_name);
tracks.insert(name);
}
}
}
void EditorSceneImporterAssimp::_add_mesh_to_mesh_instance(const aiNode *p_node, const aiScene *p_scene, Skeleton *s, const String &p_path, MeshInstance *p_mesh_instance, Node *p_owner, Set<String> &r_bone_name, int32_t &r_mesh_count, int32_t p_max_bone_weights, Map<String, Map<uint32_t, String> > &r_name_morph_mesh_names) {
Ref<ArrayMesh> mesh;
mesh.instance();
bool has_uvs = false;
for (size_t i = 0; i < p_node->mNumMeshes; i++) {
const unsigned int mesh_idx = p_node->mMeshes[i];
const aiMesh *ai_mesh = p_scene->mMeshes[mesh_idx];
Map<uint32_t, Vector<float> > vertex_weight;
Map<uint32_t, Vector<String> > vertex_bone_name;
for (size_t b = 0; b < ai_mesh->mNumBones; b++) {
aiBone *bone = ai_mesh->mBones[b];
for (size_t w = 0; w < bone->mNumWeights; w++) {
String name = _ai_string_to_string(bone->mName);
aiVertexWeight ai_weights = bone->mWeights[w];
uint32_t vertexId = ai_weights.mVertexId;
Map<uint32_t, Vector<float> >::Element *result = vertex_weight.find(vertexId);
Vector<float> weights;
if (result != NULL) {
weights.append_array(result->value());
}
weights.push_back(ai_weights.mWeight);
if (vertex_weight.has(vertexId)) {
vertex_weight[vertexId] = weights;
} else {
vertex_weight.insert(vertexId, weights);
}
Map<uint32_t, Vector<String> >::Element *bone_result = vertex_bone_name.find(vertexId);
Vector<String> bone_names;
if (bone_result != NULL) {
bone_names.append_array(bone_result->value());
}
bone_names.push_back(name);
if (vertex_bone_name.has(vertexId)) {
vertex_bone_name[vertexId] = bone_names;
} else {
vertex_bone_name.insert(vertexId, bone_names);
}
}
}
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
for (size_t j = 0; j < ai_mesh->mNumVertices; j++) {
if (ai_mesh->HasTextureCoords(0)) {
has_uvs = true;
st->add_uv(Vector2(ai_mesh->mTextureCoords[0][j].x, 1.0f - ai_mesh->mTextureCoords[0][j].y));
}
if (ai_mesh->HasTextureCoords(1)) {
has_uvs = true;
st->add_uv2(Vector2(ai_mesh->mTextureCoords[1][j].x, 1.0f - ai_mesh->mTextureCoords[1][j].y));
}
if (ai_mesh->HasVertexColors(0)) {
Color color = Color(ai_mesh->mColors[0]->r, ai_mesh->mColors[0]->g, ai_mesh->mColors[0]->b, ai_mesh->mColors[0]->a);
st->add_color(color);
}
if (ai_mesh->mNormals != NULL) {
const aiVector3D normals = ai_mesh->mNormals[j];
const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z);
st->add_normal(godot_normal);
if (ai_mesh->HasTangentsAndBitangents()) {
const aiVector3D tangents = ai_mesh->mTangents[j];
const Vector3 godot_tangent = Vector3(tangents.x, tangents.y, tangents.z);
const aiVector3D bitangent = ai_mesh->mBitangents[j];
const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z);
float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f;
st->add_tangent(Plane(tangents.x, tangents.y, tangents.z, d));
}
}
if (s != NULL && s->get_bone_count() > 0) {
Map<uint32_t, Vector<String> >::Element *I = vertex_bone_name.find(j);
Vector<int32_t> bones;
if (I != NULL) {
Vector<String> bone_names;
bone_names.append_array(I->value());
for (int32_t f = 0; f < bone_names.size(); f++) {
int32_t bone = s->find_bone(bone_names[f]);
ERR_EXPLAIN("Asset Importer: Mesh can't find bone " + bone_names[f]);
ERR_FAIL_COND(bone == -1);
bones.push_back(bone);
}
if (s->get_bone_count()) {
int32_t add = CLAMP(p_max_bone_weights - bones.size(), 0, p_max_bone_weights);
for (int32_t f = 0; f < add; f++) {
bones.push_back(0);
}
}
st->add_bones(bones);
Map<uint32_t, Vector<float> >::Element *E = vertex_weight.find(j);
Vector<float> weights;
if (E != NULL) {
weights = E->value();
if (weights.size() != p_max_bone_weights) {
int32_t add = CLAMP(p_max_bone_weights - weights.size(), 0, p_max_bone_weights);
for (int32_t f = 0; f < add; f++) {
weights.push_back(0.0f);
}
}
}
ERR_CONTINUE(weights.size() == 0);
st->add_weights(weights);
}
}
const aiVector3D pos = ai_mesh->mVertices[j];
Vector3 godot_pos = Vector3(pos.x, pos.y, pos.z);
st->add_vertex(godot_pos);
}
for (size_t j = 0; j < ai_mesh->mNumFaces; j++) {
const aiFace face = ai_mesh->mFaces[j];
ERR_FAIL_COND(face.mNumIndices != 3);
Vector<size_t> order;
order.push_back(2);
order.push_back(1);
order.push_back(0);
for (int32_t k = 0; k < order.size(); k++) {
st->add_index(face.mIndices[order[k]]);
}
}
if (ai_mesh->HasTangentsAndBitangents() == false && has_uvs) {
st->generate_tangents();
}
aiMaterial *ai_material = p_scene->mMaterials[ai_mesh->mMaterialIndex];
Ref<SpatialMaterial> mat;
mat.instance();
int32_t mat_two_sided = 0;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_TWOSIDED, mat_two_sided)) {
if (mat_two_sided > 0) {
mat->set_cull_mode(SpatialMaterial::CULL_DISABLED);
}
}
const String mesh_name = _ai_string_to_string(ai_mesh->mName);
aiString mat_name;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_NAME, mat_name)) {
mat->set_name(_ai_string_to_string(mat_name));
}
aiTextureType tex_normal = aiTextureType_NORMALS;
{
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_normal, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _ai_raw_string_to_string(ai_filename);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
if (map_mode != NULL) {
_set_texture_mapping_mode(map_mode, texture);
}
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
{
aiString ai_filename = aiString();
String filename = "";
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_NORMAL_TEXTURE, ai_filename)) {
filename = _ai_raw_string_to_string(ai_filename);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
aiTextureType tex_emissive = aiTextureType_EMISSIVE;
if (ai_material->GetTextureCount(tex_emissive) > 0) {
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_emissive, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _ai_raw_string_to_string(ai_filename);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_EMISSION, true);
mat->set_texture(SpatialMaterial::TEXTURE_EMISSION, texture);
}
}
}
}
aiTextureType tex_albedo = aiTextureType_DIFFUSE;
if (ai_material->GetTextureCount(tex_albedo) > 0) {
aiString ai_filename = aiString();
String filename = "";
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(tex_albedo, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) {
filename = _ai_raw_string_to_string(ai_filename);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() != Image::ALPHA_NONE) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
}
} else {
aiColor4D clr_diffuse;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_COLOR_DIFFUSE, clr_diffuse)) {
if (Math::is_equal_approx(clr_diffuse.a, 1.0f) == false) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_albedo(Color(clr_diffuse.r, clr_diffuse.g, clr_diffuse.b, clr_diffuse.a));
}
}
aiString tex_gltf_base_color_path = aiString();
aiTextureMapMode map_mode[2];
if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE, &tex_gltf_base_color_path, NULL, NULL, NULL, NULL, map_mode)) {
String filename = _ai_raw_string_to_string(tex_gltf_base_color_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
_set_texture_mapping_mode(map_mode, texture);
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR, pbr_base_color)) {
if (Math::is_equal_approx(pbr_base_color.a, 1.0f) == false) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
{
aiString tex_fbx_pbs_base_color_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_base_color_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_FACTOR, pbr_base_color)) {
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
aiUVTransform pbr_base_color_uv_xform;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_UV_XFORM, pbr_base_color_uv_xform)) {
mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f));
mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f));
}
}
{
aiString tex_fbx_pbs_normal_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_NORMAL_TEXTURE, tex_fbx_pbs_normal_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_normal_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
aiString cull_mode;
if (p_node->mMetaData) {
p_node->mMetaData->Get("Culling", cull_mode);
}
if (cull_mode.length != 0 && cull_mode == aiString("CullingOff")) {
mat->set_cull_mode(SpatialMaterial::CULL_DISABLED);
}
{
aiString tex_fbx_stingray_normal_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_NORMAL_TEXTURE, tex_fbx_stingray_normal_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_stingray_normal_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true);
mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture);
}
}
}
}
{
aiString tex_fbx_pbs_base_color_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_base_color_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_base_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_BASE_COLOR_FACTOR, pbr_base_color)) {
mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a));
}
}
aiUVTransform pbr_base_color_uv_xform;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_UV_XFORM, pbr_base_color_uv_xform)) {
mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f));
mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f));
}
}
{
aiString tex_fbx_pbs_emissive_path = aiString();
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_TEXTURE, tex_fbx_pbs_emissive_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_emissive_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
_find_texture_path(p_path, path, found);
if (texture != NULL) {
if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) {
mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS);
}
mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture);
}
}
} else {
aiColor4D pbr_emmissive_color;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_FACTOR, pbr_emmissive_color)) {
mat->set_emission(Color(pbr_emmissive_color.r, pbr_emmissive_color.g, pbr_emmissive_color.b, pbr_emmissive_color.a));
}
}
real_t pbr_emission_intensity;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_INTENSITY_FACTOR, pbr_emission_intensity)) {
mat->set_emission_energy(pbr_emission_intensity);
}
}
aiString tex_gltf_pbr_metallicroughness_path;
if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE, &tex_gltf_pbr_metallicroughness_path)) {
String filename = _ai_raw_string_to_string(tex_gltf_pbr_metallicroughness_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE);
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN);
}
}
} else {
float pbr_roughness = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
{
aiString tex_fbx_pbs_metallic_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_TEXTURE, tex_fbx_pbs_metallic_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_metallic_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
aiString tex_fbx_pbs_rough_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_rough_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_roughness = 0.04f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
}
}
{
aiString tex_fbx_pbs_metallic_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_TEXTURE, tex_fbx_pbs_metallic_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_metallic_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture);
mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_metallic = 0.0f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_FACTOR, pbr_metallic)) {
mat->set_metallic(pbr_metallic);
}
}
aiString tex_fbx_pbs_rough_path;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) {
String filename = _ai_raw_string_to_string(tex_fbx_pbs_rough_path);
String path = p_path.get_base_dir() + "/" + filename.replace("\\", "/");
bool found = false;
_find_texture_path(p_path, path, found);
if (found) {
Ref<Texture> texture = _load_texture(p_scene, path);
if (texture != NULL) {
mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture);
mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE);
}
}
} else {
float pbr_roughness = 0.04f;
if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_FACTOR, pbr_roughness)) {
mat->set_roughness(pbr_roughness);
}
}
}
Array array_mesh = st->commit_to_arrays();
Array morphs;
morphs.resize(ai_mesh->mNumAnimMeshes);
Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
Map<uint32_t, String> morph_mesh_idx_names;
for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) {
String ai_anim_mesh_name = _ai_string_to_string(ai_mesh->mAnimMeshes[j]->mName);
mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
if (ai_anim_mesh_name.empty()) {
ai_anim_mesh_name = String("morph_") + itos(j);
}
mesh->add_blend_shape(ai_anim_mesh_name);
morph_mesh_idx_names.insert(j, ai_anim_mesh_name);
Array array_copy;
array_copy.resize(VisualServer::ARRAY_MAX);
for (int l = 0; l < VisualServer::ARRAY_MAX; l++) {
array_copy[l] = array_mesh[l].duplicate(true);
}
const size_t num_vertices = ai_mesh->mAnimMeshes[j]->mNumVertices;
array_copy[Mesh::ARRAY_INDEX] = Variant();
if (ai_mesh->mAnimMeshes[j]->HasPositions()) {
PoolVector3Array vertices;
vertices.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_pos = ai_mesh->mAnimMeshes[j]->mVertices[l];
Vector3 position = Vector3(ai_pos.x, ai_pos.y, ai_pos.z);
vertices.write()[l] = position;
}
PoolVector3Array new_vertices = array_copy[VisualServer::ARRAY_VERTEX].duplicate(true);
for (int32_t l = 0; l < vertices.size(); l++) {
PoolVector3Array::Write w = new_vertices.write();
w[l] = vertices[l];
}
ERR_CONTINUE(vertices.size() != new_vertices.size());
array_copy[VisualServer::ARRAY_VERTEX] = new_vertices;
}
int32_t color_set = 0;
if (ai_mesh->mAnimMeshes[j]->HasVertexColors(color_set)) {
PoolColorArray colors;
colors.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiColor4D ai_color = ai_mesh->mAnimMeshes[j]->mColors[color_set][l];
Color color = Color(ai_color.r, ai_color.g, ai_color.b, ai_color.a);
colors.write()[l] = color;
}
PoolColorArray new_colors = array_copy[VisualServer::ARRAY_COLOR].duplicate(true);
for (int32_t l = 0; l < colors.size(); l++) {
PoolColorArray::Write w = new_colors.write();
w[l] = colors[l];
}
array_copy[VisualServer::ARRAY_COLOR] = new_colors;
}
if (ai_mesh->mAnimMeshes[j]->HasNormals()) {
PoolVector3Array normals;
normals.resize(num_vertices);
for (size_t l = 0; l < num_vertices; l++) {
const aiVector3D ai_normal = ai_mesh->mAnimMeshes[i]->mNormals[l];
Vector3 normal = Vector3(ai_normal.x, ai_normal.y, ai_normal.z);
normals.write()[l] = normal;
}
PoolVector3Array new_normals = array_copy[VisualServer::ARRAY_NORMAL].duplicate(true);
for (int l = 0; l < normals.size(); l++) {
PoolVector3Array::Write w = new_normals.write();
w[l] = normals[l];
}
array_copy[VisualServer::ARRAY_NORMAL] = new_normals;
}
if (ai_mesh->mAnimMeshes[j]->HasTangentsAndBitangents()) {
PoolColorArray tangents;
tangents.resize(num_vertices);
PoolColorArray::Write w = tangents.write();
for (size_t l = 0; l < num_vertices; l++) {
_calc_tangent_from_mesh(ai_mesh, j, l, l, w);
}
PoolRealArray new_tangents = array_copy[VisualServer::ARRAY_TANGENT].duplicate(true);
ERR_CONTINUE(new_tangents.size() != tangents.size() * 4);
for (int32_t l = 0; l < tangents.size(); l++) {
new_tangents.write()[l + 0] = tangents[l].r;
new_tangents.write()[l + 1] = tangents[l].g;
new_tangents.write()[l + 2] = tangents[l].b;
new_tangents.write()[l + 3] = tangents[l].a;
}
array_copy[VisualServer::ARRAY_TANGENT] = new_tangents;
}
morphs[j] = array_copy;
}
r_name_morph_mesh_names.insert(_ai_string_to_string(p_node->mName), morph_mesh_idx_names);
mesh->add_surface_from_arrays(primitive, array_mesh, morphs);
mesh->surface_set_material(i, mat);
mesh->surface_set_name(i, _ai_string_to_string(ai_mesh->mName));
r_mesh_count++;
print_line(String("Open Asset Import: Created mesh (including instances) ") + _ai_string_to_string(ai_mesh->mName) + " " + itos(r_mesh_count) + " of " + itos(p_scene->mNumMeshes));
}
p_mesh_instance->set_mesh(mesh);
}
Ref<Texture> EditorSceneImporterAssimp::_load_texture(const aiScene *p_scene, String p_path) {
Vector<String> split_path = p_path.get_basename().split("*");
if (split_path.size() == 2) {
size_t texture_idx = split_path[1].to_int();
ERR_FAIL_COND_V(texture_idx >= p_scene->mNumTextures, Ref<Texture>());
aiTexture *tex = p_scene->mTextures[texture_idx];
String filename = _ai_raw_string_to_string(tex->mFilename);
filename = filename.get_file();
print_verbose("Open Asset Import: Loading embedded texture " + filename);
if (tex->mHeight == 0) {
if (tex->CheckFormat("png")) {
Ref<Image> img = Image::_png_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
} else if (tex->CheckFormat("jpg")) {
Ref<Image> img = Image::_jpg_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
} else if (tex->CheckFormat("dds")) {
ERR_EXPLAIN("Open Asset Import: Embedded dds not implemented");
ERR_FAIL_COND_V(true, Ref<Texture>());
//Ref<Image> img = Image::_dds_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
//ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
//Ref<ImageTexture> t;
//t.instance();
//t->create_from_image(img);
//t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
//return t;
}
} else {
Ref<Image> img;
img.instance();
PoolByteArray arr;
uint32_t size = tex->mWidth * tex->mHeight;
arr.resize(size);
memcpy(arr.write().ptr(), tex->pcData, size);
ERR_FAIL_COND_V(arr.size() % 4 != 0, Ref<Texture>());
//ARGB8888 to RGBA8888
for (int32_t i = 0; i < arr.size() / 4; i++) {
arr.write().ptr()[(4 * i) + 3] = arr[(4 * i) + 0];
arr.write().ptr()[(4 * i) + 0] = arr[(4 * i) + 1];
arr.write().ptr()[(4 * i) + 1] = arr[(4 * i) + 2];
arr.write().ptr()[(4 * i) + 2] = arr[(4 * i) + 3];
}
img->create(tex->mWidth, tex->mHeight, true, Image::FORMAT_RGBA8, arr);
ERR_FAIL_COND_V(img.is_null(), Ref<Texture>());
Ref<ImageTexture> t;
t.instance();
t->create_from_image(img);
t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
return t;
}
return Ref<Texture>();
}
Ref<Texture> p_texture = ResourceLoader::load(p_path, "Texture");
return p_texture;
}
void EditorSceneImporterAssimp::_calc_tangent_from_mesh(const aiMesh *ai_mesh, int i, int tri_index, int index, PoolColorArray::Write &w) {
const aiVector3D normals = ai_mesh->mAnimMeshes[i]->mNormals[tri_index];
const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z);
const aiVector3D tangent = ai_mesh->mAnimMeshes[i]->mTangents[tri_index];
const Vector3 godot_tangent = Vector3(tangent.x, tangent.y, tangent.z);
const aiVector3D bitangent = ai_mesh->mAnimMeshes[i]->mBitangents[tri_index];
const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z);
float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f;
Color plane_tangent = Color(tangent.x, tangent.y, tangent.z, d);
w[index] = plane_tangent;
}
void EditorSceneImporterAssimp::_set_texture_mapping_mode(aiTextureMapMode *map_mode, Ref<Texture> texture) {
ERR_FAIL_COND(map_mode == NULL);
aiTextureMapMode tex_mode = aiTextureMapMode::aiTextureMapMode_Wrap;
//for (size_t i = 0; i < 3; i++) {
tex_mode = map_mode[0];
//}
int32_t flags = Texture::FLAGS_DEFAULT;
if (tex_mode == aiTextureMapMode_Wrap) {
//Default
} else if (tex_mode == aiTextureMapMode_Clamp) {
flags = flags & ~Texture::FLAG_REPEAT;
} else if (tex_mode == aiTextureMapMode_Mirror) {
flags = flags | Texture::FLAG_MIRRORED_REPEAT;
}
texture->set_flags(flags);
}
void EditorSceneImporterAssimp::_find_texture_path(const String &r_p_path, String &r_path, bool &r_found) {
_Directory dir;
List<String> exts;
ImageLoader::get_recognized_extensions(&exts);
Vector<String> split_path = r_path.get_basename().split("*");
if (split_path.size() == 2) {
r_found = true;
return;
}
if (dir.file_exists(r_p_path.get_base_dir() + r_path.get_file())) {
r_path = r_p_path.get_base_dir() + r_path.get_file();
r_found = true;
return;
}
for (int32_t i = 0; i < exts.size(); i++) {
if (r_found) {
return;
}
if (r_found == false) {
_find_texture_path(r_p_path, dir, r_path, r_found, "." + exts[i]);
}
}
}
void EditorSceneImporterAssimp::_find_texture_path(const String &p_path, _Directory &dir, String &path, bool &found, String extension) {
String name = path.get_basename() + extension;
if (dir.file_exists(name)) {
found = true;
path = name;
return;
}
String name_ignore_sub_directory = p_path.get_base_dir() + "/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_ignore_sub_directory)) {
found = true;
path = name_ignore_sub_directory;
return;
}
String name_find_texture_sub_directory = p_path.get_base_dir() + "/textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_sub_directory)) {
found = true;
path = name_find_texture_sub_directory;
return;
}
String name_find_texture_upper_sub_directory = p_path.get_base_dir() + "/Textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_upper_sub_directory)) {
found = true;
path = name_find_texture_upper_sub_directory;
return;
}
String name_find_texture_outside_sub_directory = p_path.get_base_dir() + "/../textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_texture_outside_sub_directory)) {
found = true;
path = name_find_texture_outside_sub_directory;
return;
}
String name_find_upper_texture_outside_sub_directory = p_path.get_base_dir() + "/../Textures/" + path.get_file().get_basename() + extension;
if (dir.file_exists(name_find_upper_texture_outside_sub_directory)) {
found = true;
path = name_find_upper_texture_outside_sub_directory;
return;
}
}
String EditorSceneImporterAssimp::_ai_string_to_string(const aiString p_string) const {
Vector<char> raw_name;
raw_name.resize(p_string.length);
memcpy(raw_name.ptrw(), p_string.C_Str(), p_string.length);
String name;
name.parse_utf8(raw_name.ptrw(), raw_name.size());
if (name.find(":") != -1) {
String replaced_name = name.split(":")[1];
print_verbose("Replacing " + name + " containing : with " + replaced_name);
name = replaced_name;
}
if (name.find(".") != -1) {
String replaced_name = name.replace(".", "");
print_verbose("Replacing " + name + " containing . with " + replaced_name);
name = replaced_name;
}
return name;
}
String EditorSceneImporterAssimp::_ai_anim_string_to_string(const aiString p_string) const {
Vector<char> raw_name;
raw_name.resize(p_string.length);
memcpy(raw_name.ptrw(), p_string.C_Str(), p_string.length);
String name;
name.parse_utf8(raw_name.ptrw(), raw_name.size());
if (name.find(":") != -1) {
String replaced_name = name.split(":")[1];
print_verbose("Replacing " + name + " containing : with " + replaced_name);
name = replaced_name;
}
return name;
}
String EditorSceneImporterAssimp::_ai_raw_string_to_string(const aiString p_string) const {
Vector<char> raw_name;
raw_name.resize(p_string.length);
memcpy(raw_name.ptrw(), p_string.C_Str(), p_string.length);
String name;
name.parse_utf8(raw_name.ptrw(), raw_name.size());
return name;
}
Ref<Animation> EditorSceneImporterAssimp::import_animation(const String &p_path, uint32_t p_flags, int p_bake_fps) {
return Ref<Animation>();
}
const Transform EditorSceneImporterAssimp::_ai_matrix_transform(const aiMatrix4x4 p_matrix) {
aiMatrix4x4 matrix = p_matrix;
Transform xform;
xform.set(matrix.a1, matrix.b1, matrix.c1, matrix.a2, matrix.b2, matrix.c2, matrix.a3, matrix.b3, matrix.c3, matrix.a4, matrix.b4, matrix.c4);
xform.basis.inverse();
xform.basis.transpose();
Vector3 scale = xform.basis.get_scale();
Quat rot = xform.basis.get_rotation_quat();
xform.basis.set_quat_scale(rot, scale);
return xform;
}