godot/core/math/basis.h
Rémi Verschelde 5ddb518496
Core: Make all Variant math types structs
Some were declared as structs (public by default) and others as classes
(private by default) but in practice all these math types exposed as
Variants are all 100% public.
2022-02-04 16:48:24 +01:00

339 lines
12 KiB
C++

/*************************************************************************/
/* basis.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef BASIS_H
#define BASIS_H
#include "core/math/quaternion.h"
#include "core/math/vector3.h"
struct _NO_DISCARD_ Basis {
Vector3 elements[3] = {
Vector3(1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, 0, 1)
};
_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
return elements[axis];
}
_FORCE_INLINE_ Vector3 &operator[](int axis) {
return elements[axis];
}
void invert();
void transpose();
Basis inverse() const;
Basis transposed() const;
_FORCE_INLINE_ real_t determinant() const;
void from_z(const Vector3 &p_z);
_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
// get actual basis axis (elements is transposed for performance)
return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
}
_FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
// get actual basis axis (elements is transposed for performance)
elements[0][p_axis] = p_value.x;
elements[1][p_axis] = p_value.y;
elements[2][p_axis] = p_value.z;
}
void rotate(const Vector3 &p_axis, real_t p_phi);
Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
void rotate_local(const Vector3 &p_axis, real_t p_phi);
Basis rotated_local(const Vector3 &p_axis, real_t p_phi) const;
void rotate(const Vector3 &p_euler);
Basis rotated(const Vector3 &p_euler) const;
void rotate(const Quaternion &p_quaternion);
Basis rotated(const Quaternion &p_quaternion) const;
enum EulerOrder {
EULER_ORDER_XYZ,
EULER_ORDER_XZY,
EULER_ORDER_YXZ,
EULER_ORDER_YZX,
EULER_ORDER_ZXY,
EULER_ORDER_ZYX
};
Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const;
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
Quaternion get_rotation_quaternion() const;
void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const;
void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ);
static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) {
Basis b;
b.set_euler(p_euler, p_order);
return b;
}
Quaternion get_quaternion() const;
void set_quaternion(const Quaternion &p_quaternion);
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
void set_axis_angle(const Vector3 &p_axis, real_t p_phi);
void scale(const Vector3 &p_scale);
Basis scaled(const Vector3 &p_scale) const;
void scale_local(const Vector3 &p_scale);
Basis scaled_local(const Vector3 &p_scale) const;
void scale_orthogonal(const Vector3 &p_scale);
Basis scaled_orthogonal(const Vector3 &p_scale) const;
void make_scale_uniform();
float get_uniform_scale() const;
Vector3 get_scale() const;
Vector3 get_scale_abs() const;
Vector3 get_scale_local() const;
void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale);
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
// transposed dot products
_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
}
_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
}
_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
}
bool is_equal_approx(const Basis &p_basis) const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
_FORCE_INLINE_ void operator*=(const real_t p_val);
_FORCE_INLINE_ Basis operator*(const real_t p_val) const;
int get_orthogonal_index() const;
void set_orthogonal_index(int p_index);
bool is_orthogonal() const;
bool is_diagonal() const;
bool is_rotation() const;
Basis lerp(const Basis &p_to, const real_t &p_weight) const;
Basis slerp(const Basis &p_to, const real_t &p_weight) const;
void rotate_sh(real_t *p_values);
operator String() const;
/* create / set */
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
elements[0][0] = xx;
elements[0][1] = xy;
elements[0][2] = xz;
elements[1][0] = yx;
elements[1][1] = yy;
elements[1][2] = yz;
elements[2][0] = zx;
elements[2][1] = zy;
elements[2][2] = zz;
}
_FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
set_axis(0, p_x);
set_axis(1, p_y);
set_axis(2, p_z);
}
_FORCE_INLINE_ Vector3 get_column(int i) const {
return Vector3(elements[0][i], elements[1][i], elements[2][i]);
}
_FORCE_INLINE_ Vector3 get_row(int i) const {
return Vector3(elements[i][0], elements[i][1], elements[i][2]);
}
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
return Vector3(elements[0][0], elements[1][1], elements[2][2]);
}
_FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
elements[i][0] = p_row.x;
elements[i][1] = p_row.y;
elements[i][2] = p_row.z;
}
_FORCE_INLINE_ void set_zero() {
elements[0].zero();
elements[1].zero();
elements[2].zero();
}
_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
return Basis(
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
}
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
void orthonormalize();
Basis orthonormalized() const;
void orthogonalize();
Basis orthogonalized() const;
#ifdef MATH_CHECKS
bool is_symmetric() const;
#endif
Basis diagonalize();
operator Quaternion() const { return get_quaternion(); }
static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0));
Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); }
Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); }
static Basis from_scale(const Vector3 &p_scale);
_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
elements[0] = row0;
elements[1] = row1;
elements[2] = row2;
}
_FORCE_INLINE_ Basis() {}
private:
// Helper method.
void _set_diagonal(const Vector3 &p_diag);
};
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
Basis ret(*this);
ret += p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
Basis ret(*this);
ret -= p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) {
elements[0] *= p_val;
elements[1] *= p_val;
elements[2] *= p_val;
}
_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const {
Basis ret(*this);
ret *= p_val;
return ret;
}
Vector3 Basis::xform(const Vector3 &p_vector) const {
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
elements[2].dot(p_vector));
}
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
return Vector3(
(elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
(elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
(elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
}
real_t Basis::determinant() const {
return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
}
#endif // BASIS_H