godot/servers/rendering/renderer_scene_cull.h
lawnjelly 691854d589 Jitter raster occlusion camera to reduce false positives.
Due to the low resolution of the occlusion buffer, small gaps between occluders can be closed and incorrectly occlude instances which should show through the gaps. To ameliorate this problem, this PR jitters the occlusion buffer over time, making it more likely an instance will be seen through a gap. This is used in conjunction with an occlusion timer per instance, to prevent instances flickering on and off rapidly.
2024-04-03 12:18:45 +01:00

1401 lines
48 KiB
C++

/**************************************************************************/
/* renderer_scene_cull.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERER_SCENE_CULL_H
#define RENDERER_SCENE_CULL_H
#include "core/math/dynamic_bvh.h"
#include "core/templates/bin_sorted_array.h"
#include "core/templates/local_vector.h"
#include "core/templates/paged_allocator.h"
#include "core/templates/paged_array.h"
#include "core/templates/pass_func.h"
#include "core/templates/rid_owner.h"
#include "core/templates/self_list.h"
#include "servers/rendering/renderer_scene_occlusion_cull.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering/rendering_method.h"
#include "servers/rendering/rendering_server_globals.h"
#include "servers/rendering/storage/utilities.h"
#ifndef _3D_DISABLED
#include "servers/xr/xr_interface.h"
#endif // _3D_DISABLED
class RenderingLightCuller;
class RendererSceneCull : public RenderingMethod {
public:
RendererSceneRender *scene_render = nullptr;
enum {
SDFGI_MAX_CASCADES = 8,
SDFGI_MAX_REGIONS_PER_CASCADE = 3,
MAX_INSTANCE_PAIRS = 32,
MAX_UPDATE_SHADOWS = 512
};
uint64_t render_pass;
static RendererSceneCull *singleton;
/* CAMERA API */
struct Camera {
enum Type {
PERSPECTIVE,
ORTHOGONAL,
FRUSTUM
};
Type type;
float fov;
float znear, zfar;
float size;
Vector2 offset;
uint32_t visible_layers;
bool vaspect;
RID env;
RID attributes;
RID compositor;
Transform3D transform;
Camera() {
visible_layers = 0xFFFFFFFF;
fov = 75;
type = PERSPECTIVE;
znear = 0.05;
zfar = 4000;
size = 1.0;
offset = Vector2();
vaspect = false;
}
};
mutable RID_Owner<Camera, true> camera_owner;
virtual RID camera_allocate();
virtual void camera_initialize(RID p_rid);
virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far);
virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far);
virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far);
virtual void camera_set_transform(RID p_camera, const Transform3D &p_transform);
virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers);
virtual void camera_set_environment(RID p_camera, RID p_env);
virtual void camera_set_camera_attributes(RID p_camera, RID p_attributes);
virtual void camera_set_compositor(RID p_camera, RID p_compositor);
virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable);
virtual bool is_camera(RID p_camera) const;
/* OCCLUDER API */
virtual RID occluder_allocate();
virtual void occluder_initialize(RID p_occluder);
virtual void occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices);
/* VISIBILITY NOTIFIER API */
RendererSceneOcclusionCull *dummy_occlusion_culling = nullptr;
/* SCENARIO API */
struct Instance;
struct PlaneSign {
_ALWAYS_INLINE_ PlaneSign() {}
_ALWAYS_INLINE_ PlaneSign(const Plane &p_plane) {
if (p_plane.normal.x > 0) {
signs[0] = 0;
} else {
signs[0] = 3;
}
if (p_plane.normal.y > 0) {
signs[1] = 1;
} else {
signs[1] = 4;
}
if (p_plane.normal.z > 0) {
signs[2] = 2;
} else {
signs[2] = 5;
}
}
uint32_t signs[3];
};
struct Frustum {
Vector<Plane> planes;
Vector<PlaneSign> plane_signs;
const Plane *planes_ptr;
const PlaneSign *plane_signs_ptr;
uint32_t plane_count;
_ALWAYS_INLINE_ Frustum() {}
_ALWAYS_INLINE_ Frustum(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ void operator=(const Frustum &p_frustum) {
planes = p_frustum.planes;
plane_signs = p_frustum.plane_signs;
planes_ptr = planes.ptr();
plane_signs_ptr = plane_signs.ptr();
plane_count = p_frustum.plane_count;
}
_ALWAYS_INLINE_ Frustum(const Vector<Plane> &p_planes) {
planes = p_planes;
planes_ptr = planes.ptrw();
plane_count = planes.size();
for (int i = 0; i < planes.size(); i++) {
PlaneSign ps(p_planes[i]);
plane_signs.push_back(ps);
}
plane_signs_ptr = plane_signs.ptr();
}
};
struct InstanceBounds {
// Efficiently store instance bounds.
// Because bounds checking is performed first,
// keep it separated from data.
real_t bounds[6];
_ALWAYS_INLINE_ InstanceBounds() {}
_ALWAYS_INLINE_ InstanceBounds(const AABB &p_aabb) {
bounds[0] = p_aabb.position.x;
bounds[1] = p_aabb.position.y;
bounds[2] = p_aabb.position.z;
bounds[3] = p_aabb.position.x + p_aabb.size.x;
bounds[4] = p_aabb.position.y + p_aabb.size.y;
bounds[5] = p_aabb.position.z + p_aabb.size.z;
}
_ALWAYS_INLINE_ bool in_frustum(const Frustum &p_frustum) const {
// This is not a full SAT check and the possibility of false positives exist,
// but the tradeoff vs performance is still very good.
for (uint32_t i = 0; i < p_frustum.plane_count; i++) {
Vector3 min(
bounds[p_frustum.plane_signs_ptr[i].signs[0]],
bounds[p_frustum.plane_signs_ptr[i].signs[1]],
bounds[p_frustum.plane_signs_ptr[i].signs[2]]);
if (p_frustum.planes_ptr[i].distance_to(min) >= 0.0) {
return false;
}
}
return true;
}
_ALWAYS_INLINE_ bool in_aabb(const AABB &p_aabb) const {
Vector3 end = p_aabb.position + p_aabb.size;
if (bounds[0] >= end.x) {
return false;
}
if (bounds[3] <= p_aabb.position.x) {
return false;
}
if (bounds[1] >= end.y) {
return false;
}
if (bounds[4] <= p_aabb.position.y) {
return false;
}
if (bounds[2] >= end.z) {
return false;
}
if (bounds[5] <= p_aabb.position.z) {
return false;
}
return true;
}
};
struct InstanceVisibilityNotifierData;
struct InstanceData {
// Store instance pointer as well as common instance processing information,
// to make processing more cache friendly.
enum Flags {
FLAG_BASE_TYPE_MASK = 0xFF,
FLAG_CAST_SHADOWS = (1 << 8),
FLAG_CAST_SHADOWS_ONLY = (1 << 9),
FLAG_REDRAW_IF_VISIBLE = (1 << 10),
FLAG_GEOM_LIGHTING_DIRTY = (1 << 11),
FLAG_GEOM_REFLECTION_DIRTY = (1 << 12),
FLAG_GEOM_DECAL_DIRTY = (1 << 13),
FLAG_GEOM_VOXEL_GI_DIRTY = (1 << 14),
FLAG_LIGHTMAP_CAPTURE = (1 << 15),
FLAG_USES_BAKED_LIGHT = (1 << 16),
FLAG_USES_MESH_INSTANCE = (1 << 17),
FLAG_REFLECTION_PROBE_DIRTY = (1 << 18),
FLAG_IGNORE_OCCLUSION_CULLING = (1 << 19),
FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK = (3 << 20), // 2 bits, overlaps with the other vis. dependency flags
FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE = (1 << 20),
FLAG_VISIBILITY_DEPENDENCY_HIDDEN = (1 << 21),
FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN = (1 << 22),
FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY = (1 << 23),
FLAG_IGNORE_ALL_CULLING = (1 << 24),
};
uint32_t flags = 0;
uint32_t layer_mask = 0; //for fast layer-mask discard
RID base_rid;
union {
uint64_t instance_data_rid;
RenderGeometryInstance *instance_geometry;
InstanceVisibilityNotifierData *visibility_notifier = nullptr;
};
Instance *instance = nullptr;
int32_t parent_array_index = -1;
int32_t visibility_index = -1;
// Each time occlusion culling determines an instance is visible,
// set this to occlusion_frame plus some delay.
// Once the timeout is reached, allow the instance to be occlusion culled.
// This creates a delay for occlusion culling, which prevents flickering
// when jittering the raster occlusion projection.
uint64_t occlusion_timeout = 0;
};
struct InstanceVisibilityData {
uint64_t viewport_state = 0;
int32_t array_index = -1;
RS::VisibilityRangeFadeMode fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED;
Vector3 position;
Instance *instance = nullptr;
float range_begin = 0.0f;
float range_end = 0.0f;
float range_begin_margin = 0.0f;
float range_end_margin = 0.0f;
float children_fade_alpha = 1.0f;
};
class VisibilityArray : public BinSortedArray<InstanceVisibilityData> {
_FORCE_INLINE_ virtual void _update_idx(InstanceVisibilityData &r_element, uint64_t p_idx) {
r_element.instance->visibility_index = p_idx;
if (r_element.instance->scenario && r_element.instance->array_index != -1) {
r_element.instance->scenario->instance_data[r_element.instance->array_index].visibility_index = p_idx;
}
}
};
PagedArrayPool<InstanceBounds> instance_aabb_page_pool;
PagedArrayPool<InstanceData> instance_data_page_pool;
PagedArrayPool<InstanceVisibilityData> instance_visibility_data_page_pool;
struct Scenario {
enum IndexerType {
INDEXER_GEOMETRY, //for geometry
INDEXER_VOLUMES, //for everything else
INDEXER_MAX
};
DynamicBVH indexers[INDEXER_MAX];
RID self;
List<Instance *> directional_lights;
RID environment;
RID fallback_environment;
RID camera_attributes;
RID compositor;
RID reflection_probe_shadow_atlas;
RID reflection_atlas;
uint64_t used_viewport_visibility_bits;
HashMap<RID, uint64_t> viewport_visibility_masks;
SelfList<Instance>::List instances;
LocalVector<RID> dynamic_lights;
PagedArray<InstanceBounds> instance_aabbs;
PagedArray<InstanceData> instance_data;
VisibilityArray instance_visibility;
Scenario() {
indexers[INDEXER_GEOMETRY].set_index(INDEXER_GEOMETRY);
indexers[INDEXER_VOLUMES].set_index(INDEXER_VOLUMES);
used_viewport_visibility_bits = 0;
}
};
int indexer_update_iterations = 0;
mutable RID_Owner<Scenario, true> scenario_owner;
static void _instance_pair(Instance *p_A, Instance *p_B);
static void _instance_unpair(Instance *p_A, Instance *p_B);
void _instance_update_mesh_instance(Instance *p_instance);
virtual RID scenario_allocate();
virtual void scenario_initialize(RID p_rid);
virtual void scenario_set_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_camera_attributes(RID p_scenario, RID p_attributes);
virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment);
virtual void scenario_set_compositor(RID p_scenario, RID p_compositor);
virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count);
virtual bool is_scenario(RID p_scenario) const;
virtual RID scenario_get_environment(RID p_scenario);
virtual void scenario_add_viewport_visibility_mask(RID p_scenario, RID p_viewport);
virtual void scenario_remove_viewport_visibility_mask(RID p_scenario, RID p_viewport);
/* INSTANCING API */
struct InstancePair {
Instance *a = nullptr;
Instance *b = nullptr;
SelfList<InstancePair> list_a;
SelfList<InstancePair> list_b;
InstancePair() :
list_a(this), list_b(this) {}
};
PagedAllocator<InstancePair> pair_allocator;
struct InstanceBaseData {
virtual ~InstanceBaseData() {}
};
struct Instance {
RS::InstanceType base_type;
RID base;
RID skeleton;
RID material_override;
RID material_overlay;
RID mesh_instance; //only used for meshes and when skeleton/blendshapes exist
Transform3D transform;
float lod_bias;
bool ignore_occlusion_culling;
bool ignore_all_culling;
Vector<RID> materials;
RS::ShadowCastingSetting cast_shadows;
uint32_t layer_mask;
//fit in 32 bits
bool mirror : 8;
bool receive_shadows : 8;
bool visible : 8;
bool baked_light : 2; //this flag is only to know if it actually did use baked light
bool dynamic_gi : 2; //same above for dynamic objects
bool redraw_if_visible : 4;
Instance *lightmap = nullptr;
Rect2 lightmap_uv_scale;
int lightmap_slice_index;
uint32_t lightmap_cull_index;
Vector<Color> lightmap_sh; //spherical harmonic
AABB aabb;
AABB transformed_aabb;
AABB prev_transformed_aabb;
struct InstanceShaderParameter {
int32_t index = -1;
Variant value;
Variant default_value;
PropertyInfo info;
};
HashMap<StringName, InstanceShaderParameter> instance_shader_uniforms;
bool instance_allocated_shader_uniforms = false;
int32_t instance_allocated_shader_uniforms_offset = -1;
//
RID self;
//scenario stuff
DynamicBVH::ID indexer_id;
int32_t array_index = -1;
int32_t visibility_index = -1;
float visibility_range_begin = 0.0f;
float visibility_range_end = 0.0f;
float visibility_range_begin_margin = 0.0f;
float visibility_range_end_margin = 0.0f;
RS::VisibilityRangeFadeMode visibility_range_fade_mode = RS::VISIBILITY_RANGE_FADE_DISABLED;
Instance *visibility_parent = nullptr;
HashSet<Instance *> visibility_dependencies;
uint32_t visibility_dependencies_depth = 0;
float transparency = 0.0f;
Scenario *scenario = nullptr;
SelfList<Instance> scenario_item;
//aabb stuff
bool update_aabb;
bool update_dependencies;
SelfList<Instance> update_item;
AABB *custom_aabb = nullptr; // <Zylann> would using aabb directly with a bool be better?
float extra_margin;
ObjectID object_id;
// sorting
float sorting_offset = 0.0;
bool use_aabb_center = true;
Vector<Color> lightmap_target_sh; //target is used for incrementally changing the SH over time, this avoids pops in some corner cases and when going interior <-> exterior
uint64_t last_frame_pass;
uint64_t version; // changes to this, and changes to base increase version
InstanceBaseData *base_data = nullptr;
SelfList<InstancePair>::List pairs;
uint64_t pair_check;
DependencyTracker dependency_tracker;
static void dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
switch (p_notification) {
case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA:
case Dependency::DEPENDENCY_CHANGED_SKELETON_BONES:
case Dependency::DEPENDENCY_CHANGED_AABB: {
singleton->_instance_queue_update(instance, true, false);
} break;
case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES:
case Dependency::DEPENDENCY_CHANGED_MATERIAL: {
singleton->_instance_queue_update(instance, false, true);
} break;
case Dependency::DEPENDENCY_CHANGED_MESH:
case Dependency::DEPENDENCY_CHANGED_PARTICLES:
case Dependency::DEPENDENCY_CHANGED_MULTIMESH:
case Dependency::DEPENDENCY_CHANGED_DECAL:
case Dependency::DEPENDENCY_CHANGED_LIGHT:
case Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE: {
singleton->_instance_queue_update(instance, true, true);
} break;
case Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR: {
//requires repairing
if (instance->indexer_id.is_valid()) {
singleton->_unpair_instance(instance);
singleton->_instance_queue_update(instance, true, true);
}
} break;
default: {
// Ignored notifications.
} break;
}
}
static void dependency_deleted(const RID &p_dependency, DependencyTracker *tracker) {
Instance *instance = (Instance *)tracker->userdata;
if (p_dependency == instance->base) {
singleton->instance_set_base(instance->self, RID());
} else if (p_dependency == instance->skeleton) {
singleton->instance_attach_skeleton(instance->self, RID());
} else {
// It's possible the same material is used in multiple slots,
// so we check whether we need to clear them all.
if (p_dependency == instance->material_override) {
singleton->instance_geometry_set_material_override(instance->self, RID());
}
if (p_dependency == instance->material_overlay) {
singleton->instance_geometry_set_material_overlay(instance->self, RID());
}
for (int i = 0; i < instance->materials.size(); i++) {
if (p_dependency == instance->materials[i]) {
singleton->instance_set_surface_override_material(instance->self, i, RID());
}
}
if (instance->base_type == RS::INSTANCE_PARTICLES) {
RID particle_material = RSG::particles_storage->particles_get_process_material(instance->base);
if (p_dependency == particle_material) {
RSG::particles_storage->particles_set_process_material(instance->base, RID());
}
}
// Even if no change is made we still need to call `_instance_queue_update`.
// This dependency could also be a result of the freed material being used
// by the mesh this mesh instance uses.
singleton->_instance_queue_update(instance, false, true);
}
}
Instance() :
scenario_item(this),
update_item(this) {
base_type = RS::INSTANCE_NONE;
cast_shadows = RS::SHADOW_CASTING_SETTING_ON;
receive_shadows = true;
visible = true;
layer_mask = 1;
baked_light = true;
dynamic_gi = false;
redraw_if_visible = false;
lightmap_slice_index = 0;
lightmap = nullptr;
lightmap_cull_index = 0;
lod_bias = 1.0;
ignore_occlusion_culling = false;
ignore_all_culling = false;
scenario = nullptr;
update_aabb = false;
update_dependencies = false;
extra_margin = 0;
visible = true;
visibility_range_begin = 0;
visibility_range_end = 0;
visibility_range_begin_margin = 0;
visibility_range_end_margin = 0;
last_frame_pass = 0;
version = 1;
base_data = nullptr;
custom_aabb = nullptr;
pair_check = 0;
array_index = -1;
dependency_tracker.userdata = this;
dependency_tracker.changed_callback = dependency_changed;
dependency_tracker.deleted_callback = dependency_deleted;
}
~Instance() {
if (base_data) {
memdelete(base_data);
}
if (custom_aabb) {
memdelete(custom_aabb);
}
}
};
SelfList<Instance>::List _instance_update_list;
void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies = false);
struct InstanceGeometryData : public InstanceBaseData {
RenderGeometryInstance *geometry_instance = nullptr;
HashSet<Instance *> lights;
bool can_cast_shadows;
bool material_is_animated;
uint32_t projector_count = 0;
uint32_t softshadow_count = 0;
HashSet<Instance *> decals;
HashSet<Instance *> reflection_probes;
HashSet<Instance *> voxel_gi_instances;
HashSet<Instance *> lightmap_captures;
InstanceGeometryData() {
can_cast_shadows = true;
material_is_animated = true;
}
};
struct InstanceReflectionProbeData : public InstanceBaseData {
Instance *owner = nullptr;
HashSet<Instance *> geometries;
RID instance;
SelfList<InstanceReflectionProbeData> update_list;
int render_step;
InstanceReflectionProbeData() :
update_list(this) {
render_step = -1;
}
};
struct InstanceDecalData : public InstanceBaseData {
Instance *owner = nullptr;
RID instance;
HashSet<Instance *> geometries;
InstanceDecalData() {
}
};
SelfList<InstanceReflectionProbeData>::List reflection_probe_render_list;
struct InstanceParticlesCollisionData : public InstanceBaseData {
RID instance;
};
struct InstanceFogVolumeData : public InstanceBaseData {
RID instance;
bool is_global;
};
struct InstanceVisibilityNotifierData : public InstanceBaseData {
bool just_visible = false;
uint64_t visible_in_frame = 0;
RID base;
SelfList<InstanceVisibilityNotifierData> list_element;
InstanceVisibilityNotifierData() :
list_element(this) {}
};
SpinLock visible_notifier_list_lock;
SelfList<InstanceVisibilityNotifierData>::List visible_notifier_list;
struct InstanceLightData : public InstanceBaseData {
RID instance;
uint64_t last_version;
List<Instance *>::Element *D; // directional light in scenario
bool uses_projector = false;
bool uses_softshadow = false;
HashSet<Instance *> geometries;
Instance *baked_light = nullptr;
RS::LightBakeMode bake_mode;
uint32_t max_sdfgi_cascade = 2;
private:
// Instead of a single dirty flag, we maintain a count
// so that we can detect lights that are being made dirty
// each frame, and switch on tighter caster culling.
int32_t shadow_dirty_count;
uint32_t light_update_frame_id;
bool light_intersects_multiple_cameras;
uint32_t light_intersects_multiple_cameras_timeout_frame_id;
public:
bool is_shadow_dirty() const { return shadow_dirty_count != 0; }
void make_shadow_dirty() { shadow_dirty_count = light_intersects_multiple_cameras ? 1 : 2; }
void detect_light_intersects_multiple_cameras(uint32_t p_frame_id) {
// We need to detect the case where shadow updates are occurring
// more than once per frame. In this case, we need to turn off
// tighter caster culling, so situation reverts to one full shadow update
// per frame (light_intersects_multiple_cameras is set).
if (p_frame_id == light_update_frame_id) {
light_intersects_multiple_cameras = true;
light_intersects_multiple_cameras_timeout_frame_id = p_frame_id + 60;
} else {
// When shadow_volume_intersects_multiple_cameras is set, we
// want to detect the situation this is no longer the case, via a timeout.
// The system can go back to tighter caster culling in this situation.
// Having a long-ish timeout prevents rapid cycling.
if (light_intersects_multiple_cameras && (p_frame_id >= light_intersects_multiple_cameras_timeout_frame_id)) {
light_intersects_multiple_cameras = false;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
}
}
light_update_frame_id = p_frame_id;
}
void decrement_shadow_dirty() {
shadow_dirty_count--;
DEV_ASSERT(shadow_dirty_count >= 0);
}
// Shadow updates can either full (everything in the shadow volume)
// or closely culled to the camera frustum.
bool is_shadow_update_full() const { return shadow_dirty_count == 0; }
InstanceLightData() {
bake_mode = RS::LIGHT_BAKE_DISABLED;
D = nullptr;
last_version = 0;
baked_light = nullptr;
shadow_dirty_count = 1;
light_update_frame_id = UINT32_MAX;
light_intersects_multiple_cameras_timeout_frame_id = UINT32_MAX;
light_intersects_multiple_cameras = false;
}
};
struct InstanceVoxelGIData : public InstanceBaseData {
Instance *owner = nullptr;
HashSet<Instance *> geometries;
HashSet<Instance *> dynamic_geometries;
HashSet<Instance *> lights;
struct LightCache {
RS::LightType type;
Transform3D transform;
Color color;
float energy;
float intensity;
float bake_energy;
float radius;
float attenuation;
float spot_angle;
float spot_attenuation;
bool has_shadow;
RS::LightDirectionalSkyMode sky_mode;
};
Vector<LightCache> light_cache;
Vector<RID> light_instances;
RID probe_instance;
bool invalid;
uint32_t base_version;
SelfList<InstanceVoxelGIData> update_element;
InstanceVoxelGIData() :
update_element(this) {
invalid = true;
base_version = 0;
}
};
SelfList<InstanceVoxelGIData>::List voxel_gi_update_list;
struct InstanceLightmapData : public InstanceBaseData {
RID instance;
HashSet<Instance *> geometries;
HashSet<Instance *> users;
InstanceLightmapData() {
}
};
uint64_t pair_pass = 1;
struct PairInstances {
Instance *instance = nullptr;
PagedAllocator<InstancePair> *pair_allocator = nullptr;
SelfList<InstancePair>::List pairs_found;
DynamicBVH *bvh = nullptr;
DynamicBVH *bvh2 = nullptr; //some may need to cull in two
uint32_t pair_mask;
uint64_t pair_pass;
uint32_t cull_mask = 0xFFFFFFFF; // Needed for decals and lights in the mobile and compatibility renderers.
_FORCE_INLINE_ bool operator()(void *p_data) {
Instance *p_instance = (Instance *)p_data;
if (instance != p_instance && instance->transformed_aabb.intersects(p_instance->transformed_aabb) && (pair_mask & (1 << p_instance->base_type)) && (cull_mask & p_instance->layer_mask)) {
//test is more coarse in indexer
p_instance->pair_check = pair_pass;
InstancePair *pair = pair_allocator->alloc();
pair->a = instance;
pair->b = p_instance;
pairs_found.add(&pair->list_a);
}
return false;
}
void pair() {
if (bvh) {
bvh->aabb_query(instance->transformed_aabb, *this);
}
if (bvh2) {
bvh2->aabb_query(instance->transformed_aabb, *this);
}
while (instance->pairs.first()) {
InstancePair *pair = instance->pairs.first()->self();
Instance *other_instance = instance == pair->a ? pair->b : pair->a;
if (other_instance->pair_check != pair_pass) {
//unpaired
_instance_unpair(instance, other_instance);
} else {
//kept
other_instance->pair_check = 0; // if kept, then put pair check to zero, so we can distinguish with the newly added ones
}
pair_allocator->free(pair);
}
while (pairs_found.first()) {
InstancePair *pair = pairs_found.first()->self();
pairs_found.remove(pairs_found.first());
if (pair->b->pair_check == pair_pass) {
//paired
_instance_pair(instance, pair->b);
}
pair->a->pairs.add(&pair->list_a);
pair->b->pairs.add(&pair->list_b);
}
}
};
HashSet<Instance *> heightfield_particle_colliders_update_list;
PagedArrayPool<Instance *> instance_cull_page_pool;
PagedArrayPool<RenderGeometryInstance *> geometry_instance_cull_page_pool;
PagedArrayPool<RID> rid_cull_page_pool;
PagedArray<Instance *> instance_cull_result;
PagedArray<Instance *> instance_shadow_cull_result;
struct InstanceCullResult {
PagedArray<RenderGeometryInstance *> geometry_instances;
PagedArray<Instance *> lights;
PagedArray<RID> light_instances;
PagedArray<RID> lightmaps;
PagedArray<RID> reflections;
PagedArray<RID> decals;
PagedArray<RID> voxel_gi_instances;
PagedArray<RID> mesh_instances;
PagedArray<RID> fog_volumes;
struct DirectionalShadow {
PagedArray<RenderGeometryInstance *> cascade_geometry_instances[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES];
} directional_shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
PagedArray<RenderGeometryInstance *> sdfgi_region_geometry_instances[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
PagedArray<RID> sdfgi_cascade_lights[SDFGI_MAX_CASCADES];
void clear() {
geometry_instances.clear();
lights.clear();
light_instances.clear();
lightmaps.clear();
reflections.clear();
decals.clear();
voxel_gi_instances.clear();
mesh_instances.clear();
fog_volumes.clear();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].clear();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].clear();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].clear();
}
}
void reset() {
geometry_instances.reset();
lights.reset();
light_instances.reset();
lightmaps.reset();
reflections.reset();
decals.reset();
voxel_gi_instances.reset();
mesh_instances.reset();
fog_volumes.reset();
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].reset();
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].reset();
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].reset();
}
}
void append_from(InstanceCullResult &p_cull_result) {
geometry_instances.merge_unordered(p_cull_result.geometry_instances);
lights.merge_unordered(p_cull_result.lights);
light_instances.merge_unordered(p_cull_result.light_instances);
lightmaps.merge_unordered(p_cull_result.lightmaps);
reflections.merge_unordered(p_cull_result.reflections);
decals.merge_unordered(p_cull_result.decals);
voxel_gi_instances.merge_unordered(p_cull_result.voxel_gi_instances);
mesh_instances.merge_unordered(p_cull_result.mesh_instances);
fog_volumes.merge_unordered(p_cull_result.fog_volumes);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].merge_unordered(p_cull_result.directional_shadows[i].cascade_geometry_instances[j]);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].merge_unordered(p_cull_result.sdfgi_region_geometry_instances[i]);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].merge_unordered(p_cull_result.sdfgi_cascade_lights[i]);
}
}
void init(PagedArrayPool<RID> *p_rid_pool, PagedArrayPool<RenderGeometryInstance *> *p_geometry_instance_pool, PagedArrayPool<Instance *> *p_instance_pool) {
geometry_instances.set_page_pool(p_geometry_instance_pool);
light_instances.set_page_pool(p_rid_pool);
lights.set_page_pool(p_instance_pool);
lightmaps.set_page_pool(p_rid_pool);
reflections.set_page_pool(p_rid_pool);
decals.set_page_pool(p_rid_pool);
voxel_gi_instances.set_page_pool(p_rid_pool);
mesh_instances.set_page_pool(p_rid_pool);
fog_volumes.set_page_pool(p_rid_pool);
for (int i = 0; i < RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; i++) {
for (int j = 0; j < RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES; j++) {
directional_shadows[i].cascade_geometry_instances[j].set_page_pool(p_geometry_instance_pool);
}
}
for (int i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
sdfgi_region_geometry_instances[i].set_page_pool(p_geometry_instance_pool);
}
for (int i = 0; i < SDFGI_MAX_CASCADES; i++) {
sdfgi_cascade_lights[i].set_page_pool(p_rid_pool);
}
}
};
InstanceCullResult scene_cull_result;
LocalVector<InstanceCullResult> scene_cull_result_threads;
RendererSceneRender::RenderShadowData render_shadow_data[MAX_UPDATE_SHADOWS];
uint32_t max_shadows_used = 0;
RendererSceneRender::RenderSDFGIData render_sdfgi_data[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE];
RendererSceneRender::RenderSDFGIUpdateData sdfgi_update_data;
uint32_t thread_cull_threshold = 200;
RID_Owner<Instance, true> instance_owner;
uint32_t geometry_instance_pair_mask = 0; // used in traditional forward, unnecessary on clustered
LocalVector<Vector2> camera_jitter_array;
RenderingLightCuller *light_culler = nullptr;
virtual RID instance_allocate();
virtual void instance_initialize(RID p_rid);
virtual void instance_set_base(RID p_instance, RID p_base);
virtual void instance_set_scenario(RID p_instance, RID p_scenario);
virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask);
virtual void instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center);
virtual void instance_set_transform(RID p_instance, const Transform3D &p_transform);
virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id);
virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
virtual void instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material);
virtual void instance_set_visible(RID p_instance, bool p_visible);
virtual void instance_geometry_set_transparency(RID p_instance, float p_transparency);
virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb);
virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton);
virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin);
virtual void instance_set_visibility_parent(RID p_instance, RID p_parent_instance);
virtual void instance_set_ignore_culling(RID p_instance, bool p_enabled);
bool _update_instance_visibility_depth(Instance *p_instance);
void _update_instance_visibility_dependencies(Instance *p_instance);
// don't use these in a game!
virtual Vector<ObjectID> instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const;
virtual Vector<ObjectID> instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario = RID()) const;
virtual void instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled);
virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting);
virtual void instance_geometry_set_material_override(RID p_instance, RID p_material);
virtual void instance_geometry_set_material_overlay(RID p_instance, RID p_material);
virtual void instance_geometry_set_visibility_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin, RS::VisibilityRangeFadeMode p_fade_mode);
virtual void instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index);
virtual void instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias);
void _update_instance_shader_uniforms_from_material(HashMap<StringName, Instance::InstanceShaderParameter> &isparams, const HashMap<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material);
virtual void instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value);
virtual void instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const;
virtual Variant instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const;
virtual Variant instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const;
_FORCE_INLINE_ void _update_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
void _unpair_instance(Instance *p_instance);
void _light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect);
_FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_scren_mesh_lod_threshold, uint32_t p_visible_layers = 0xFFFFFF);
RID _render_get_environment(RID p_camera, RID p_scenario);
RID _render_get_compositor(RID p_camera, RID p_scenario);
struct Cull {
struct Shadow {
RID light_instance;
struct Cascade {
Frustum frustum;
Projection projection;
Transform3D transform;
real_t zfar;
real_t split;
real_t shadow_texel_size;
real_t bias_scale;
real_t range_begin;
Vector2 uv_scale;
} cascades[RendererSceneRender::MAX_DIRECTIONAL_LIGHT_CASCADES]; //max 4 cascades
uint32_t cascade_count;
} shadows[RendererSceneRender::MAX_DIRECTIONAL_LIGHTS];
uint32_t shadow_count;
struct SDFGI {
//have arrays here because SDFGI functions expects this, plus regions can have areas
AABB region_aabb[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_cascade[SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE]; //max 3 regions per cascade
uint32_t region_count = 0;
uint32_t cascade_light_index[SDFGI_MAX_CASCADES];
uint32_t cascade_light_count = 0;
} sdfgi;
SpinLock lock;
Frustum frustum;
} cull;
struct VisibilityCullData {
uint64_t viewport_mask;
Scenario *scenario = nullptr;
Vector3 camera_position;
uint32_t cull_offset;
uint32_t cull_count;
};
void _visibility_cull_threaded(uint32_t p_thread, VisibilityCullData *cull_data);
void _visibility_cull(const VisibilityCullData &cull_data, uint64_t p_from, uint64_t p_to);
template <bool p_fade_check>
_FORCE_INLINE_ int _visibility_range_check(InstanceVisibilityData &r_vis_data, const Vector3 &p_camera_pos, uint64_t p_viewport_mask);
struct CullData {
Cull *cull = nullptr;
Scenario *scenario = nullptr;
RID shadow_atlas;
Transform3D cam_transform;
uint32_t visible_layers;
Instance *render_reflection_probe = nullptr;
const RendererSceneOcclusionCull::HZBuffer *occlusion_buffer;
const Projection *camera_matrix;
uint64_t visibility_viewport_mask;
};
void _scene_cull_threaded(uint32_t p_thread, CullData *cull_data);
void _scene_cull(CullData &cull_data, InstanceCullResult &cull_result, uint64_t p_from, uint64_t p_to);
_FORCE_INLINE_ bool _visibility_parent_check(const CullData &p_cull_data, const InstanceData &p_instance_data);
bool _render_reflection_probe_step(Instance *p_instance, int p_step);
void _render_scene(const RendererSceneRender::CameraData *p_camera_data, const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, RID p_force_camera_attributes, RID p_compositor, uint32_t p_visible_layers, RID p_scenario, RID p_viewport, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, bool p_using_shadows = true, RenderInfo *r_render_info = nullptr);
void render_empty_scene(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_scenario, RID p_shadow_atlas);
void render_camera(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_camera, RID p_scenario, RID p_viewport, Size2 p_viewport_size, uint32_t p_jitter_phase_count, float p_screen_mesh_lod_threshold, RID p_shadow_atlas, Ref<XRInterface> &p_xr_interface, RenderingMethod::RenderInfo *r_render_info = nullptr);
void update_dirty_instances();
void render_particle_colliders();
virtual void render_probes();
TypedArray<Image> bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size);
//pass to scene render
/* ENVIRONMENT API */
#ifdef PASSBASE
#undef PASSBASE
#endif
#define PASSBASE scene_render
PASS1(voxel_gi_set_quality, RS::VoxelGIQuality)
/* SKY API */
PASS0R(RID, sky_allocate)
PASS1(sky_initialize, RID)
PASS2(sky_set_radiance_size, RID, int)
PASS2(sky_set_mode, RID, RS::SkyMode)
PASS2(sky_set_material, RID, RID)
PASS4R(Ref<Image>, sky_bake_panorama, RID, float, bool, const Size2i &)
// Compositor effect
PASS0R(RID, compositor_effect_allocate)
PASS1(compositor_effect_initialize, RID)
PASS1RC(bool, is_compositor_effect, RID)
PASS2(compositor_effect_set_enabled, RID, bool)
PASS3(compositor_effect_set_callback, RID, RS::CompositorEffectCallbackType, const Callable &)
PASS3(compositor_effect_set_flag, RID, RS::CompositorEffectFlags, bool)
// Compositor
PASS0R(RID, compositor_allocate)
PASS1(compositor_initialize, RID)
PASS1RC(bool, is_compositor, RID)
PASS2(compositor_set_compositor_effects, RID, const TypedArray<RID> &)
// Environment
PASS0R(RID, environment_allocate)
PASS1(environment_initialize, RID)
PASS1RC(bool, is_environment, RID)
// Background
PASS2(environment_set_background, RID, RS::EnvironmentBG)
PASS2(environment_set_sky, RID, RID)
PASS2(environment_set_sky_custom_fov, RID, float)
PASS2(environment_set_sky_orientation, RID, const Basis &)
PASS2(environment_set_bg_color, RID, const Color &)
PASS3(environment_set_bg_energy, RID, float, float)
PASS2(environment_set_canvas_max_layer, RID, int)
PASS6(environment_set_ambient_light, RID, const Color &, RS::EnvironmentAmbientSource, float, float, RS::EnvironmentReflectionSource)
PASS1RC(RS::EnvironmentBG, environment_get_background, RID)
PASS1RC(RID, environment_get_sky, RID)
PASS1RC(float, environment_get_sky_custom_fov, RID)
PASS1RC(Basis, environment_get_sky_orientation, RID)
PASS1RC(Color, environment_get_bg_color, RID)
PASS1RC(float, environment_get_bg_energy_multiplier, RID)
PASS1RC(float, environment_get_bg_intensity, RID)
PASS1RC(int, environment_get_canvas_max_layer, RID)
PASS1RC(RS::EnvironmentAmbientSource, environment_get_ambient_source, RID)
PASS1RC(Color, environment_get_ambient_light, RID)
PASS1RC(float, environment_get_ambient_light_energy, RID)
PASS1RC(float, environment_get_ambient_sky_contribution, RID)
PASS1RC(RS::EnvironmentReflectionSource, environment_get_reflection_source, RID)
// Tonemap
PASS4(environment_set_tonemap, RID, RS::EnvironmentToneMapper, float, float)
PASS1RC(RS::EnvironmentToneMapper, environment_get_tone_mapper, RID)
PASS1RC(float, environment_get_exposure, RID)
PASS1RC(float, environment_get_white, RID)
// Fog
PASS11(environment_set_fog, RID, bool, const Color &, float, float, float, float, float, float, float, RS::EnvironmentFogMode)
PASS1RC(bool, environment_get_fog_enabled, RID)
PASS1RC(Color, environment_get_fog_light_color, RID)
PASS1RC(float, environment_get_fog_light_energy, RID)
PASS1RC(float, environment_get_fog_sun_scatter, RID)
PASS1RC(float, environment_get_fog_density, RID)
PASS1RC(float, environment_get_fog_sky_affect, RID)
PASS1RC(float, environment_get_fog_height, RID)
PASS1RC(float, environment_get_fog_height_density, RID)
PASS1RC(float, environment_get_fog_aerial_perspective, RID)
PASS1RC(RS::EnvironmentFogMode, environment_get_fog_mode, RID)
PASS2(environment_set_volumetric_fog_volume_size, int, int)
PASS1(environment_set_volumetric_fog_filter_active, bool)
// Depth Fog
PASS4(environment_set_fog_depth, RID, float, float, float)
PASS1RC(float, environment_get_fog_depth_curve, RID)
PASS1RC(float, environment_get_fog_depth_begin, RID)
PASS1RC(float, environment_get_fog_depth_end, RID)
// Volumentric Fog
PASS14(environment_set_volumetric_fog, RID, bool, float, const Color &, const Color &, float, float, float, float, float, bool, float, float, float)
PASS1RC(bool, environment_get_volumetric_fog_enabled, RID)
PASS1RC(float, environment_get_volumetric_fog_density, RID)
PASS1RC(Color, environment_get_volumetric_fog_scattering, RID)
PASS1RC(Color, environment_get_volumetric_fog_emission, RID)
PASS1RC(float, environment_get_volumetric_fog_emission_energy, RID)
PASS1RC(float, environment_get_volumetric_fog_anisotropy, RID)
PASS1RC(float, environment_get_volumetric_fog_length, RID)
PASS1RC(float, environment_get_volumetric_fog_detail_spread, RID)
PASS1RC(float, environment_get_volumetric_fog_gi_inject, RID)
PASS1RC(float, environment_get_volumetric_fog_sky_affect, RID)
PASS1RC(bool, environment_get_volumetric_fog_temporal_reprojection, RID)
PASS1RC(float, environment_get_volumetric_fog_temporal_reprojection_amount, RID)
PASS1RC(float, environment_get_volumetric_fog_ambient_inject, RID)
// Glow
PASS13(environment_set_glow, RID, bool, Vector<float>, float, float, float, float, RS::EnvironmentGlowBlendMode, float, float, float, float, RID)
PASS1RC(bool, environment_get_glow_enabled, RID)
PASS1RC(Vector<float>, environment_get_glow_levels, RID)
PASS1RC(float, environment_get_glow_intensity, RID)
PASS1RC(float, environment_get_glow_strength, RID)
PASS1RC(float, environment_get_glow_bloom, RID)
PASS1RC(float, environment_get_glow_mix, RID)
PASS1RC(RS::EnvironmentGlowBlendMode, environment_get_glow_blend_mode, RID)
PASS1RC(float, environment_get_glow_hdr_bleed_threshold, RID)
PASS1RC(float, environment_get_glow_hdr_luminance_cap, RID)
PASS1RC(float, environment_get_glow_hdr_bleed_scale, RID)
PASS1RC(float, environment_get_glow_map_strength, RID)
PASS1RC(RID, environment_get_glow_map, RID)
PASS1(environment_glow_set_use_bicubic_upscale, bool)
// SSR
PASS6(environment_set_ssr, RID, bool, int, float, float, float)
PASS1RC(bool, environment_get_ssr_enabled, RID)
PASS1RC(int, environment_get_ssr_max_steps, RID)
PASS1RC(float, environment_get_ssr_fade_in, RID)
PASS1RC(float, environment_get_ssr_fade_out, RID)
PASS1RC(float, environment_get_ssr_depth_tolerance, RID)
PASS1(environment_set_ssr_roughness_quality, RS::EnvironmentSSRRoughnessQuality)
// SSAO
PASS10(environment_set_ssao, RID, bool, float, float, float, float, float, float, float, float)
PASS1RC(bool, environment_get_ssao_enabled, RID)
PASS1RC(float, environment_get_ssao_radius, RID)
PASS1RC(float, environment_get_ssao_intensity, RID)
PASS1RC(float, environment_get_ssao_power, RID)
PASS1RC(float, environment_get_ssao_detail, RID)
PASS1RC(float, environment_get_ssao_horizon, RID)
PASS1RC(float, environment_get_ssao_sharpness, RID)
PASS1RC(float, environment_get_ssao_direct_light_affect, RID)
PASS1RC(float, environment_get_ssao_ao_channel_affect, RID)
PASS6(environment_set_ssao_quality, RS::EnvironmentSSAOQuality, bool, float, int, float, float)
// SSIL
PASS6(environment_set_ssil, RID, bool, float, float, float, float)
PASS1RC(bool, environment_get_ssil_enabled, RID)
PASS1RC(float, environment_get_ssil_radius, RID)
PASS1RC(float, environment_get_ssil_intensity, RID)
PASS1RC(float, environment_get_ssil_sharpness, RID)
PASS1RC(float, environment_get_ssil_normal_rejection, RID)
PASS6(environment_set_ssil_quality, RS::EnvironmentSSILQuality, bool, float, int, float, float)
// SDFGI
PASS11(environment_set_sdfgi, RID, bool, int, float, RS::EnvironmentSDFGIYScale, bool, float, bool, float, float, float)
PASS1RC(bool, environment_get_sdfgi_enabled, RID)
PASS1RC(int, environment_get_sdfgi_cascades, RID)
PASS1RC(float, environment_get_sdfgi_min_cell_size, RID)
PASS1RC(bool, environment_get_sdfgi_use_occlusion, RID)
PASS1RC(float, environment_get_sdfgi_bounce_feedback, RID)
PASS1RC(bool, environment_get_sdfgi_read_sky_light, RID)
PASS1RC(float, environment_get_sdfgi_energy, RID)
PASS1RC(float, environment_get_sdfgi_normal_bias, RID)
PASS1RC(float, environment_get_sdfgi_probe_bias, RID)
PASS1RC(RS::EnvironmentSDFGIYScale, environment_get_sdfgi_y_scale, RID)
PASS1(environment_set_sdfgi_ray_count, RS::EnvironmentSDFGIRayCount)
PASS1(environment_set_sdfgi_frames_to_converge, RS::EnvironmentSDFGIFramesToConverge)
PASS1(environment_set_sdfgi_frames_to_update_light, RS::EnvironmentSDFGIFramesToUpdateLight)
// Adjustment
PASS7(environment_set_adjustment, RID, bool, float, float, float, bool, RID)
PASS1RC(bool, environment_get_adjustments_enabled, RID)
PASS1RC(float, environment_get_adjustments_brightness, RID)
PASS1RC(float, environment_get_adjustments_contrast, RID)
PASS1RC(float, environment_get_adjustments_saturation, RID)
PASS1RC(bool, environment_get_use_1d_color_correction, RID)
PASS1RC(RID, environment_get_color_correction, RID)
PASS3R(Ref<Image>, environment_bake_panorama, RID, bool, const Size2i &)
PASS3(screen_space_roughness_limiter_set_active, bool, float, float)
PASS1(sub_surface_scattering_set_quality, RS::SubSurfaceScatteringQuality)
PASS2(sub_surface_scattering_set_scale, float, float)
PASS1(positional_soft_shadow_filter_set_quality, RS::ShadowQuality)
PASS1(directional_soft_shadow_filter_set_quality, RS::ShadowQuality)
PASS2(sdfgi_set_debug_probe_select, const Vector3 &, const Vector3 &)
/* Render Buffers */
PASS0R(Ref<RenderSceneBuffers>, render_buffers_create)
PASS1(gi_set_use_half_resolution, bool)
/* Misc */
PASS1(set_debug_draw_mode, RS::ViewportDebugDraw)
PASS1(decals_set_filter, RS::DecalFilter)
PASS1(light_projectors_set_filter, RS::LightProjectorFilter)
virtual void update();
bool free(RID p_rid);
void set_scene_render(RendererSceneRender *p_scene_render);
virtual void update_visibility_notifiers();
RendererSceneCull();
virtual ~RendererSceneCull();
};
#endif // RENDERER_SCENE_CULL_H