mirror of
https://github.com/godotengine/godot.git
synced 2024-11-24 21:22:48 +00:00
734 lines
21 KiB
C++
734 lines
21 KiB
C++
/**************************************************************************/
|
|
/* a_hash_map.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef A_HASH_MAP_H
|
|
#define A_HASH_MAP_H
|
|
|
|
#include "core/templates/hash_map.h"
|
|
|
|
struct HashMapData {
|
|
union {
|
|
struct
|
|
{
|
|
uint32_t hash;
|
|
uint32_t hash_to_key;
|
|
};
|
|
uint64_t data;
|
|
};
|
|
};
|
|
|
|
static_assert(sizeof(HashMapData) == 8);
|
|
|
|
/**
|
|
* An array-based implementation of a hash map. It is very efficient in terms of performance and
|
|
* memory usage. Works like a dynamic array, adding elements to the end of the array, and
|
|
* allows you to access array elements by their index by using `get_by_index` method.
|
|
* Example:
|
|
* ```
|
|
* AHashMap<int, Object *> map;
|
|
*
|
|
* int get_object_id_by_number(int p_number) {
|
|
* int id = map.get_index(p_number);
|
|
* return id;
|
|
* }
|
|
*
|
|
* Object *get_object_by_id(int p_id) {
|
|
* map.get_by_index(p_id).value;
|
|
* }
|
|
* ```
|
|
* Still, don`t erase the elements because ID can break.
|
|
*
|
|
* When an element erase, its place is taken by the element from the end.
|
|
*
|
|
* <-------------
|
|
* | |
|
|
* 6 8 X 9 32 -1 5 -10 7 X X X
|
|
* 6 8 7 9 32 -1 5 -10 X X X X
|
|
*
|
|
*
|
|
* Use RBMap if you need to iterate over sorted elements.
|
|
*
|
|
* Use HashMap if:
|
|
* - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime.
|
|
* - You need to preserve the insertion order when using erase.
|
|
*
|
|
* It is recommended to use `HashMap` if `KeyValue` size is very large.
|
|
*/
|
|
template <typename TKey, typename TValue,
|
|
typename Hasher = HashMapHasherDefault,
|
|
typename Comparator = HashMapComparatorDefault<TKey>>
|
|
class AHashMap {
|
|
public:
|
|
// Must be a power of two.
|
|
static constexpr uint32_t INITIAL_CAPACITY = 16;
|
|
static constexpr uint32_t EMPTY_HASH = 0;
|
|
static_assert(EMPTY_HASH == 0, "EMPTY_HASH must always be 0 for the memcpy() optimization.");
|
|
|
|
private:
|
|
typedef KeyValue<TKey, TValue> MapKeyValue;
|
|
MapKeyValue *elements = nullptr;
|
|
HashMapData *map_data = nullptr;
|
|
|
|
// Due to optimization, this is `capacity - 1`. Use + 1 to get normal capacity.
|
|
uint32_t capacity = 0;
|
|
uint32_t num_elements = 0;
|
|
|
|
uint32_t _hash(const TKey &p_key) const {
|
|
uint32_t hash = Hasher::hash(p_key);
|
|
|
|
if (unlikely(hash == EMPTY_HASH)) {
|
|
hash = EMPTY_HASH + 1;
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
static _FORCE_INLINE_ uint32_t _get_resize_count(uint32_t p_capacity) {
|
|
return p_capacity ^ (p_capacity + 1) >> 2; // = get_capacity() * 0.75 - 1; Works only if p_capacity = 2^n - 1.
|
|
}
|
|
|
|
static _FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash, uint32_t p_local_capacity) {
|
|
const uint32_t original_pos = p_hash & p_local_capacity;
|
|
return (p_pos - original_pos + p_local_capacity + 1) & p_local_capacity;
|
|
}
|
|
|
|
bool _lookup_pos(const TKey &p_key, uint32_t &r_pos, uint32_t &r_hash_pos) const {
|
|
if (unlikely(elements == nullptr)) {
|
|
return false; // Failed lookups, no elements.
|
|
}
|
|
return _lookup_pos_with_hash(p_key, r_pos, r_hash_pos, _hash(p_key));
|
|
}
|
|
|
|
bool _lookup_pos_with_hash(const TKey &p_key, uint32_t &r_pos, uint32_t &r_hash_pos, uint32_t p_hash) const {
|
|
if (unlikely(elements == nullptr)) {
|
|
return false; // Failed lookups, no elements.
|
|
}
|
|
|
|
uint32_t pos = p_hash & capacity;
|
|
HashMapData data = map_data[pos];
|
|
if (data.hash == p_hash && Comparator::compare(elements[data.hash_to_key].key, p_key)) {
|
|
r_pos = data.hash_to_key;
|
|
r_hash_pos = pos;
|
|
return true;
|
|
}
|
|
|
|
if (data.data == EMPTY_HASH) {
|
|
return false;
|
|
}
|
|
|
|
// A collision occurred.
|
|
pos = (pos + 1) & capacity;
|
|
uint32_t distance = 1;
|
|
while (true) {
|
|
data = map_data[pos];
|
|
if (data.hash == p_hash && Comparator::compare(elements[data.hash_to_key].key, p_key)) {
|
|
r_pos = data.hash_to_key;
|
|
r_hash_pos = pos;
|
|
return true;
|
|
}
|
|
|
|
if (data.data == EMPTY_HASH) {
|
|
return false;
|
|
}
|
|
|
|
if (distance > _get_probe_length(pos, data.hash, capacity)) {
|
|
return false;
|
|
}
|
|
|
|
pos = (pos + 1) & capacity;
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) {
|
|
uint32_t pos = p_hash & capacity;
|
|
|
|
if (map_data[pos].data == EMPTY_HASH) {
|
|
uint64_t data = ((uint64_t)p_index << 32) | p_hash;
|
|
map_data[pos].data = data;
|
|
return pos;
|
|
}
|
|
|
|
uint32_t distance = 1;
|
|
pos = (pos + 1) & capacity;
|
|
HashMapData c_data;
|
|
c_data.hash = p_hash;
|
|
c_data.hash_to_key = p_index;
|
|
|
|
while (true) {
|
|
if (map_data[pos].data == EMPTY_HASH) {
|
|
#ifdef DEV_ENABLED
|
|
if (unlikely(distance > 12)) {
|
|
WARN_PRINT("Excessive collision count (" +
|
|
itos(distance) + "), is the right hash function being used?");
|
|
}
|
|
#endif
|
|
map_data[pos] = c_data;
|
|
return pos;
|
|
}
|
|
|
|
// Not an empty slot, let's check the probing length of the existing one.
|
|
uint32_t existing_probe_len = _get_probe_length(pos, map_data[pos].hash, capacity);
|
|
if (existing_probe_len < distance) {
|
|
SWAP(c_data, map_data[pos]);
|
|
distance = existing_probe_len;
|
|
}
|
|
|
|
pos = (pos + 1) & capacity;
|
|
distance++;
|
|
}
|
|
}
|
|
|
|
void _resize_and_rehash(uint32_t p_new_capacity) {
|
|
uint32_t real_old_capacity = capacity + 1;
|
|
// Capacity can't be 0 and must be 2^n - 1.
|
|
capacity = MAX(4u, p_new_capacity);
|
|
uint32_t real_capacity = next_power_of_2(capacity);
|
|
capacity = real_capacity - 1;
|
|
|
|
HashMapData *old_map_data = map_data;
|
|
|
|
map_data = reinterpret_cast<HashMapData *>(Memory::alloc_static(sizeof(HashMapData) * real_capacity));
|
|
elements = reinterpret_cast<MapKeyValue *>(Memory::realloc_static(elements, sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1)));
|
|
|
|
memset(map_data, EMPTY_HASH, real_capacity * sizeof(HashMapData));
|
|
|
|
if (num_elements != 0) {
|
|
for (uint32_t i = 0; i < real_old_capacity; i++) {
|
|
HashMapData data = old_map_data[i];
|
|
if (data.data != EMPTY_HASH) {
|
|
_insert_with_hash(data.hash, data.hash_to_key);
|
|
}
|
|
}
|
|
}
|
|
|
|
Memory::free_static(old_map_data);
|
|
}
|
|
|
|
int32_t _insert_element(const TKey &p_key, const TValue &p_value, uint32_t p_hash) {
|
|
if (unlikely(elements == nullptr)) {
|
|
// Allocate on demand to save memory.
|
|
|
|
uint32_t real_capacity = capacity + 1;
|
|
map_data = reinterpret_cast<HashMapData *>(Memory::alloc_static(sizeof(HashMapData) * real_capacity));
|
|
elements = reinterpret_cast<MapKeyValue *>(Memory::alloc_static(sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1)));
|
|
|
|
memset(map_data, EMPTY_HASH, real_capacity * sizeof(HashMapData));
|
|
}
|
|
|
|
if (unlikely(num_elements > _get_resize_count(capacity))) {
|
|
_resize_and_rehash(capacity * 2);
|
|
}
|
|
|
|
memnew_placement(&elements[num_elements], MapKeyValue(p_key, p_value));
|
|
|
|
_insert_with_hash(p_hash, num_elements);
|
|
num_elements++;
|
|
return num_elements - 1;
|
|
}
|
|
|
|
void _init_from(const AHashMap &p_other) {
|
|
capacity = p_other.capacity;
|
|
uint32_t real_capacity = capacity + 1;
|
|
num_elements = p_other.num_elements;
|
|
|
|
if (p_other.num_elements == 0) {
|
|
return;
|
|
}
|
|
|
|
map_data = reinterpret_cast<HashMapData *>(Memory::alloc_static(sizeof(HashMapData) * real_capacity));
|
|
elements = reinterpret_cast<MapKeyValue *>(Memory::alloc_static(sizeof(MapKeyValue) * (_get_resize_count(capacity) + 1)));
|
|
|
|
if constexpr (std::is_trivially_copyable_v<TKey> && std::is_trivially_copyable_v<TValue>) {
|
|
void *destination = elements;
|
|
const void *source = p_other.elements;
|
|
memcpy(destination, source, sizeof(MapKeyValue) * num_elements);
|
|
} else {
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
memnew_placement(&elements[i], MapKeyValue(p_other.elements[i]));
|
|
}
|
|
}
|
|
|
|
memcpy(map_data, p_other.map_data, sizeof(HashMapData) * real_capacity);
|
|
}
|
|
|
|
public:
|
|
/* Standard Godot Container API */
|
|
|
|
_FORCE_INLINE_ uint32_t get_capacity() const { return capacity + 1; }
|
|
_FORCE_INLINE_ uint32_t size() const { return num_elements; }
|
|
|
|
_FORCE_INLINE_ bool is_empty() const {
|
|
return num_elements == 0;
|
|
}
|
|
|
|
void clear() {
|
|
if (elements == nullptr || num_elements == 0) {
|
|
return;
|
|
}
|
|
|
|
memset(map_data, EMPTY_HASH, (capacity + 1) * sizeof(HashMapData));
|
|
if constexpr (!(std::is_trivially_destructible_v<TKey> && std::is_trivially_destructible_v<TValue>)) {
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
elements[i].key.~TKey();
|
|
elements[i].value.~TValue();
|
|
}
|
|
}
|
|
|
|
num_elements = 0;
|
|
}
|
|
|
|
TValue &get(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t hash_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, hash_pos);
|
|
CRASH_COND_MSG(!exists, "AHashMap key not found.");
|
|
return elements[pos].value;
|
|
}
|
|
|
|
const TValue &get(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
uint32_t hash_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, hash_pos);
|
|
CRASH_COND_MSG(!exists, "AHashMap key not found.");
|
|
return elements[pos].value;
|
|
}
|
|
|
|
const TValue *getptr(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
uint32_t hash_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, hash_pos);
|
|
|
|
if (exists) {
|
|
return &elements[pos].value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TValue *getptr(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t hash_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, hash_pos);
|
|
|
|
if (exists) {
|
|
return &elements[pos].value;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool has(const TKey &p_key) const {
|
|
uint32_t _pos = 0;
|
|
uint32_t h_pos = 0;
|
|
return _lookup_pos(p_key, _pos, h_pos);
|
|
}
|
|
|
|
bool erase(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t element_pos = 0;
|
|
bool exists = _lookup_pos(p_key, element_pos, pos);
|
|
|
|
if (!exists) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t next_pos = (pos + 1) & capacity;
|
|
while (map_data[next_pos].hash != EMPTY_HASH && _get_probe_length(next_pos, map_data[next_pos].hash, capacity) != 0) {
|
|
SWAP(map_data[next_pos], map_data[pos]);
|
|
|
|
pos = next_pos;
|
|
next_pos = (next_pos + 1) & capacity;
|
|
}
|
|
|
|
map_data[pos].data = EMPTY_HASH;
|
|
elements[element_pos].key.~TKey();
|
|
elements[element_pos].value.~TValue();
|
|
num_elements--;
|
|
|
|
if (element_pos < num_elements) {
|
|
void *destination = &elements[element_pos];
|
|
const void *source = &elements[num_elements];
|
|
memcpy(destination, source, sizeof(MapKeyValue));
|
|
uint32_t h_pos = 0;
|
|
_lookup_pos(elements[num_elements].key, pos, h_pos);
|
|
map_data[h_pos].hash_to_key = element_pos;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Replace the key of an entry in-place, without invalidating iterators or changing the entries position during iteration.
|
|
// p_old_key must exist in the map and p_new_key must not, unless it is equal to p_old_key.
|
|
bool replace_key(const TKey &p_old_key, const TKey &p_new_key) {
|
|
if (p_old_key == p_new_key) {
|
|
return true;
|
|
}
|
|
uint32_t pos = 0;
|
|
uint32_t element_pos = 0;
|
|
ERR_FAIL_COND_V(_lookup_pos(p_new_key, element_pos, pos), false);
|
|
ERR_FAIL_COND_V(!_lookup_pos(p_old_key, element_pos, pos), false);
|
|
MapKeyValue &element = elements[element_pos];
|
|
const_cast<TKey &>(element.key) = p_new_key;
|
|
|
|
uint32_t next_pos = (pos + 1) & capacity;
|
|
while (map_data[next_pos].hash != EMPTY_HASH && _get_probe_length(next_pos, map_data[next_pos].hash, capacity) != 0) {
|
|
SWAP(map_data[next_pos], map_data[pos]);
|
|
|
|
pos = next_pos;
|
|
next_pos = (next_pos + 1) & capacity;
|
|
}
|
|
|
|
map_data[pos].data = EMPTY_HASH;
|
|
|
|
uint32_t hash = _hash(p_new_key);
|
|
_insert_with_hash(hash, element_pos);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
|
|
// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
|
|
void reserve(uint32_t p_new_capacity) {
|
|
ERR_FAIL_COND_MSG(p_new_capacity < get_capacity(), "It is impossible to reserve less capacity than is currently available.");
|
|
if (elements == nullptr) {
|
|
capacity = MAX(4u, p_new_capacity);
|
|
capacity = next_power_of_2(capacity) - 1;
|
|
return; // Unallocated yet.
|
|
}
|
|
_resize_and_rehash(p_new_capacity);
|
|
}
|
|
|
|
/** Iterator API **/
|
|
|
|
struct ConstIterator {
|
|
_FORCE_INLINE_ const MapKeyValue &operator*() const {
|
|
return *pair;
|
|
}
|
|
_FORCE_INLINE_ const MapKeyValue *operator->() const {
|
|
return pair;
|
|
}
|
|
_FORCE_INLINE_ ConstIterator &operator++() {
|
|
pair++;
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator &operator--() {
|
|
pair--;
|
|
if (pair < begin) {
|
|
pair = end;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return pair == b.pair; }
|
|
_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return pair != b.pair; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return pair != end;
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator(MapKeyValue *p_key, MapKeyValue *p_begin, MapKeyValue *p_end) {
|
|
pair = p_key;
|
|
begin = p_begin;
|
|
end = p_end;
|
|
}
|
|
_FORCE_INLINE_ ConstIterator() {}
|
|
_FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) {
|
|
pair = p_it.pair;
|
|
begin = p_it.begin;
|
|
end = p_it.end;
|
|
}
|
|
_FORCE_INLINE_ void operator=(const ConstIterator &p_it) {
|
|
pair = p_it.pair;
|
|
begin = p_it.begin;
|
|
end = p_it.end;
|
|
}
|
|
|
|
private:
|
|
MapKeyValue *pair = nullptr;
|
|
MapKeyValue *begin = nullptr;
|
|
MapKeyValue *end = nullptr;
|
|
};
|
|
|
|
struct Iterator {
|
|
_FORCE_INLINE_ MapKeyValue &operator*() const {
|
|
return *pair;
|
|
}
|
|
_FORCE_INLINE_ MapKeyValue *operator->() const {
|
|
return pair;
|
|
}
|
|
_FORCE_INLINE_ Iterator &operator++() {
|
|
pair++;
|
|
return *this;
|
|
}
|
|
_FORCE_INLINE_ Iterator &operator--() {
|
|
pair--;
|
|
if (pair < begin) {
|
|
pair = end;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return pair == b.pair; }
|
|
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return pair != b.pair; }
|
|
|
|
_FORCE_INLINE_ explicit operator bool() const {
|
|
return pair != end;
|
|
}
|
|
|
|
_FORCE_INLINE_ Iterator(MapKeyValue *p_key, MapKeyValue *p_begin, MapKeyValue *p_end) {
|
|
pair = p_key;
|
|
begin = p_begin;
|
|
end = p_end;
|
|
}
|
|
_FORCE_INLINE_ Iterator() {}
|
|
_FORCE_INLINE_ Iterator(const Iterator &p_it) {
|
|
pair = p_it.pair;
|
|
begin = p_it.begin;
|
|
end = p_it.end;
|
|
}
|
|
_FORCE_INLINE_ void operator=(const Iterator &p_it) {
|
|
pair = p_it.pair;
|
|
begin = p_it.begin;
|
|
end = p_it.end;
|
|
}
|
|
|
|
operator ConstIterator() const {
|
|
return ConstIterator(pair, begin, end);
|
|
}
|
|
|
|
private:
|
|
MapKeyValue *pair = nullptr;
|
|
MapKeyValue *begin = nullptr;
|
|
MapKeyValue *end = nullptr;
|
|
};
|
|
|
|
_FORCE_INLINE_ Iterator begin() {
|
|
return Iterator(elements, elements, elements + num_elements);
|
|
}
|
|
_FORCE_INLINE_ Iterator end() {
|
|
return Iterator(elements + num_elements, elements, elements + num_elements);
|
|
}
|
|
_FORCE_INLINE_ Iterator last() {
|
|
if (unlikely(num_elements == 0)) {
|
|
return Iterator(nullptr, nullptr, nullptr);
|
|
}
|
|
return Iterator(elements + num_elements - 1, elements, elements + num_elements);
|
|
}
|
|
|
|
Iterator find(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, h_pos);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return Iterator(elements + pos, elements, elements + num_elements);
|
|
}
|
|
|
|
void remove(const Iterator &p_iter) {
|
|
if (p_iter) {
|
|
erase(p_iter->key);
|
|
}
|
|
}
|
|
|
|
_FORCE_INLINE_ ConstIterator begin() const {
|
|
return ConstIterator(elements, elements, elements + num_elements);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator end() const {
|
|
return ConstIterator(elements + num_elements, elements, elements + num_elements);
|
|
}
|
|
_FORCE_INLINE_ ConstIterator last() const {
|
|
if (unlikely(num_elements == 0)) {
|
|
return ConstIterator(nullptr, nullptr, nullptr);
|
|
}
|
|
return ConstIterator(elements + num_elements - 1, elements, elements + num_elements);
|
|
}
|
|
|
|
ConstIterator find(const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, h_pos);
|
|
if (!exists) {
|
|
return end();
|
|
}
|
|
return ConstIterator(elements + pos, elements, elements + num_elements);
|
|
}
|
|
|
|
/* Indexing */
|
|
|
|
const TValue &operator[](const TKey &p_key) const {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, h_pos);
|
|
CRASH_COND(!exists);
|
|
return elements[pos].value;
|
|
}
|
|
|
|
TValue &operator[](const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
uint32_t hash = _hash(p_key);
|
|
bool exists = _lookup_pos_with_hash(p_key, pos, h_pos, hash);
|
|
|
|
if (exists) {
|
|
return elements[pos].value;
|
|
} else {
|
|
pos = _insert_element(p_key, TValue(), hash);
|
|
return elements[pos].value;
|
|
}
|
|
}
|
|
|
|
/* Insert */
|
|
|
|
Iterator insert(const TKey &p_key, const TValue &p_value) {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
uint32_t hash = _hash(p_key);
|
|
bool exists = _lookup_pos_with_hash(p_key, pos, h_pos, hash);
|
|
|
|
if (!exists) {
|
|
pos = _insert_element(p_key, p_value, hash);
|
|
} else {
|
|
elements[pos].value = p_value;
|
|
}
|
|
return Iterator(elements + pos, elements, elements + num_elements);
|
|
}
|
|
|
|
// Inserts an element without checking if it already exists.
|
|
Iterator insert_new(const TKey &p_key, const TValue &p_value) {
|
|
DEV_ASSERT(!has(p_key));
|
|
uint32_t hash = _hash(p_key);
|
|
uint32_t pos = _insert_element(p_key, p_value, hash);
|
|
return Iterator(elements + pos, elements, elements + num_elements);
|
|
}
|
|
|
|
/* Array methods. */
|
|
|
|
// Unsafe. Changing keys and going outside the bounds of an array can lead to undefined behavior.
|
|
KeyValue<TKey, TValue> *get_elements_ptr() {
|
|
return elements;
|
|
}
|
|
|
|
// Returns the element index. If not found, returns -1.
|
|
int get_index(const TKey &p_key) {
|
|
uint32_t pos = 0;
|
|
uint32_t h_pos = 0;
|
|
bool exists = _lookup_pos(p_key, pos, h_pos);
|
|
if (!exists) {
|
|
return -1;
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
KeyValue<TKey, TValue> &get_by_index(uint32_t p_index) {
|
|
CRASH_BAD_UNSIGNED_INDEX(p_index, num_elements);
|
|
return elements[p_index];
|
|
}
|
|
|
|
bool erase_by_index(uint32_t p_index) {
|
|
if (p_index >= size()) {
|
|
return false;
|
|
}
|
|
return erase(elements[p_index].key);
|
|
}
|
|
|
|
/* Constructors */
|
|
|
|
AHashMap(const AHashMap &p_other) {
|
|
_init_from(p_other);
|
|
}
|
|
|
|
AHashMap(const HashMap<TKey, TValue> &p_other) {
|
|
reserve(p_other.size());
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
uint32_t hash = _hash(E.key);
|
|
_insert_element(E.key, E.value, hash);
|
|
}
|
|
}
|
|
|
|
void operator=(const AHashMap &p_other) {
|
|
if (this == &p_other) {
|
|
return; // Ignore self assignment.
|
|
}
|
|
|
|
reset();
|
|
|
|
_init_from(p_other);
|
|
}
|
|
|
|
void operator=(const HashMap<TKey, TValue> &p_other) {
|
|
reset();
|
|
if (p_other.size() > get_capacity()) {
|
|
reserve(p_other.size());
|
|
}
|
|
for (const KeyValue<TKey, TValue> &E : p_other) {
|
|
uint32_t hash = _hash(E.key);
|
|
_insert_element(E.key, E.value, hash);
|
|
}
|
|
}
|
|
|
|
AHashMap(uint32_t p_initial_capacity) {
|
|
// Capacity can't be 0 and must be 2^n - 1.
|
|
capacity = MAX(4u, p_initial_capacity);
|
|
capacity = next_power_of_2(capacity) - 1;
|
|
}
|
|
AHashMap() :
|
|
capacity(INITIAL_CAPACITY - 1) {
|
|
}
|
|
|
|
void reset() {
|
|
if (elements != nullptr) {
|
|
if constexpr (!(std::is_trivially_destructible_v<TKey> && std::is_trivially_destructible_v<TValue>)) {
|
|
for (uint32_t i = 0; i < num_elements; i++) {
|
|
elements[i].key.~TKey();
|
|
elements[i].value.~TValue();
|
|
}
|
|
}
|
|
Memory::free_static(elements);
|
|
Memory::free_static(map_data);
|
|
elements = nullptr;
|
|
}
|
|
capacity = INITIAL_CAPACITY - 1;
|
|
num_elements = 0;
|
|
}
|
|
|
|
~AHashMap() {
|
|
reset();
|
|
}
|
|
};
|
|
|
|
extern template class AHashMap<int, int>;
|
|
extern template class AHashMap<String, int>;
|
|
extern template class AHashMap<StringName, StringName>;
|
|
extern template class AHashMap<StringName, Variant>;
|
|
extern template class AHashMap<StringName, int>;
|
|
|
|
#endif // A_HASH_MAP_H
|