mirror of
https://github.com/godotengine/godot.git
synced 2024-11-28 23:22:38 +00:00
975 lines
33 KiB
C
975 lines
33 KiB
C
/********************************************************************
|
|
* *
|
|
* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
|
|
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
|
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
|
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
|
* *
|
|
* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2011 *
|
|
* by the Xiph.Org Foundation http://www.xiph.org/ *
|
|
* *
|
|
********************************************************************
|
|
|
|
function: mode selection code
|
|
last mod: $Id$
|
|
|
|
********************************************************************/
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include "collect.h"
|
|
|
|
#if defined(OC_COLLECT_METRICS)
|
|
|
|
int OC_HAS_MODE_METRICS;
|
|
double OC_MODE_RD_WEIGHT_SATD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
|
|
double OC_MODE_RD_WEIGHT_SAD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
|
|
oc_mode_metrics OC_MODE_METRICS_SATD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
|
|
oc_mode_metrics OC_MODE_METRICS_SAD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
|
|
const char *OC_MODE_METRICS_FILENAME="modedec.stats";
|
|
|
|
void oc_mode_metrics_add(oc_mode_metrics *_metrics,
|
|
double _w,int _s,int _q,int _r,double _d){
|
|
if(_metrics->w>0){
|
|
double ds;
|
|
double dq;
|
|
double dr;
|
|
double dd;
|
|
double ds2;
|
|
double dq2;
|
|
double s2;
|
|
double sq;
|
|
double q2;
|
|
double sr;
|
|
double qr;
|
|
double sd;
|
|
double qd;
|
|
double s2q;
|
|
double sq2;
|
|
double w;
|
|
double wa;
|
|
double rwa;
|
|
double rwa2;
|
|
double rwb;
|
|
double rwb2;
|
|
double rw2;
|
|
double rw3;
|
|
double rw4;
|
|
wa=_metrics->w;
|
|
ds=_s-_metrics->s/wa;
|
|
dq=_q-_metrics->q/wa;
|
|
dr=_r-_metrics->r/wa;
|
|
dd=_d-_metrics->d/wa;
|
|
ds2=ds*ds;
|
|
dq2=dq*dq;
|
|
s2=_metrics->s2;
|
|
sq=_metrics->sq;
|
|
q2=_metrics->q2;
|
|
sr=_metrics->sr;
|
|
qr=_metrics->qr;
|
|
sd=_metrics->sd;
|
|
qd=_metrics->qd;
|
|
s2q=_metrics->s2q;
|
|
sq2=_metrics->sq2;
|
|
w=wa+_w;
|
|
rwa=wa/w;
|
|
rwb=_w/w;
|
|
rwa2=rwa*rwa;
|
|
rwb2=rwb*rwb;
|
|
rw2=wa*rwb;
|
|
rw3=rw2*(rwa2-rwb2);
|
|
rw4=_w*rwa2*rwa2+wa*rwb2*rwb2;
|
|
_metrics->s2q2+=-2*(ds*sq2+dq*s2q)*rwb
|
|
+(ds2*q2+4*ds*dq*sq+dq2*s2)*rwb2+ds2*dq2*rw4;
|
|
_metrics->s2q+=(-2*ds*sq-dq*s2)*rwb+ds2*dq*rw3;
|
|
_metrics->sq2+=(-ds*q2-2*dq*sq)*rwb+ds*dq2*rw3;
|
|
_metrics->sqr+=(-ds*qr-dq*sr-dr*sq)*rwb+ds*dq*dr*rw3;
|
|
_metrics->sqd+=(-ds*qd-dq*sd-dd*sq)*rwb+ds*dq*dd*rw3;
|
|
_metrics->s2+=ds2*rw2;
|
|
_metrics->sq+=ds*dq*rw2;
|
|
_metrics->q2+=dq2*rw2;
|
|
_metrics->sr+=ds*dr*rw2;
|
|
_metrics->qr+=dq*dr*rw2;
|
|
_metrics->r2+=dr*dr*rw2;
|
|
_metrics->sd+=ds*dd*rw2;
|
|
_metrics->qd+=dq*dd*rw2;
|
|
_metrics->d2+=dd*dd*rw2;
|
|
}
|
|
_metrics->w+=_w;
|
|
_metrics->s+=_s*_w;
|
|
_metrics->q+=_q*_w;
|
|
_metrics->r+=_r*_w;
|
|
_metrics->d+=_d*_w;
|
|
}
|
|
|
|
void oc_mode_metrics_merge(oc_mode_metrics *_dst,
|
|
const oc_mode_metrics *_src,int _n){
|
|
int i;
|
|
/*Find a non-empty set of metrics.*/
|
|
for(i=0;i<_n&&_src[i].w==0;i++);
|
|
if(i>=_n){
|
|
memset(_dst,0,sizeof(*_dst));
|
|
return;
|
|
}
|
|
memcpy(_dst,_src+i,sizeof(*_dst));
|
|
/*And iterate over the remaining non-empty sets of metrics.*/
|
|
for(i++;i<_n;i++)if(_src[i].w!=0){
|
|
double ds;
|
|
double dq;
|
|
double dr;
|
|
double dd;
|
|
double ds2;
|
|
double dq2;
|
|
double s2a;
|
|
double s2b;
|
|
double sqa;
|
|
double sqb;
|
|
double q2a;
|
|
double q2b;
|
|
double sra;
|
|
double srb;
|
|
double qra;
|
|
double qrb;
|
|
double sda;
|
|
double sdb;
|
|
double qda;
|
|
double qdb;
|
|
double s2qa;
|
|
double s2qb;
|
|
double sq2a;
|
|
double sq2b;
|
|
double w;
|
|
double wa;
|
|
double wb;
|
|
double rwa;
|
|
double rwb;
|
|
double rwa2;
|
|
double rwb2;
|
|
double rw2;
|
|
double rw3;
|
|
double rw4;
|
|
wa=_dst->w;
|
|
wb=_src[i].w;
|
|
ds=_src[i].s/wb-_dst->s/wa;
|
|
dq=_src[i].q/wb-_dst->q/wa;
|
|
dr=_src[i].r/wb-_dst->r/wa;
|
|
dd=_src[i].d/wb-_dst->d/wa;
|
|
ds2=ds*ds;
|
|
dq2=dq*dq;
|
|
s2a=_dst->s2;
|
|
sqa=_dst->sq;
|
|
q2a=_dst->q2;
|
|
sra=_dst->sr;
|
|
qra=_dst->qr;
|
|
sda=_dst->sd;
|
|
qda=_dst->qd;
|
|
s2qa=_dst->s2q;
|
|
sq2a=_dst->sq2;
|
|
s2b=_src[i].s2;
|
|
sqb=_src[i].sq;
|
|
q2b=_src[i].q2;
|
|
srb=_src[i].sr;
|
|
qrb=_src[i].qr;
|
|
sdb=_src[i].sd;
|
|
qdb=_src[i].qd;
|
|
s2qb=_src[i].s2q;
|
|
sq2b=_src[i].sq2;
|
|
w=wa+wb;
|
|
if(w==0)rwa=rwb=0;
|
|
else{
|
|
rwa=wa/w;
|
|
rwb=wb/w;
|
|
}
|
|
rwa2=rwa*rwa;
|
|
rwb2=rwb*rwb;
|
|
rw2=wa*rwb;
|
|
rw3=rw2*(rwa2-rwb2);
|
|
rw4=wb*rwa2*rwa2+wa*rwb2*rwb2;
|
|
/*
|
|
(1,1,1) ->
|
|
(0,0,0)#
|
|
(1,0,0) C(1,1)*C(1,0)*C(1,0)-> d^{1,0,0}*(rwa*B_{0,1,1}-rwb*A_{0,1,1})
|
|
(0,1,0) C(1,0)*C(1,1)*C(1,0)-> d^{0,1,0}*(rwa*B_{1,0,1}-rwb*A_{1,0,1})
|
|
(0,0,1) C(1,0)*C(1,0)*C(1,1)-> d^{0,0,1}*(rwa*B_{1,1,0}-rwb*A_{1,1,0})
|
|
(1,1,0)*
|
|
(1,0,1)*
|
|
(0,1,1)*
|
|
(1,1,1) C(1,1)*C(1,1)*C(1,1)-> d^{1,1,1}*(rwa^3*wb-rwb^3*wa)
|
|
(2,1) ->
|
|
(0,0)#
|
|
(1,0) C(2,1)*C(1,1)->2*d^{1,0}*(rwa*B_{1,1}-rwb*A_{1,1})
|
|
(0,1) C(2,0)*C(1,1)-> d^{0,1}*(rwa*B_{2,0}-rwb*A_{2,0})
|
|
(2,0)*
|
|
(1,1)*
|
|
(2,1) C(2,2)*C(1,1)-> d^{2,1}*(rwa^3*wb-rwb^3*wa)
|
|
(2,2) ->
|
|
(0,0)#
|
|
(1,0) C(2,1)*C(2,0)->2*d^{1,0}*(rwa*B_{1,2}-rwb*A_{1,2})
|
|
(0,1) C(2,0)*C(2,1)->2*d^{0,1}*(rwa*B_{2,1}-rwb*A_{2,1})
|
|
(2,0) C(2,2)*C(2,0)-> d^{2,0}*(rwa^2*B_{0,2}+rwb^2*A_{0,2})
|
|
(1,1) C(2,1)*C(2,1)->4*d^{1,1}*(rwa^2*B_{1,1}+rwb^2*A_{1,1})
|
|
(0,2) C(2,0)*C(2,2)-> d^{0,2}*(rwa^2*B_{2,0}+rwb^2*A_{2,0})
|
|
(1,2)*
|
|
(2,1)*
|
|
(2,2) C(2,2)*C(2,2)*d^{2,2}*(rwa^4*wb+rwb^4*wa)
|
|
*/
|
|
_dst->s2q2+=_src[i].s2q2+2*(ds*(rwa*sq2b-rwb*sq2a)+dq*(rwa*s2qb-rwb*s2qa))
|
|
+ds2*(rwa2*q2b+rwb2*q2a)+4*ds*dq*(rwa2*sqb+rwb2*sqa)
|
|
+dq2*(rwa2*s2b+rwb2*s2a)+ds2*dq2*rw4;
|
|
_dst->s2q+=_src[i].s2q+2*ds*(rwa*sqb-rwb*sqa)
|
|
+dq*(rwa*s2b-rwb*s2a)+ds2*dq*rw3;
|
|
_dst->sq2+=_src[i].sq2+ds*(rwa*q2b-rwb*q2a)
|
|
+2*dq*(rwa*sqb-rwb*sqa)+ds*dq2*rw3;
|
|
_dst->sqr+=_src[i].sqr+ds*(rwa*qrb-rwb*qra)+dq*(rwa*srb-rwb*sra)
|
|
+dr*(rwa*sqb-rwb*sqa)+ds*dq*dr*rw3;
|
|
_dst->sqd+=_src[i].sqd+ds*(rwa*qdb-rwb*qda)+dq*(rwa*sdb-rwb*sda)
|
|
+dd*(rwa*sqb-rwb*sqa)+ds*dq*dd*rw3;
|
|
_dst->s2+=_src[i].s2+ds2*rw2;
|
|
_dst->sq+=_src[i].sq+ds*dq*rw2;
|
|
_dst->q2+=_src[i].q2+dq2*rw2;
|
|
_dst->sr+=_src[i].sr+ds*dr*rw2;
|
|
_dst->qr+=_src[i].qr+dq*dr*rw2;
|
|
_dst->r2+=_src[i].r2+dr*dr*rw2;
|
|
_dst->sd+=_src[i].sd+ds*dd*rw2;
|
|
_dst->qd+=_src[i].qd+dq*dd*rw2;
|
|
_dst->d2+=_src[i].d2+dd*dd*rw2;
|
|
_dst->w+=_src[i].w;
|
|
_dst->s+=_src[i].s;
|
|
_dst->q+=_src[i].q;
|
|
_dst->r+=_src[i].r;
|
|
_dst->d+=_src[i].d;
|
|
}
|
|
}
|
|
|
|
/*Adjust a single corner of a set of metric bins to minimize the squared
|
|
prediction error of R and D.
|
|
Each bin is assumed to cover a quad like so:
|
|
(s0,q0) (s1,q0)
|
|
A----------B
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
C----------Z
|
|
(s0,q1) (s1,q1)
|
|
The values A, B, and C are fixed, and Z is the free parameter.
|
|
Then, for example, R_i is predicted via bilinear interpolation as
|
|
x_i=(s_i-s0)/(s1-s0)
|
|
y_i=(q_i-q0)/(q1-q0)
|
|
dRds1_i=A+(B-A)*x_i
|
|
dRds2_i=C+(Z-C)*x_i
|
|
R_i=dRds1_i+(dRds2_i-dRds1_i)*y_i
|
|
To find the Z that minimizes the squared prediction error over i, this can
|
|
be rewritten as
|
|
R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i)=x_i*y_i*Z
|
|
Letting X={...,x_i*y_i,...}^T and
|
|
Y={...,R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i),...}^T,
|
|
the optimal Z is given by Z=(X^T.Y)/(X^T.X).
|
|
Now, we need to compute these dot products without actually storing data for
|
|
each sample.
|
|
Starting with X^T.X, we have
|
|
X^T.X = sum(x_i^2*y_i^2) = sum((s_i-s0)^2*(q_i-q0)^2)/((s1-s0)^2*(q1-q0)^2).
|
|
Expanding the interior of the sum in a monomial basis of s_i and q_i gives
|
|
s0^2*q0^2 *(1)
|
|
-2*s0*q0^2*(s_i)
|
|
-2*s0^2*q0*(q_i)
|
|
+q0^2 *(s_i^2)
|
|
+4*s0*q0 *(s_i*q_i)
|
|
+s0^2 *(q_i^2)
|
|
-2*q0 *(s_i^2*q_i)
|
|
-2*s0 *(s_i*q_i^2)
|
|
+1 *(s_i^2*q_i^2).
|
|
However, computing things directly in this basis leads to gross numerical
|
|
errors, as most of the terms will have similar size and destructive
|
|
cancellation results.
|
|
A much better basis is the central (co-)moment basis:
|
|
{1,s_i-sbar,q_i-qbar,(s_i-sbar)^2,(s_i-sbar)*(q_i-qbar),(q_i-qbar)^2,
|
|
(s_i-sbar)^2*(q_i-qbar),(s_i-sbar)*(q_i-qbar)^2,(s_i-sbar)^2*(q_i-qbar)^2},
|
|
where sbar and qbar are the average s and q values over the bin,
|
|
respectively.
|
|
In that basis, letting ds=sbar-s0 and dq=qbar-q0, (s_i-s0)^2*(q_i-q0)^2 is
|
|
ds^2*dq^2*(1)
|
|
+dq^2 *((s_i-sbar)^2)
|
|
+4*ds*dq*((s_i-sbar)*(q_i-qbar))
|
|
+ds^2 *((q_i-qbar)^2)
|
|
+2*dq *((s_i-sbar)^2*(q_i-qbar))
|
|
+2*ds *((s_i-sbar)*(q_i-qbar)^2)
|
|
+1 *((s_i-sbar)^2*(q_i-qbar)^2).
|
|
With these expressions in the central (co-)moment bases, all we need to do
|
|
is compute sums over the (co-)moment terms, which can be done
|
|
incrementally (see oc_mode_metrics_add() and oc_mode_metrics_merge()),
|
|
with no need to store the individual samples.
|
|
Now, for X^T.Y, we have
|
|
X^T.Y = sum((R_i-A-((B-A)/(s1-s0))*(s_i-s0)-((C-A)/(q1-q0))*(q_i-q0)
|
|
-((A-B-C)/((s1-s0)*(q1-q0)))*(s_i-s0)*(q_i-q0))*(s_i-s0)*(q_i-q0))/
|
|
((s1-s0)*(q1-q0)),
|
|
or, rewriting the constants to simplify notation,
|
|
X^T.Y = sum((C0+C1*(s_i-s0)+C2*(q_i-q0)
|
|
+C3*(s_i-s0)*(q_i-q0)+R_i)*(s_i-s0)*(q_i-q0))/((s1-s0)*(q1-q0)).
|
|
Again, converting to the central (co-)moment basis, the interior of the
|
|
above sum is
|
|
ds*dq*(rbar+C0+C1*ds+C2*dq+C3*ds*dq) *(1)
|
|
+(C1*dq+C3*dq^2) *((s_i-sbar)^2)
|
|
+(rbar+C0+2*C1*ds+2*C2*dq+4*C3*ds*dq)*((s_i-sbar)*(q_i-qbar))
|
|
+(C2*ds+C3*ds^2) *((q_i-qbar)^2)
|
|
+dq *((s_i-sbar)*(r_i-rbar))
|
|
+ds *((q_i-qbar)*(r_i-rbar))
|
|
+(C1+2*C3*dq) *((s_i-sbar)^2*(q_i-qbar))
|
|
+(C2+2*C3*ds) *((s_i-sbar)*(q_i-qbar)^2)
|
|
+1 *((s_i-sbar)*(q_i-qbar)*(r_i-rbar))
|
|
+C3 *((s_i-sbar)^2*(q_i-qbar)^2).
|
|
You might think it would be easier (if perhaps slightly less robust) to
|
|
accumulate terms directly around s0 and q0.
|
|
However, we update each corner of the bins in turn, so we would have to
|
|
change basis to move the sums from corner to corner anyway.*/
|
|
double oc_mode_metrics_solve(double *_r,double *_d,
|
|
const oc_mode_metrics *_metrics,const int *_s0,const int *_s1,
|
|
const int *_q0,const int *_q1,
|
|
const double *_ra,const double *_rb,const double *_rc,
|
|
const double *_da,const double *_db,const double *_dc,int _n){
|
|
double xx;
|
|
double rxy;
|
|
double dxy;
|
|
double wt;
|
|
int i;
|
|
xx=rxy=dxy=wt=0;
|
|
for(i=0;i<_n;i++)if(_metrics[i].w>0){
|
|
double s10;
|
|
double q10;
|
|
double sq10;
|
|
double ds;
|
|
double dq;
|
|
double ds2;
|
|
double dq2;
|
|
double r;
|
|
double d;
|
|
double s2;
|
|
double sq;
|
|
double q2;
|
|
double sr;
|
|
double qr;
|
|
double sd;
|
|
double qd;
|
|
double s2q;
|
|
double sq2;
|
|
double sqr;
|
|
double sqd;
|
|
double s2q2;
|
|
double c0;
|
|
double c1;
|
|
double c2;
|
|
double c3;
|
|
double w;
|
|
w=_metrics[i].w;
|
|
wt+=w;
|
|
s10=_s1[i]-_s0[i];
|
|
q10=_q1[i]-_q0[i];
|
|
sq10=s10*q10;
|
|
ds=_metrics[i].s/w-_s0[i];
|
|
dq=_metrics[i].q/w-_q0[i];
|
|
ds2=ds*ds;
|
|
dq2=dq*dq;
|
|
s2=_metrics[i].s2;
|
|
sq=_metrics[i].sq;
|
|
q2=_metrics[i].q2;
|
|
s2q=_metrics[i].s2q;
|
|
sq2=_metrics[i].sq2;
|
|
s2q2=_metrics[i].s2q2;
|
|
xx+=(dq2*(ds2*w+s2)+4*ds*dq*sq+ds2*q2+2*(dq*s2q+ds*sq2)+s2q2)/(sq10*sq10);
|
|
r=_metrics[i].r/w;
|
|
sr=_metrics[i].sr;
|
|
qr=_metrics[i].qr;
|
|
sqr=_metrics[i].sqr;
|
|
c0=-_ra[i];
|
|
c1=-(_rb[i]-_ra[i])/s10;
|
|
c2=-(_rc[i]-_ra[i])/q10;
|
|
c3=-(_ra[i]-_rb[i]-_rc[i])/sq10;
|
|
rxy+=(ds*dq*(r+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
|
|
+(r+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sr+ds*qr
|
|
+(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqr+c3*s2q2)/sq10;
|
|
d=_metrics[i].d/w;
|
|
sd=_metrics[i].sd;
|
|
qd=_metrics[i].qd;
|
|
sqd=_metrics[i].sqd;
|
|
c0=-_da[i];
|
|
c1=-(_db[i]-_da[i])/s10;
|
|
c2=-(_dc[i]-_da[i])/q10;
|
|
c3=-(_da[i]-_db[i]-_dc[i])/sq10;
|
|
dxy+=(ds*dq*(d+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
|
|
+(d+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sd+ds*qd
|
|
+(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqd+c3*s2q2)/sq10;
|
|
}
|
|
if(xx>1E-3){
|
|
*_r=rxy/xx;
|
|
*_d=dxy/xx;
|
|
}
|
|
else{
|
|
*_r=0;
|
|
*_d=0;
|
|
}
|
|
return wt;
|
|
}
|
|
|
|
/*Compile collected SATD/logq/rate/RMSE metrics into a form that's immediately
|
|
useful for mode decision.*/
|
|
void oc_mode_metrics_update(oc_mode_metrics (*_metrics)[3][2][OC_COMP_BINS],
|
|
int _niters_min,int _reweight,oc_mode_rd (*_table)[3][2][OC_COMP_BINS],
|
|
int _shift,double (*_weight)[3][2][OC_COMP_BINS]){
|
|
int niters;
|
|
int prevdr;
|
|
int prevdd;
|
|
int dr;
|
|
int dd;
|
|
int pli;
|
|
int qti;
|
|
int qi;
|
|
int si;
|
|
dd=dr=INT_MAX;
|
|
niters=0;
|
|
/*The encoder interpolates rate and RMSE terms bilinearly from an
|
|
OC_LOGQ_BINS by OC_COMP_BINS grid of sample points in _table.
|
|
To find the sample values at the grid points that minimize the total
|
|
squared prediction error actually requires solving a relatively sparse
|
|
linear system with a number of variables equal to the number of grid
|
|
points.
|
|
Instead of writing a general sparse linear system solver, we just use
|
|
Gauss-Seidel iteration, i.e., we update one grid point at time until
|
|
they stop changing.*/
|
|
do{
|
|
prevdr=dr;
|
|
prevdd=dd;
|
|
dd=dr=0;
|
|
for(pli=0;pli<3;pli++){
|
|
for(qti=0;qti<2;qti++){
|
|
for(qi=0;qi<OC_LOGQ_BINS;qi++){
|
|
for(si=0;si<OC_COMP_BINS;si++){
|
|
oc_mode_metrics m[4];
|
|
int s0[4];
|
|
int s1[4];
|
|
int q0[4];
|
|
int q1[4];
|
|
double ra[4];
|
|
double rb[4];
|
|
double rc[4];
|
|
double da[4];
|
|
double db[4];
|
|
double dc[4];
|
|
double r;
|
|
double d;
|
|
int rate;
|
|
int rmse;
|
|
int ds;
|
|
int n;
|
|
n=0;
|
|
/*Collect the statistics for the (up to) four bins grid point
|
|
(si,qi) touches.*/
|
|
if(qi>0&&si>0){
|
|
q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
|
|
q1[n]=OC_MODE_LOGQ[qi][pli][qti];
|
|
s0[n]=si-1<<_shift;
|
|
s1[n]=si<<_shift;
|
|
ra[n]=ldexp(_table[qi-1][pli][qti][si-1].rate,-OC_BIT_SCALE);
|
|
da[n]=ldexp(_table[qi-1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
|
|
rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
|
|
db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
|
|
rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
|
|
dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
|
|
*(m+n++)=*(_metrics[qi-1][pli][qti]+si-1);
|
|
}
|
|
if(qi>0){
|
|
ds=si+1<OC_COMP_BINS?1:-1;
|
|
q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
|
|
q1[n]=OC_MODE_LOGQ[qi][pli][qti];
|
|
s0[n]=si+ds<<_shift;
|
|
s1[n]=si<<_shift;
|
|
ra[n]=ldexp(_table[qi-1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
|
|
da[n]=
|
|
ldexp(_table[qi-1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
|
|
rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
|
|
db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
|
|
rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
|
|
dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
|
|
*(m+n++)=*(_metrics[qi-1][pli][qti]+si);
|
|
}
|
|
if(qi+1<OC_LOGQ_BINS&&si>0){
|
|
q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
|
|
q1[n]=OC_MODE_LOGQ[qi][pli][qti];
|
|
s0[n]=si-1<<_shift;
|
|
s1[n]=si<<_shift;
|
|
ra[n]=ldexp(_table[qi+1][pli][qti][si-1].rate,-OC_BIT_SCALE);
|
|
da[n]=ldexp(_table[qi+1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
|
|
rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
|
|
db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
|
|
rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
|
|
dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
|
|
*(m+n++)=*(_metrics[qi][pli][qti]+si-1);
|
|
}
|
|
if(qi+1<OC_LOGQ_BINS){
|
|
ds=si+1<OC_COMP_BINS?1:-1;
|
|
q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
|
|
q1[n]=OC_MODE_LOGQ[qi][pli][qti];
|
|
s0[n]=si+ds<<_shift;
|
|
s1[n]=si<<_shift;
|
|
ra[n]=ldexp(_table[qi+1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
|
|
da[n]=
|
|
ldexp(_table[qi+1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
|
|
rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
|
|
db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
|
|
rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
|
|
dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
|
|
*(m+n++)=*(_metrics[qi][pli][qti]+si);
|
|
}
|
|
/*On the first pass, initialize with a simple weighted average of
|
|
the neighboring bins.*/
|
|
if(!OC_HAS_MODE_METRICS&&niters==0){
|
|
double w;
|
|
w=r=d=0;
|
|
while(n-->0){
|
|
w+=m[n].w;
|
|
r+=m[n].r;
|
|
d+=m[n].d;
|
|
}
|
|
r=w>1E-3?r/w:0;
|
|
d=w>1E-3?d/w:0;
|
|
_weight[qi][pli][qti][si]=w;
|
|
}
|
|
else{
|
|
/*Update the grid point and save the weight for later.*/
|
|
_weight[qi][pli][qti][si]=
|
|
oc_mode_metrics_solve(&r,&d,m,s0,s1,q0,q1,ra,rb,rc,da,db,dc,n);
|
|
}
|
|
rate=OC_CLAMPI(-32768,(int)(ldexp(r,OC_BIT_SCALE)+0.5),32767);
|
|
rmse=OC_CLAMPI(-32768,(int)(ldexp(d,OC_RMSE_SCALE)+0.5),32767);
|
|
dr+=abs(rate-_table[qi][pli][qti][si].rate);
|
|
dd+=abs(rmse-_table[qi][pli][qti][si].rmse);
|
|
_table[qi][pli][qti][si].rate=(ogg_int16_t)rate;
|
|
_table[qi][pli][qti][si].rmse=(ogg_int16_t)rmse;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*After a fixed number of initial iterations, only iterate so long as the
|
|
total change is decreasing.
|
|
This ensures we don't oscillate forever, which is a danger, as all of our
|
|
results are rounded fairly coarsely.*/
|
|
while((dr>0||dd>0)&&(niters++<_niters_min||(dr<prevdr&&dd<prevdd)));
|
|
if(_reweight){
|
|
/*Now, reduce the values of the optimal solution until we get enough
|
|
samples in each bin to overcome the constant OC_ZWEIGHT factor.
|
|
This encourages sampling under-populated bins and prevents a single large
|
|
sample early on from discouraging coding in that bin ever again.*/
|
|
for(pli=0;pli<3;pli++){
|
|
for(qti=0;qti<2;qti++){
|
|
for(qi=0;qi<OC_LOGQ_BINS;qi++){
|
|
for(si=0;si<OC_COMP_BINS;si++){
|
|
double wt;
|
|
wt=_weight[qi][pli][qti][si];
|
|
wt/=OC_ZWEIGHT+wt;
|
|
_table[qi][pli][qti][si].rate=(ogg_int16_t)
|
|
(_table[qi][pli][qti][si].rate*wt+0.5);
|
|
_table[qi][pli][qti][si].rmse=(ogg_int16_t)
|
|
(_table[qi][pli][qti][si].rmse*wt+0.5);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*Dump the in memory mode metrics to a file.
|
|
Note this data format isn't portable between different platforms.*/
|
|
void oc_mode_metrics_dump(void){
|
|
FILE *fmetrics;
|
|
fmetrics=fopen(OC_MODE_METRICS_FILENAME,"wb");
|
|
if(fmetrics!=NULL){
|
|
(void)fwrite(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
|
|
(void)fwrite(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
|
|
(void)fwrite(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
|
|
fclose(fmetrics);
|
|
}
|
|
}
|
|
|
|
void oc_mode_metrics_print_rd(FILE *_fout,const char *_table_name,
|
|
#if !defined(OC_COLLECT_METRICS)
|
|
const oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
|
|
#else
|
|
oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
|
|
#endif
|
|
int qii;
|
|
fprintf(_fout,
|
|
"# if !defined(OC_COLLECT_METRICS)\n"
|
|
"static const\n"
|
|
"# endif\n"
|
|
"oc_mode_rd %s[OC_LOGQ_BINS][3][2][OC_COMP_BINS]={\n",_table_name);
|
|
for(qii=0;qii<OC_LOGQ_BINS;qii++){
|
|
int pli;
|
|
fprintf(_fout," {\n");
|
|
for(pli=0;pli<3;pli++){
|
|
int qti;
|
|
fprintf(_fout," {\n");
|
|
for(qti=0;qti<2;qti++){
|
|
int bin;
|
|
int qi;
|
|
static const char *pl_names[3]={"Y'","Cb","Cr"};
|
|
static const char *qti_names[2]={"INTRA","INTER"};
|
|
qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
|
|
fprintf(_fout," /*%s qi=%i %s*/\n",
|
|
pl_names[pli],qi,qti_names[qti]);
|
|
fprintf(_fout," {\n");
|
|
fprintf(_fout," ");
|
|
for(bin=0;bin<OC_COMP_BINS;bin++){
|
|
if(bin&&!(bin&0x3))fprintf(_fout,"\n ");
|
|
fprintf(_fout,"{%5i,%5i}",
|
|
_mode_rd_table[qii][pli][qti][bin].rate,
|
|
_mode_rd_table[qii][pli][qti][bin].rmse);
|
|
if(bin+1<OC_COMP_BINS)fprintf(_fout,",");
|
|
}
|
|
fprintf(_fout,"\n }");
|
|
if(qti<1)fprintf(_fout,",");
|
|
fprintf(_fout,"\n");
|
|
}
|
|
fprintf(_fout," }");
|
|
if(pli<2)fprintf(_fout,",");
|
|
fprintf(_fout,"\n");
|
|
}
|
|
fprintf(_fout," }");
|
|
if(qii+1<OC_LOGQ_BINS)fprintf(_fout,",");
|
|
fprintf(_fout,"\n");
|
|
}
|
|
fprintf(_fout,
|
|
"};\n"
|
|
"\n");
|
|
}
|
|
|
|
void oc_mode_metrics_print(FILE *_fout){
|
|
int qii;
|
|
fprintf(_fout,
|
|
"/*File generated by libtheora with OC_COLLECT_METRICS"
|
|
" defined at compile time.*/\n"
|
|
"#if !defined(_modedec_H)\n"
|
|
"# define _modedec_H (1)\n"
|
|
"# include \"encint.h\"\n"
|
|
"\n"
|
|
"\n"
|
|
"\n"
|
|
"/*The log of the average quantizer for each of the OC_MODE_RD table rows\n"
|
|
" (e.g., for the represented qi's, and each pli and qti), in Q10 format.\n"
|
|
" The actual statistics used by the encoder will be interpolated from\n"
|
|
" that table based on log_plq for the actual quantization matrix used.*/\n"
|
|
"# if !defined(OC_COLLECT_METRICS)\n"
|
|
"static const\n"
|
|
"# endif\n"
|
|
"ogg_int16_t OC_MODE_LOGQ[OC_LOGQ_BINS][3][2]={\n");
|
|
for(qii=0;qii<OC_LOGQ_BINS;qii++){
|
|
fprintf(_fout," { {0x%04X,0x%04X},{0x%04X,0x%04X},{0x%04X,0x%04X} }%s\n",
|
|
OC_MODE_LOGQ[qii][0][0],OC_MODE_LOGQ[qii][0][1],OC_MODE_LOGQ[qii][1][0],
|
|
OC_MODE_LOGQ[qii][1][1],OC_MODE_LOGQ[qii][2][0],OC_MODE_LOGQ[qii][2][1],
|
|
qii+1<OC_LOGQ_BINS?",":"");
|
|
}
|
|
fprintf(_fout,
|
|
"};\n"
|
|
"\n");
|
|
oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SATD",OC_MODE_RD_SATD);
|
|
oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SAD",OC_MODE_RD_SAD);
|
|
fprintf(_fout,
|
|
"#endif\n");
|
|
}
|
|
|
|
|
|
# if !defined(OC_COLLECT_NO_ENC_FUNCS)
|
|
void oc_enc_mode_metrics_load(oc_enc_ctx *_enc){
|
|
oc_restore_fpu(&_enc->state);
|
|
/*Load any existing mode metrics if we haven't already.*/
|
|
if(!OC_HAS_MODE_METRICS){
|
|
FILE *fmetrics;
|
|
memset(OC_MODE_METRICS_SATD,0,sizeof(OC_MODE_METRICS_SATD));
|
|
memset(OC_MODE_METRICS_SAD,0,sizeof(OC_MODE_METRICS_SAD));
|
|
fmetrics=fopen(OC_MODE_METRICS_FILENAME,"rb");
|
|
if(fmetrics!=NULL){
|
|
/*Read in the binary structures as written my oc_mode_metrics_dump().
|
|
Note this format isn't portable between different platforms.*/
|
|
(void)fread(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
|
|
(void)fread(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
|
|
(void)fread(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
|
|
fclose(fmetrics);
|
|
}
|
|
else{
|
|
int qii;
|
|
int qi;
|
|
int pli;
|
|
int qti;
|
|
for(qii=0;qii<OC_LOGQ_BINS;qii++){
|
|
qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
|
|
for(pli=0;pli<3;pli++)for(qti=0;qti<2;qti++){
|
|
OC_MODE_LOGQ[qii][pli][qti]=_enc->log_plq[qi][pli][qti];
|
|
}
|
|
}
|
|
}
|
|
oc_mode_metrics_update(OC_MODE_METRICS_SATD,100,1,
|
|
OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
|
|
oc_mode_metrics_update(OC_MODE_METRICS_SAD,100,1,
|
|
OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
|
|
OC_HAS_MODE_METRICS=1;
|
|
}
|
|
}
|
|
|
|
/*The following token skipping code used to also be used in the decoder (and
|
|
even at one point other places in the encoder).
|
|
However, it was obsoleted by other optimizations, and is now only used here.
|
|
It has been moved here to avoid generating the code when it's not needed.*/
|
|
|
|
/*Determines the number of blocks or coefficients to be skipped for a given
|
|
token value.
|
|
_token: The token value to skip.
|
|
_extra_bits: The extra bits attached to this token.
|
|
Return: A positive value indicates that number of coefficients are to be
|
|
skipped in the current block.
|
|
Otherwise, the negative of the return value indicates that number of
|
|
blocks are to be ended.*/
|
|
typedef ptrdiff_t (*oc_token_skip_func)(int _token,int _extra_bits);
|
|
|
|
/*Handles the simple end of block tokens.*/
|
|
static ptrdiff_t oc_token_skip_eob(int _token,int _extra_bits){
|
|
int nblocks_adjust;
|
|
nblocks_adjust=OC_UNIBBLE_TABLE32(0,1,2,3,7,15,0,0,_token)+1;
|
|
return -_extra_bits-nblocks_adjust;
|
|
}
|
|
|
|
/*The last EOB token has a special case, where an EOB run of size zero ends all
|
|
the remaining blocks in the frame.*/
|
|
static ptrdiff_t oc_token_skip_eob6(int _token,int _extra_bits){
|
|
/*Note: We want to return -PTRDIFF_MAX, but that requires C99, which is not
|
|
yet available everywhere; this should be equivalent.*/
|
|
if(!_extra_bits)return -(~(size_t)0>>1);
|
|
return -_extra_bits;
|
|
}
|
|
|
|
/*Handles the pure zero run tokens.*/
|
|
static ptrdiff_t oc_token_skip_zrl(int _token,int _extra_bits){
|
|
return _extra_bits+1;
|
|
}
|
|
|
|
/*Handles a normal coefficient value token.*/
|
|
static ptrdiff_t oc_token_skip_val(void){
|
|
return 1;
|
|
}
|
|
|
|
/*Handles a category 1A zero run/coefficient value combo token.*/
|
|
static ptrdiff_t oc_token_skip_run_cat1a(int _token){
|
|
return _token-OC_DCT_RUN_CAT1A+2;
|
|
}
|
|
|
|
/*Handles category 1b, 1c, 2a, and 2b zero run/coefficient value combo tokens.*/
|
|
static ptrdiff_t oc_token_skip_run(int _token,int _extra_bits){
|
|
int run_cati;
|
|
int ncoeffs_mask;
|
|
int ncoeffs_adjust;
|
|
run_cati=_token-OC_DCT_RUN_CAT1B;
|
|
ncoeffs_mask=OC_BYTE_TABLE32(3,7,0,1,run_cati);
|
|
ncoeffs_adjust=OC_BYTE_TABLE32(7,11,2,3,run_cati);
|
|
return (_extra_bits&ncoeffs_mask)+ncoeffs_adjust;
|
|
}
|
|
|
|
/*A jump table for computing the number of coefficients or blocks to skip for
|
|
a given token value.
|
|
This reduces all the conditional branches, etc., needed to parse these token
|
|
values down to one indirect jump.*/
|
|
static const oc_token_skip_func OC_TOKEN_SKIP_TABLE[TH_NDCT_TOKENS]={
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob6,
|
|
oc_token_skip_zrl,
|
|
oc_token_skip_zrl,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run
|
|
};
|
|
|
|
/*Determines the number of blocks or coefficients to be skipped for a given
|
|
token value.
|
|
_token: The token value to skip.
|
|
_extra_bits: The extra bits attached to this token.
|
|
Return: A positive value indicates that number of coefficients are to be
|
|
skipped in the current block.
|
|
Otherwise, the negative of the return value indicates that number of
|
|
blocks are to be ended.
|
|
0 will never be returned, so that at least one coefficient in one
|
|
block will always be decoded for every token.*/
|
|
static ptrdiff_t oc_dct_token_skip(int _token,int _extra_bits){
|
|
return (*OC_TOKEN_SKIP_TABLE[_token])(_token,_extra_bits);
|
|
}
|
|
|
|
|
|
void oc_enc_mode_metrics_collect(oc_enc_ctx *_enc){
|
|
static const unsigned char OC_ZZI_HUFF_OFFSET[64]={
|
|
0,16,16,16,16,16,32,32,
|
|
32,32,32,32,32,32,32,48,
|
|
48,48,48,48,48,48,48,48,
|
|
48,48,48,48,64,64,64,64,
|
|
64,64,64,64,64,64,64,64,
|
|
64,64,64,64,64,64,64,64,
|
|
64,64,64,64,64,64,64,64
|
|
};
|
|
const oc_fragment *frags;
|
|
const unsigned *frag_sad;
|
|
const unsigned *frag_satd;
|
|
const unsigned *frag_ssd;
|
|
const ptrdiff_t *coded_fragis;
|
|
ptrdiff_t ncoded_fragis;
|
|
ptrdiff_t fragii;
|
|
double fragw;
|
|
int modelines[3][3][2];
|
|
int qti;
|
|
int qii;
|
|
int qi;
|
|
int pli;
|
|
int zzi;
|
|
int token;
|
|
int eb;
|
|
oc_restore_fpu(&_enc->state);
|
|
/*Figure out which metric bins to use for this frame's quantizers.*/
|
|
for(qii=0;qii<_enc->state.nqis;qii++){
|
|
for(pli=0;pli<3;pli++){
|
|
for(qti=0;qti<2;qti++){
|
|
int log_plq;
|
|
int modeline;
|
|
log_plq=_enc->log_plq[_enc->state.qis[qii]][pli][qti];
|
|
for(modeline=0;modeline<OC_LOGQ_BINS-1&&
|
|
OC_MODE_LOGQ[modeline+1][pli][qti]>log_plq;modeline++);
|
|
modelines[qii][pli][qti]=modeline;
|
|
}
|
|
}
|
|
}
|
|
qti=_enc->state.frame_type;
|
|
frags=_enc->state.frags;
|
|
frag_sad=_enc->frag_sad;
|
|
frag_satd=_enc->frag_satd;
|
|
frag_ssd=_enc->frag_ssd;
|
|
coded_fragis=_enc->state.coded_fragis;
|
|
ncoded_fragis=fragii=0;
|
|
/*Weight the fragments by the inverse frame size; this prevents HD content
|
|
from dominating the statistics.*/
|
|
fragw=1.0/_enc->state.nfrags;
|
|
for(pli=0;pli<3;pli++){
|
|
ptrdiff_t ti[64];
|
|
int eob_token[64];
|
|
int eob_run[64];
|
|
/*Set up token indices and eob run counts.
|
|
We don't bother trying to figure out the real cost of the runs that span
|
|
coefficients; instead we use the costs that were available when R-D
|
|
token optimization was done.*/
|
|
for(zzi=0;zzi<64;zzi++){
|
|
ti[zzi]=_enc->dct_token_offs[pli][zzi];
|
|
if(ti[zzi]>0){
|
|
token=_enc->dct_tokens[pli][zzi][0];
|
|
eb=_enc->extra_bits[pli][zzi][0];
|
|
eob_token[zzi]=token;
|
|
eob_run[zzi]=-oc_dct_token_skip(token,eb);
|
|
}
|
|
else{
|
|
eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
|
|
eob_run[zzi]=0;
|
|
}
|
|
}
|
|
/*Scan the list of coded fragments for this plane.*/
|
|
ncoded_fragis+=_enc->state.ncoded_fragis[pli];
|
|
for(;fragii<ncoded_fragis;fragii++){
|
|
ptrdiff_t fragi;
|
|
int frag_bits;
|
|
int huffi;
|
|
int skip;
|
|
int mb_mode;
|
|
unsigned sad;
|
|
unsigned satd;
|
|
double sqrt_ssd;
|
|
int bin;
|
|
int qtj;
|
|
fragi=coded_fragis[fragii];
|
|
frag_bits=0;
|
|
for(zzi=0;zzi<64;){
|
|
if(eob_run[zzi]>0){
|
|
/*We've reached the end of the block.*/
|
|
eob_run[zzi]--;
|
|
break;
|
|
}
|
|
huffi=_enc->huff_idxs[qti][zzi>0][pli+1>>1]
|
|
+OC_ZZI_HUFF_OFFSET[zzi];
|
|
if(eob_token[zzi]<OC_NDCT_EOB_TOKEN_MAX){
|
|
/*This token caused an EOB run to be flushed.
|
|
Therefore it gets the bits associated with it.*/
|
|
frag_bits+=_enc->huff_codes[huffi][eob_token[zzi]].nbits
|
|
+OC_DCT_TOKEN_EXTRA_BITS[eob_token[zzi]];
|
|
eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
|
|
}
|
|
token=_enc->dct_tokens[pli][zzi][ti[zzi]];
|
|
eb=_enc->extra_bits[pli][zzi][ti[zzi]];
|
|
ti[zzi]++;
|
|
skip=oc_dct_token_skip(token,eb);
|
|
if(skip<0){
|
|
eob_token[zzi]=token;
|
|
eob_run[zzi]=-skip;
|
|
}
|
|
else{
|
|
/*A regular DCT value token; accumulate the bits for it.*/
|
|
frag_bits+=_enc->huff_codes[huffi][token].nbits
|
|
+OC_DCT_TOKEN_EXTRA_BITS[token];
|
|
zzi+=skip;
|
|
}
|
|
}
|
|
mb_mode=frags[fragi].mb_mode;
|
|
qii=frags[fragi].qii;
|
|
qi=_enc->state.qis[qii];
|
|
sad=frag_sad[fragi]<<(pli+1&2);
|
|
satd=frag_satd[fragi]<<(pli+1&2);
|
|
sqrt_ssd=sqrt(frag_ssd[fragi]);
|
|
qtj=mb_mode!=OC_MODE_INTRA;
|
|
/*Accumulate statistics.
|
|
The rate (frag_bits) and RMSE (sqrt(frag_ssd)) are not scaled by
|
|
OC_BIT_SCALE and OC_RMSE_SCALE; this lets us change the scale factor
|
|
yet still use old data.*/
|
|
bin=OC_MINI(satd>>OC_SATD_SHIFT,OC_COMP_BINS-1);
|
|
oc_mode_metrics_add(
|
|
OC_MODE_METRICS_SATD[modelines[qii][pli][qtj]][pli][qtj]+bin,
|
|
fragw,satd,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
|
|
bin=OC_MINI(sad>>OC_SAD_SHIFT,OC_COMP_BINS-1);
|
|
oc_mode_metrics_add(
|
|
OC_MODE_METRICS_SAD[modelines[qii][pli][qtj]][pli][qtj]+bin,
|
|
fragw,sad,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
|
|
}
|
|
}
|
|
/*Update global SA(T)D/logq/rate/RMSE estimation matrix.*/
|
|
oc_mode_metrics_update(OC_MODE_METRICS_SATD,4,1,
|
|
OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
|
|
oc_mode_metrics_update(OC_MODE_METRICS_SAD,4,1,
|
|
OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
|
|
}
|
|
# endif
|
|
|
|
#endif
|