mirror of
https://github.com/godotengine/godot.git
synced 2024-12-02 00:52:50 +00:00
cfcc8a20e8
Same rationale as the previous commits.
2710 lines
92 KiB
C
2710 lines
92 KiB
C
/********************************************************************
|
|
* *
|
|
* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
|
|
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
|
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
|
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
|
* *
|
|
* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
|
|
* by the Xiph.Org Foundation http://www.xiph.org/ *
|
|
* *
|
|
********************************************************************
|
|
|
|
function: mode selection code
|
|
last mod: $Id$
|
|
|
|
********************************************************************/
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include "encint.h"
|
|
#include "modedec.h"
|
|
|
|
|
|
|
|
typedef struct oc_fr_state oc_fr_state;
|
|
typedef struct oc_qii_state oc_qii_state;
|
|
typedef struct oc_enc_pipeline_state oc_enc_pipeline_state;
|
|
typedef struct oc_rd_metric oc_rd_metric;
|
|
typedef struct oc_mode_choice oc_mode_choice;
|
|
|
|
|
|
|
|
/*There are 8 possible schemes used to encode macro block modes.
|
|
Schemes 0-6 use a maximally-skewed Huffman code to code each of the modes.
|
|
The same set of Huffman codes is used for each of these 7 schemes, but the
|
|
mode assigned to each codeword varies.
|
|
Scheme 0 writes a custom mapping from codeword to MB mode to the bitstream,
|
|
while schemes 1-6 have a fixed mapping.
|
|
Scheme 7 just encodes each mode directly in 3 bits.*/
|
|
|
|
/*The mode orderings for the various mode coding schemes.
|
|
Scheme 0 uses a custom alphabet, which is not stored in this table.
|
|
This is the inverse of the equivalent table OC_MODE_ALPHABETS in the
|
|
decoder.*/
|
|
static const unsigned char OC_MODE_RANKS[7][OC_NMODES]={
|
|
/*Last MV dominates.*/
|
|
/*L P M N I G GM 4*/
|
|
{3,4,2,0,1,5,6,7},
|
|
/*L P N M I G GM 4*/
|
|
{2,4,3,0,1,5,6,7},
|
|
/*L M P N I G GM 4*/
|
|
{3,4,1,0,2,5,6,7},
|
|
/*L M N P I G GM 4*/
|
|
{2,4,1,0,3,5,6,7},
|
|
/*No MV dominates.*/
|
|
/*N L P M I G GM 4*/
|
|
{0,4,3,1,2,5,6,7},
|
|
/*N G L P M I GM 4*/
|
|
{0,5,4,2,3,1,6,7},
|
|
/*Default ordering.*/
|
|
/*N I M L P G GM 4*/
|
|
{0,1,2,3,4,5,6,7}
|
|
};
|
|
|
|
|
|
|
|
/*Initialize the mode scheme chooser.
|
|
This need only be called once per encoder.*/
|
|
void oc_mode_scheme_chooser_init(oc_mode_scheme_chooser *_chooser){
|
|
int si;
|
|
_chooser->mode_ranks[0]=_chooser->scheme0_ranks;
|
|
for(si=1;si<8;si++)_chooser->mode_ranks[si]=OC_MODE_RANKS[si-1];
|
|
}
|
|
|
|
/*Reset the mode scheme chooser.
|
|
This needs to be called once for each frame, including the first.*/
|
|
static void oc_mode_scheme_chooser_reset(oc_mode_scheme_chooser *_chooser){
|
|
int si;
|
|
memset(_chooser->mode_counts,0,OC_NMODES*sizeof(*_chooser->mode_counts));
|
|
/*Scheme 0 starts with 24 bits to store the mode list in.*/
|
|
_chooser->scheme_bits[0]=24;
|
|
memset(_chooser->scheme_bits+1,0,7*sizeof(*_chooser->scheme_bits));
|
|
for(si=0;si<8;si++){
|
|
/*Scheme 7 should always start first, and scheme 0 should always start
|
|
last.*/
|
|
_chooser->scheme_list[si]=7-si;
|
|
_chooser->scheme0_list[si]=_chooser->scheme0_ranks[si]=si;
|
|
}
|
|
}
|
|
|
|
|
|
/*This is the real purpose of this data structure: not actually selecting a
|
|
mode scheme, but estimating the cost of coding a given mode given all the
|
|
modes selected so far.
|
|
This is done via opportunity cost: the cost is defined as the number of bits
|
|
required to encode all the modes selected so far including the current one
|
|
using the best possible scheme, minus the number of bits required to encode
|
|
all the modes selected so far not including the current one using the best
|
|
possible scheme.
|
|
The computational expense of doing this probably makes it overkill.
|
|
Just be happy we take a greedy approach instead of trying to solve the
|
|
global mode-selection problem (which is NP-hard).
|
|
_mb_mode: The mode to determine the cost of.
|
|
Return: The number of bits required to code this mode.*/
|
|
static int oc_mode_scheme_chooser_cost(oc_mode_scheme_chooser *_chooser,
|
|
int _mb_mode){
|
|
int scheme0;
|
|
int scheme1;
|
|
int best_bits;
|
|
int mode_bits;
|
|
int si;
|
|
int scheme_bits;
|
|
scheme0=_chooser->scheme_list[0];
|
|
scheme1=_chooser->scheme_list[1];
|
|
best_bits=_chooser->scheme_bits[scheme0];
|
|
mode_bits=OC_MODE_BITS[scheme0+1>>3][_chooser->mode_ranks[scheme0][_mb_mode]];
|
|
/*Typical case: If the difference between the best scheme and the next best
|
|
is greater than 6 bits, then adding just one mode cannot change which
|
|
scheme we use.*/
|
|
if(_chooser->scheme_bits[scheme1]-best_bits>6)return mode_bits;
|
|
/*Otherwise, check to see if adding this mode selects a different scheme as
|
|
the best.*/
|
|
si=1;
|
|
best_bits+=mode_bits;
|
|
do{
|
|
/*For any scheme except 0, we can just use the bit cost of the mode's rank
|
|
in that scheme.*/
|
|
if(scheme1!=0){
|
|
scheme_bits=_chooser->scheme_bits[scheme1]+
|
|
OC_MODE_BITS[scheme1+1>>3][_chooser->mode_ranks[scheme1][_mb_mode]];
|
|
}
|
|
else{
|
|
int ri;
|
|
/*For scheme 0, incrementing the mode count could potentially change the
|
|
mode's rank.
|
|
Find the index where the mode would be moved to in the optimal list,
|
|
and use its bit cost instead of the one for the mode's current
|
|
position in the list.*/
|
|
/*We don't recompute scheme bits; this is computing opportunity cost, not
|
|
an update.*/
|
|
for(ri=_chooser->scheme0_ranks[_mb_mode];ri>0&&
|
|
_chooser->mode_counts[_mb_mode]>=
|
|
_chooser->mode_counts[_chooser->scheme0_list[ri-1]];ri--);
|
|
scheme_bits=_chooser->scheme_bits[0]+OC_MODE_BITS[0][ri];
|
|
}
|
|
if(scheme_bits<best_bits)best_bits=scheme_bits;
|
|
if(++si>=8)break;
|
|
scheme1=_chooser->scheme_list[si];
|
|
}
|
|
while(_chooser->scheme_bits[scheme1]-_chooser->scheme_bits[scheme0]<=6);
|
|
return best_bits-_chooser->scheme_bits[scheme0];
|
|
}
|
|
|
|
/*Incrementally update the mode counts and per-scheme bit counts and re-order
|
|
the scheme lists once a mode has been selected.
|
|
_mb_mode: The mode that was chosen.*/
|
|
static void oc_mode_scheme_chooser_update(oc_mode_scheme_chooser *_chooser,
|
|
int _mb_mode){
|
|
int ri;
|
|
int si;
|
|
_chooser->mode_counts[_mb_mode]++;
|
|
/*Re-order the scheme0 mode list if necessary.*/
|
|
for(ri=_chooser->scheme0_ranks[_mb_mode];ri>0;ri--){
|
|
int pmode;
|
|
pmode=_chooser->scheme0_list[ri-1];
|
|
if(_chooser->mode_counts[pmode]>=_chooser->mode_counts[_mb_mode])break;
|
|
/*Reorder the mode ranking.*/
|
|
_chooser->scheme0_ranks[pmode]++;
|
|
_chooser->scheme0_list[ri]=pmode;
|
|
}
|
|
_chooser->scheme0_ranks[_mb_mode]=ri;
|
|
_chooser->scheme0_list[ri]=_mb_mode;
|
|
/*Now add the bit cost for the mode to each scheme.*/
|
|
for(si=0;si<8;si++){
|
|
_chooser->scheme_bits[si]+=
|
|
OC_MODE_BITS[si+1>>3][_chooser->mode_ranks[si][_mb_mode]];
|
|
}
|
|
/*Finally, re-order the list of schemes.*/
|
|
for(si=1;si<8;si++){
|
|
int sj;
|
|
int scheme0;
|
|
int bits0;
|
|
sj=si;
|
|
scheme0=_chooser->scheme_list[si];
|
|
bits0=_chooser->scheme_bits[scheme0];
|
|
do{
|
|
int scheme1;
|
|
scheme1=_chooser->scheme_list[sj-1];
|
|
if(bits0>=_chooser->scheme_bits[scheme1])break;
|
|
_chooser->scheme_list[sj]=scheme1;
|
|
}
|
|
while(--sj>0);
|
|
_chooser->scheme_list[sj]=scheme0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*The number of bits required to encode a super block run.
|
|
_run_count: The desired run count; must be positive and less than 4130.*/
|
|
static int oc_sb_run_bits(int _run_count){
|
|
int i;
|
|
for(i=0;_run_count>=OC_SB_RUN_VAL_MIN[i+1];i++);
|
|
return OC_SB_RUN_CODE_NBITS[i];
|
|
}
|
|
|
|
/*The number of bits required to encode a block run.
|
|
_run_count: The desired run count; must be positive and less than 30.*/
|
|
static int oc_block_run_bits(int _run_count){
|
|
return OC_BLOCK_RUN_CODE_NBITS[_run_count-1];
|
|
}
|
|
|
|
|
|
|
|
/*State to track coded block flags and their bit cost.*/
|
|
struct oc_fr_state{
|
|
ptrdiff_t bits;
|
|
unsigned sb_partial_count:16;
|
|
unsigned sb_full_count:16;
|
|
unsigned b_coded_count_prev:8;
|
|
unsigned b_coded_count:8;
|
|
unsigned b_count:8;
|
|
signed int sb_partial:2;
|
|
signed int sb_full:2;
|
|
signed int b_coded_prev:2;
|
|
signed int b_coded:2;
|
|
};
|
|
|
|
|
|
|
|
static void oc_fr_state_init(oc_fr_state *_fr){
|
|
_fr->bits=0;
|
|
_fr->sb_partial_count=0;
|
|
_fr->sb_full_count=0;
|
|
_fr->b_coded_count_prev=0;
|
|
_fr->b_coded_count=0;
|
|
_fr->b_count=0;
|
|
_fr->sb_partial=-1;
|
|
_fr->sb_full=-1;
|
|
_fr->b_coded_prev=-1;
|
|
_fr->b_coded=-1;
|
|
}
|
|
|
|
|
|
static void oc_fr_state_advance_sb(oc_fr_state *_fr,
|
|
int _sb_partial,int _sb_full){
|
|
ptrdiff_t bits;
|
|
int sb_partial_count;
|
|
int sb_full_count;
|
|
bits=_fr->bits;
|
|
/*Extend the sb_partial run, or start a new one.*/
|
|
sb_partial_count=_fr->sb_partial;
|
|
if(_fr->sb_partial==_sb_partial){
|
|
if(sb_partial_count>=4129){
|
|
bits++;
|
|
sb_partial_count=0;
|
|
}
|
|
else bits-=oc_sb_run_bits(sb_partial_count);
|
|
}
|
|
else sb_partial_count=0;
|
|
sb_partial_count++;
|
|
bits+=oc_sb_run_bits(sb_partial_count);
|
|
if(!_sb_partial){
|
|
/*Extend the sb_full run, or start a new one.*/
|
|
sb_full_count=_fr->sb_full_count;
|
|
if(_fr->sb_full==_sb_full){
|
|
if(sb_full_count>=4129){
|
|
bits++;
|
|
sb_full_count=0;
|
|
}
|
|
else bits-=oc_sb_run_bits(sb_full_count);
|
|
}
|
|
else sb_full_count=0;
|
|
sb_full_count++;
|
|
bits+=oc_sb_run_bits(sb_full_count);
|
|
_fr->sb_full=_sb_full;
|
|
_fr->sb_full_count=sb_full_count;
|
|
}
|
|
_fr->bits=bits;
|
|
_fr->sb_partial=_sb_partial;
|
|
_fr->sb_partial_count=sb_partial_count;
|
|
}
|
|
|
|
/*Flush any outstanding block flags for a SB (e.g., one with fewer than 16
|
|
blocks).*/
|
|
static void oc_fr_state_flush_sb(oc_fr_state *_fr){
|
|
ptrdiff_t bits;
|
|
int sb_partial;
|
|
int sb_full=sb_full;
|
|
int b_coded_count;
|
|
int b_coded;
|
|
int b_count;
|
|
b_count=_fr->b_count;
|
|
if(b_count>0){
|
|
bits=_fr->bits;
|
|
b_coded=_fr->b_coded;
|
|
b_coded_count=_fr->b_coded_count;
|
|
if(b_coded_count>=b_count){
|
|
/*This SB was fully coded/uncoded; roll back the partial block flags.*/
|
|
bits-=oc_block_run_bits(b_coded_count);
|
|
if(b_coded_count>b_count)bits+=oc_block_run_bits(b_coded_count-b_count);
|
|
sb_partial=0;
|
|
sb_full=b_coded;
|
|
b_coded=_fr->b_coded_prev;
|
|
b_coded_count=_fr->b_coded_count_prev;
|
|
}
|
|
else{
|
|
/*It was partially coded.*/
|
|
sb_partial=1;
|
|
/*sb_full is unused.*/
|
|
}
|
|
_fr->bits=bits;
|
|
_fr->b_coded_count=b_coded_count;
|
|
_fr->b_coded_count_prev=b_coded_count;
|
|
_fr->b_count=0;
|
|
_fr->b_coded=b_coded;
|
|
_fr->b_coded_prev=b_coded;
|
|
oc_fr_state_advance_sb(_fr,sb_partial,sb_full);
|
|
}
|
|
}
|
|
|
|
static void oc_fr_state_advance_block(oc_fr_state *_fr,int _b_coded){
|
|
ptrdiff_t bits;
|
|
int b_coded_count;
|
|
int b_count;
|
|
int sb_partial;
|
|
int sb_full=sb_full;
|
|
bits=_fr->bits;
|
|
/*Extend the b_coded run, or start a new one.*/
|
|
b_coded_count=_fr->b_coded_count;
|
|
if(_fr->b_coded==_b_coded)bits-=oc_block_run_bits(b_coded_count);
|
|
else b_coded_count=0;
|
|
b_coded_count++;
|
|
b_count=_fr->b_count+1;
|
|
if(b_count>=16){
|
|
/*We finished a superblock.*/
|
|
if(b_coded_count>=16){
|
|
/*It was fully coded/uncoded; roll back the partial block flags.*/
|
|
if(b_coded_count>16)bits+=oc_block_run_bits(b_coded_count-16);
|
|
sb_partial=0;
|
|
sb_full=_b_coded;
|
|
_b_coded=_fr->b_coded_prev;
|
|
b_coded_count=_fr->b_coded_count_prev;
|
|
}
|
|
else{
|
|
bits+=oc_block_run_bits(b_coded_count);
|
|
/*It was partially coded.*/
|
|
sb_partial=1;
|
|
/*sb_full is unused.*/
|
|
}
|
|
_fr->bits=bits;
|
|
_fr->b_coded_count=b_coded_count;
|
|
_fr->b_coded_count_prev=b_coded_count;
|
|
_fr->b_count=0;
|
|
_fr->b_coded=_b_coded;
|
|
_fr->b_coded_prev=_b_coded;
|
|
oc_fr_state_advance_sb(_fr,sb_partial,sb_full);
|
|
}
|
|
else{
|
|
bits+=oc_block_run_bits(b_coded_count);
|
|
_fr->bits=bits;
|
|
_fr->b_coded_count=b_coded_count;
|
|
_fr->b_count=b_count;
|
|
_fr->b_coded=_b_coded;
|
|
}
|
|
}
|
|
|
|
static void oc_fr_skip_block(oc_fr_state *_fr){
|
|
oc_fr_state_advance_block(_fr,0);
|
|
}
|
|
|
|
static void oc_fr_code_block(oc_fr_state *_fr){
|
|
oc_fr_state_advance_block(_fr,1);
|
|
}
|
|
|
|
static int oc_fr_cost1(const oc_fr_state *_fr){
|
|
oc_fr_state tmp;
|
|
ptrdiff_t bits;
|
|
*&tmp=*_fr;
|
|
oc_fr_skip_block(&tmp);
|
|
bits=tmp.bits;
|
|
*&tmp=*_fr;
|
|
oc_fr_code_block(&tmp);
|
|
return (int)(tmp.bits-bits);
|
|
}
|
|
|
|
static int oc_fr_cost4(const oc_fr_state *_pre,const oc_fr_state *_post){
|
|
oc_fr_state tmp;
|
|
*&tmp=*_pre;
|
|
oc_fr_skip_block(&tmp);
|
|
oc_fr_skip_block(&tmp);
|
|
oc_fr_skip_block(&tmp);
|
|
oc_fr_skip_block(&tmp);
|
|
return (int)(_post->bits-tmp.bits);
|
|
}
|
|
|
|
|
|
|
|
struct oc_qii_state{
|
|
ptrdiff_t bits;
|
|
unsigned qi01_count:14;
|
|
signed int qi01:2;
|
|
unsigned qi12_count:14;
|
|
signed int qi12:2;
|
|
};
|
|
|
|
|
|
|
|
static void oc_qii_state_init(oc_qii_state *_qs){
|
|
_qs->bits=0;
|
|
_qs->qi01_count=0;
|
|
_qs->qi01=-1;
|
|
_qs->qi12_count=0;
|
|
_qs->qi12=-1;
|
|
}
|
|
|
|
|
|
static void oc_qii_state_advance(oc_qii_state *_qd,
|
|
const oc_qii_state *_qs,int _qii){
|
|
ptrdiff_t bits;
|
|
int qi01;
|
|
int qi01_count;
|
|
int qi12;
|
|
int qi12_count;
|
|
bits=_qs->bits;
|
|
qi01=_qii+1>>1;
|
|
qi01_count=_qs->qi01_count;
|
|
if(qi01==_qs->qi01){
|
|
if(qi01_count>=4129){
|
|
bits++;
|
|
qi01_count=0;
|
|
}
|
|
else bits-=oc_sb_run_bits(qi01_count);
|
|
}
|
|
else qi01_count=0;
|
|
qi01_count++;
|
|
bits+=oc_sb_run_bits(qi01_count);
|
|
qi12_count=_qs->qi12_count;
|
|
if(_qii){
|
|
qi12=_qii>>1;
|
|
if(qi12==_qs->qi12){
|
|
if(qi12_count>=4129){
|
|
bits++;
|
|
qi12_count=0;
|
|
}
|
|
else bits-=oc_sb_run_bits(qi12_count);
|
|
}
|
|
else qi12_count=0;
|
|
qi12_count++;
|
|
bits+=oc_sb_run_bits(qi12_count);
|
|
}
|
|
else qi12=_qs->qi12;
|
|
_qd->bits=bits;
|
|
_qd->qi01=qi01;
|
|
_qd->qi01_count=qi01_count;
|
|
_qd->qi12=qi12;
|
|
_qd->qi12_count=qi12_count;
|
|
}
|
|
|
|
|
|
|
|
/*Temporary encoder state for the analysis pipeline.*/
|
|
struct oc_enc_pipeline_state{
|
|
int bounding_values[256];
|
|
oc_fr_state fr[3];
|
|
oc_qii_state qs[3];
|
|
/*Condensed dequantization tables.*/
|
|
const ogg_uint16_t *dequant[3][3][2];
|
|
/*Condensed quantization tables.*/
|
|
const oc_iquant *enquant[3][3][2];
|
|
/*Skip SSD storage for the current MCU in each plane.*/
|
|
unsigned *skip_ssd[3];
|
|
/*Coded/uncoded fragment lists for each plane for the current MCU.*/
|
|
ptrdiff_t *coded_fragis[3];
|
|
ptrdiff_t *uncoded_fragis[3];
|
|
ptrdiff_t ncoded_fragis[3];
|
|
ptrdiff_t nuncoded_fragis[3];
|
|
/*The starting fragment for the current MCU in each plane.*/
|
|
ptrdiff_t froffset[3];
|
|
/*The starting row for the current MCU in each plane.*/
|
|
int fragy0[3];
|
|
/*The ending row for the current MCU in each plane.*/
|
|
int fragy_end[3];
|
|
/*The starting superblock for the current MCU in each plane.*/
|
|
unsigned sbi0[3];
|
|
/*The ending superblock for the current MCU in each plane.*/
|
|
unsigned sbi_end[3];
|
|
/*The number of tokens for zzi=1 for each color plane.*/
|
|
int ndct_tokens1[3];
|
|
/*The outstanding eob_run count for zzi=1 for each color plane.*/
|
|
int eob_run1[3];
|
|
/*Whether or not the loop filter is enabled.*/
|
|
int loop_filter;
|
|
};
|
|
|
|
|
|
static void oc_enc_pipeline_init(oc_enc_ctx *_enc,oc_enc_pipeline_state *_pipe){
|
|
ptrdiff_t *coded_fragis;
|
|
unsigned mcu_nvsbs;
|
|
ptrdiff_t mcu_nfrags;
|
|
int hdec;
|
|
int vdec;
|
|
int pli;
|
|
int qii;
|
|
int qti;
|
|
/*Initialize the per-plane coded block flag trackers.
|
|
These are used for bit-estimation purposes only; the real flag bits span
|
|
all three planes, so we can't compute them in parallel.*/
|
|
for(pli=0;pli<3;pli++)oc_fr_state_init(_pipe->fr+pli);
|
|
for(pli=0;pli<3;pli++)oc_qii_state_init(_pipe->qs+pli);
|
|
/*Set up the per-plane skip SSD storage pointers.*/
|
|
mcu_nvsbs=_enc->mcu_nvsbs;
|
|
mcu_nfrags=mcu_nvsbs*_enc->state.fplanes[0].nhsbs*16;
|
|
hdec=!(_enc->state.info.pixel_fmt&1);
|
|
vdec=!(_enc->state.info.pixel_fmt&2);
|
|
_pipe->skip_ssd[0]=_enc->mcu_skip_ssd;
|
|
_pipe->skip_ssd[1]=_pipe->skip_ssd[0]+mcu_nfrags;
|
|
_pipe->skip_ssd[2]=_pipe->skip_ssd[1]+(mcu_nfrags>>hdec+vdec);
|
|
/*Set up per-plane pointers to the coded and uncoded fragments lists.
|
|
Unlike the decoder, each planes' coded and uncoded fragment list is kept
|
|
separate during the analysis stage; we only make the coded list for all
|
|
three planes contiguous right before the final packet is output
|
|
(destroying the uncoded lists, which are no longer needed).*/
|
|
coded_fragis=_enc->state.coded_fragis;
|
|
for(pli=0;pli<3;pli++){
|
|
_pipe->coded_fragis[pli]=coded_fragis;
|
|
coded_fragis+=_enc->state.fplanes[pli].nfrags;
|
|
_pipe->uncoded_fragis[pli]=coded_fragis;
|
|
}
|
|
memset(_pipe->ncoded_fragis,0,sizeof(_pipe->ncoded_fragis));
|
|
memset(_pipe->nuncoded_fragis,0,sizeof(_pipe->nuncoded_fragis));
|
|
/*Set up condensed quantizer tables.*/
|
|
for(pli=0;pli<3;pli++){
|
|
for(qii=0;qii<_enc->state.nqis;qii++){
|
|
int qi;
|
|
qi=_enc->state.qis[qii];
|
|
for(qti=0;qti<2;qti++){
|
|
_pipe->dequant[pli][qii][qti]=_enc->state.dequant_tables[qi][pli][qti];
|
|
_pipe->enquant[pli][qii][qti]=_enc->enquant_tables[qi][pli][qti];
|
|
}
|
|
}
|
|
}
|
|
/*Initialize the tokenization state.*/
|
|
for(pli=0;pli<3;pli++){
|
|
_pipe->ndct_tokens1[pli]=0;
|
|
_pipe->eob_run1[pli]=0;
|
|
}
|
|
/*Initialize the bounding value array for the loop filter.*/
|
|
_pipe->loop_filter=!oc_state_loop_filter_init(&_enc->state,
|
|
_pipe->bounding_values);
|
|
}
|
|
|
|
/*Sets the current MCU stripe to super block row _sby.
|
|
Return: A non-zero value if this was the last MCU.*/
|
|
static int oc_enc_pipeline_set_stripe(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,int _sby){
|
|
const oc_fragment_plane *fplane;
|
|
unsigned mcu_nvsbs;
|
|
int sby_end;
|
|
int notdone;
|
|
int vdec;
|
|
int pli;
|
|
mcu_nvsbs=_enc->mcu_nvsbs;
|
|
sby_end=_enc->state.fplanes[0].nvsbs;
|
|
notdone=_sby+mcu_nvsbs<sby_end;
|
|
if(notdone)sby_end=_sby+mcu_nvsbs;
|
|
vdec=0;
|
|
for(pli=0;pli<3;pli++){
|
|
fplane=_enc->state.fplanes+pli;
|
|
_pipe->sbi0[pli]=fplane->sboffset+(_sby>>vdec)*fplane->nhsbs;
|
|
_pipe->fragy0[pli]=_sby<<2-vdec;
|
|
_pipe->froffset[pli]=fplane->froffset
|
|
+_pipe->fragy0[pli]*(ptrdiff_t)fplane->nhfrags;
|
|
if(notdone){
|
|
_pipe->sbi_end[pli]=fplane->sboffset+(sby_end>>vdec)*fplane->nhsbs;
|
|
_pipe->fragy_end[pli]=sby_end<<2-vdec;
|
|
}
|
|
else{
|
|
_pipe->sbi_end[pli]=fplane->sboffset+fplane->nsbs;
|
|
_pipe->fragy_end[pli]=fplane->nvfrags;
|
|
}
|
|
vdec=!(_enc->state.info.pixel_fmt&2);
|
|
}
|
|
return notdone;
|
|
}
|
|
|
|
static void oc_enc_pipeline_finish_mcu_plane(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,int _pli,int _sdelay,int _edelay){
|
|
int refi;
|
|
/*Copy over all the uncoded fragments from this plane and advance the uncoded
|
|
fragment list.*/
|
|
_pipe->uncoded_fragis[_pli]-=_pipe->nuncoded_fragis[_pli];
|
|
oc_state_frag_copy_list(&_enc->state,_pipe->uncoded_fragis[_pli],
|
|
_pipe->nuncoded_fragis[_pli],OC_FRAME_SELF,OC_FRAME_PREV,_pli);
|
|
_pipe->nuncoded_fragis[_pli]=0;
|
|
/*Perform DC prediction.*/
|
|
oc_enc_pred_dc_frag_rows(_enc,_pli,
|
|
_pipe->fragy0[_pli],_pipe->fragy_end[_pli]);
|
|
/*Finish DC tokenization.*/
|
|
oc_enc_tokenize_dc_frag_list(_enc,_pli,
|
|
_pipe->coded_fragis[_pli],_pipe->ncoded_fragis[_pli],
|
|
_pipe->ndct_tokens1[_pli],_pipe->eob_run1[_pli]);
|
|
_pipe->ndct_tokens1[_pli]=_enc->ndct_tokens[_pli][1];
|
|
_pipe->eob_run1[_pli]=_enc->eob_run[_pli][1];
|
|
/*And advance the coded fragment list.*/
|
|
_enc->state.ncoded_fragis[_pli]+=_pipe->ncoded_fragis[_pli];
|
|
_pipe->coded_fragis[_pli]+=_pipe->ncoded_fragis[_pli];
|
|
_pipe->ncoded_fragis[_pli]=0;
|
|
/*Apply the loop filter if necessary.*/
|
|
refi=_enc->state.ref_frame_idx[OC_FRAME_SELF];
|
|
if(_pipe->loop_filter){
|
|
oc_state_loop_filter_frag_rows(&_enc->state,_pipe->bounding_values,
|
|
refi,_pli,_pipe->fragy0[_pli]-_sdelay,_pipe->fragy_end[_pli]-_edelay);
|
|
}
|
|
else _sdelay=_edelay=0;
|
|
/*To fill borders, we have an additional two pixel delay, since a fragment
|
|
in the next row could filter its top edge, using two pixels from a
|
|
fragment in this row.
|
|
But there's no reason to delay a full fragment between the two.*/
|
|
oc_state_borders_fill_rows(&_enc->state,refi,_pli,
|
|
(_pipe->fragy0[_pli]-_sdelay<<3)-(_sdelay<<1),
|
|
(_pipe->fragy_end[_pli]-_edelay<<3)-(_edelay<<1));
|
|
}
|
|
|
|
|
|
|
|
/*Cost information about the coded blocks in a MB.*/
|
|
struct oc_rd_metric{
|
|
int uncoded_ac_ssd;
|
|
int coded_ac_ssd;
|
|
int ac_bits;
|
|
int dc_flag;
|
|
};
|
|
|
|
|
|
|
|
static int oc_enc_block_transform_quantize(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,int _pli,ptrdiff_t _fragi,int _overhead_bits,
|
|
oc_rd_metric *_mo,oc_token_checkpoint **_stack){
|
|
OC_ALIGN16(ogg_int16_t dct[64]);
|
|
OC_ALIGN16(ogg_int16_t data[64]);
|
|
ogg_uint16_t dc_dequant;
|
|
const ogg_uint16_t *dequant;
|
|
const oc_iquant *enquant;
|
|
ptrdiff_t frag_offs;
|
|
int ystride;
|
|
const unsigned char *src;
|
|
const unsigned char *ref;
|
|
unsigned char *dst;
|
|
int frame_type;
|
|
int nonzero;
|
|
unsigned uncoded_ssd;
|
|
unsigned coded_ssd;
|
|
int coded_dc;
|
|
oc_token_checkpoint *checkpoint;
|
|
oc_fragment *frags;
|
|
int mb_mode;
|
|
int mv_offs[2];
|
|
int nmv_offs;
|
|
int ac_bits;
|
|
int borderi;
|
|
int qti;
|
|
int qii;
|
|
int pi;
|
|
int zzi;
|
|
int v;
|
|
int val;
|
|
int d;
|
|
int s;
|
|
int dc;
|
|
frags=_enc->state.frags;
|
|
frag_offs=_enc->state.frag_buf_offs[_fragi];
|
|
ystride=_enc->state.ref_ystride[_pli];
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO]+frag_offs;
|
|
borderi=frags[_fragi].borderi;
|
|
qii=frags[_fragi].qii;
|
|
if(qii&~3){
|
|
#if !defined(OC_COLLECT_METRICS)
|
|
if(_enc->sp_level>=OC_SP_LEVEL_EARLY_SKIP){
|
|
/*Enable early skip detection.*/
|
|
frags[_fragi].coded=0;
|
|
return 0;
|
|
}
|
|
#endif
|
|
/*Try and code this block anyway.*/
|
|
qii&=3;
|
|
frags[_fragi].qii=qii;
|
|
}
|
|
mb_mode=frags[_fragi].mb_mode;
|
|
ref=_enc->state.ref_frame_data[
|
|
_enc->state.ref_frame_idx[OC_FRAME_FOR_MODE(mb_mode)]]+frag_offs;
|
|
dst=_enc->state.ref_frame_data[_enc->state.ref_frame_idx[OC_FRAME_SELF]]
|
|
+frag_offs;
|
|
/*Motion compensation:*/
|
|
switch(mb_mode){
|
|
case OC_MODE_INTRA:{
|
|
nmv_offs=0;
|
|
oc_enc_frag_sub_128(_enc,data,src,ystride);
|
|
}break;
|
|
case OC_MODE_GOLDEN_NOMV:
|
|
case OC_MODE_INTER_NOMV:{
|
|
nmv_offs=1;
|
|
mv_offs[0]=0;
|
|
oc_enc_frag_sub(_enc,data,src,ref,ystride);
|
|
}break;
|
|
default:{
|
|
const oc_mv *frag_mvs;
|
|
frag_mvs=(const oc_mv *)_enc->state.frag_mvs;
|
|
nmv_offs=oc_state_get_mv_offsets(&_enc->state,mv_offs,_pli,
|
|
frag_mvs[_fragi][0],frag_mvs[_fragi][1]);
|
|
if(nmv_offs>1){
|
|
oc_enc_frag_copy2(_enc,dst,
|
|
ref+mv_offs[0],ref+mv_offs[1],ystride);
|
|
oc_enc_frag_sub(_enc,data,src,dst,ystride);
|
|
}
|
|
else oc_enc_frag_sub(_enc,data,src,ref+mv_offs[0],ystride);
|
|
}break;
|
|
}
|
|
#if defined(OC_COLLECT_METRICS)
|
|
{
|
|
unsigned satd;
|
|
switch(nmv_offs){
|
|
case 0:satd=oc_enc_frag_intra_satd(_enc,src,ystride);break;
|
|
case 1:{
|
|
satd=oc_enc_frag_satd_thresh(_enc,src,ref+mv_offs[0],ystride,UINT_MAX);
|
|
}break;
|
|
default:{
|
|
satd=oc_enc_frag_satd_thresh(_enc,src,dst,ystride,UINT_MAX);
|
|
}
|
|
}
|
|
_enc->frag_satd[_fragi]=satd;
|
|
}
|
|
#endif
|
|
/*Transform:*/
|
|
oc_enc_fdct8x8(_enc,dct,data);
|
|
/*Quantize the DC coefficient:*/
|
|
qti=mb_mode!=OC_MODE_INTRA;
|
|
enquant=_pipe->enquant[_pli][0][qti];
|
|
dc_dequant=_pipe->dequant[_pli][0][qti][0];
|
|
v=dct[0];
|
|
val=v<<1;
|
|
s=OC_SIGNMASK(val);
|
|
val+=dc_dequant+s^s;
|
|
val=((enquant[0].m*(ogg_int32_t)val>>16)+val>>enquant[0].l)-s;
|
|
dc=OC_CLAMPI(-580,val,580);
|
|
nonzero=0;
|
|
/*Quantize the AC coefficients:*/
|
|
dequant=_pipe->dequant[_pli][qii][qti];
|
|
enquant=_pipe->enquant[_pli][qii][qti];
|
|
for(zzi=1;zzi<64;zzi++){
|
|
v=dct[OC_FZIG_ZAG[zzi]];
|
|
d=dequant[zzi];
|
|
val=v<<1;
|
|
v=abs(val);
|
|
if(v>=d){
|
|
s=OC_SIGNMASK(val);
|
|
/*The bias added here rounds ties away from zero, since token
|
|
optimization can only decrease the magnitude of the quantized
|
|
value.*/
|
|
val+=d+s^s;
|
|
/*Note the arithmetic right shift is not guaranteed by ANSI C.
|
|
Hopefully no one still uses ones-complement architectures.*/
|
|
val=((enquant[zzi].m*(ogg_int32_t)val>>16)+val>>enquant[zzi].l)-s;
|
|
data[zzi]=OC_CLAMPI(-580,val,580);
|
|
nonzero=zzi;
|
|
}
|
|
else data[zzi]=0;
|
|
}
|
|
/*Tokenize.*/
|
|
checkpoint=*_stack;
|
|
ac_bits=oc_enc_tokenize_ac(_enc,_pli,_fragi,data,dequant,dct,nonzero+1,
|
|
_stack,qti?0:3);
|
|
/*Reconstruct.
|
|
TODO: nonzero may need to be adjusted after tokenization.*/
|
|
if(nonzero==0){
|
|
ogg_int16_t p;
|
|
int ci;
|
|
/*We round this dequant product (and not any of the others) because there's
|
|
no iDCT rounding.*/
|
|
p=(ogg_int16_t)(dc*(ogg_int32_t)dc_dequant+15>>5);
|
|
/*LOOP VECTORIZES.*/
|
|
for(ci=0;ci<64;ci++)data[ci]=p;
|
|
}
|
|
else{
|
|
data[0]=dc*dc_dequant;
|
|
oc_idct8x8(&_enc->state,data,nonzero+1);
|
|
}
|
|
if(!qti)oc_enc_frag_recon_intra(_enc,dst,ystride,data);
|
|
else{
|
|
oc_enc_frag_recon_inter(_enc,dst,
|
|
nmv_offs==1?ref+mv_offs[0]:dst,ystride,data);
|
|
}
|
|
frame_type=_enc->state.frame_type;
|
|
#if !defined(OC_COLLECT_METRICS)
|
|
if(frame_type!=OC_INTRA_FRAME)
|
|
#endif
|
|
{
|
|
/*In retrospect, should we have skipped this block?*/
|
|
oc_enc_frag_sub(_enc,data,src,dst,ystride);
|
|
coded_ssd=coded_dc=0;
|
|
if(borderi<0){
|
|
for(pi=0;pi<64;pi++){
|
|
coded_ssd+=data[pi]*data[pi];
|
|
coded_dc+=data[pi];
|
|
}
|
|
}
|
|
else{
|
|
ogg_int64_t mask;
|
|
mask=_enc->state.borders[borderi].mask;
|
|
for(pi=0;pi<64;pi++,mask>>=1)if(mask&1){
|
|
coded_ssd+=data[pi]*data[pi];
|
|
coded_dc+=data[pi];
|
|
}
|
|
}
|
|
/*Scale to match DCT domain.*/
|
|
coded_ssd<<=4;
|
|
/*We actually only want the AC contribution to the SSD.*/
|
|
coded_ssd-=coded_dc*coded_dc>>2;
|
|
#if defined(OC_COLLECT_METRICS)
|
|
_enc->frag_ssd[_fragi]=coded_ssd;
|
|
}
|
|
if(frame_type!=OC_INTRA_FRAME){
|
|
#endif
|
|
uncoded_ssd=_pipe->skip_ssd[_pli][_fragi-_pipe->froffset[_pli]];
|
|
if(uncoded_ssd<UINT_MAX){
|
|
/*Although the fragment coding overhead determination is accurate, it is
|
|
greedy, using very coarse-grained local information.
|
|
Allowing it to mildly discourage coding turns out to be beneficial, but
|
|
it's not clear that allowing it to encourage coding through negative
|
|
coding overhead deltas is useful.
|
|
For that reason, we disallow negative coding_overheads.*/
|
|
if(_overhead_bits<0)_overhead_bits=0;
|
|
if(uncoded_ssd<=coded_ssd+(_overhead_bits+ac_bits)*_enc->lambda&&
|
|
/*Don't allow luma blocks to be skipped in 4MV mode when VP3
|
|
compatibility is enabled.*/
|
|
(!_enc->vp3_compatible||mb_mode!=OC_MODE_INTER_MV_FOUR||_pli)){
|
|
/*Hm, not worth it; roll back.*/
|
|
oc_enc_tokenlog_rollback(_enc,checkpoint,(*_stack)-checkpoint);
|
|
*_stack=checkpoint;
|
|
frags[_fragi].coded=0;
|
|
return 0;
|
|
}
|
|
}
|
|
else _mo->dc_flag=1;
|
|
_mo->uncoded_ac_ssd+=uncoded_ssd;
|
|
_mo->coded_ac_ssd+=coded_ssd;
|
|
_mo->ac_bits+=ac_bits;
|
|
}
|
|
oc_qii_state_advance(_pipe->qs+_pli,_pipe->qs+_pli,qii);
|
|
frags[_fragi].dc=dc;
|
|
frags[_fragi].coded=1;
|
|
return 1;
|
|
}
|
|
|
|
static int oc_enc_mb_transform_quantize_luma(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,unsigned _mbi,int _mode_overhead){
|
|
/*Worst case token stack usage for 4 fragments.*/
|
|
oc_token_checkpoint stack[64*4];
|
|
oc_token_checkpoint *stackptr;
|
|
const oc_sb_map *sb_maps;
|
|
signed char *mb_modes;
|
|
oc_fragment *frags;
|
|
ptrdiff_t *coded_fragis;
|
|
ptrdiff_t ncoded_fragis;
|
|
ptrdiff_t *uncoded_fragis;
|
|
ptrdiff_t nuncoded_fragis;
|
|
oc_rd_metric mo;
|
|
oc_fr_state fr_checkpoint;
|
|
oc_qii_state qs_checkpoint;
|
|
int mb_mode;
|
|
int ncoded;
|
|
ptrdiff_t fragi;
|
|
int bi;
|
|
*&fr_checkpoint=*(_pipe->fr+0);
|
|
*&qs_checkpoint=*(_pipe->qs+0);
|
|
sb_maps=(const oc_sb_map *)_enc->state.sb_maps;
|
|
mb_modes=_enc->state.mb_modes;
|
|
frags=_enc->state.frags;
|
|
coded_fragis=_pipe->coded_fragis[0];
|
|
ncoded_fragis=_pipe->ncoded_fragis[0];
|
|
uncoded_fragis=_pipe->uncoded_fragis[0];
|
|
nuncoded_fragis=_pipe->nuncoded_fragis[0];
|
|
mb_mode=mb_modes[_mbi];
|
|
ncoded=0;
|
|
stackptr=stack;
|
|
memset(&mo,0,sizeof(mo));
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_maps[_mbi>>2][_mbi&3][bi];
|
|
frags[fragi].mb_mode=mb_mode;
|
|
if(oc_enc_block_transform_quantize(_enc,
|
|
_pipe,0,fragi,oc_fr_cost1(_pipe->fr+0),&mo,&stackptr)){
|
|
oc_fr_code_block(_pipe->fr+0);
|
|
coded_fragis[ncoded_fragis++]=fragi;
|
|
ncoded++;
|
|
}
|
|
else{
|
|
*(uncoded_fragis-++nuncoded_fragis)=fragi;
|
|
oc_fr_skip_block(_pipe->fr+0);
|
|
}
|
|
}
|
|
if(_enc->state.frame_type!=OC_INTRA_FRAME){
|
|
if(ncoded>0&&!mo.dc_flag){
|
|
int cost;
|
|
/*Some individual blocks were worth coding.
|
|
See if that's still true when accounting for mode and MV overhead.*/
|
|
cost=mo.coded_ac_ssd+_enc->lambda*(mo.ac_bits
|
|
+oc_fr_cost4(&fr_checkpoint,_pipe->fr+0)+_mode_overhead);
|
|
if(mo.uncoded_ac_ssd<=cost){
|
|
/*Taking macroblock overhead into account, it is not worth coding this
|
|
MB.*/
|
|
oc_enc_tokenlog_rollback(_enc,stack,stackptr-stack);
|
|
*(_pipe->fr+0)=*&fr_checkpoint;
|
|
*(_pipe->qs+0)=*&qs_checkpoint;
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_maps[_mbi>>2][_mbi&3][bi];
|
|
if(frags[fragi].coded){
|
|
*(uncoded_fragis-++nuncoded_fragis)=fragi;
|
|
frags[fragi].coded=0;
|
|
}
|
|
oc_fr_skip_block(_pipe->fr+0);
|
|
}
|
|
ncoded_fragis-=ncoded;
|
|
ncoded=0;
|
|
}
|
|
}
|
|
/*If no luma blocks coded, the mode is forced.*/
|
|
if(ncoded==0)mb_modes[_mbi]=OC_MODE_INTER_NOMV;
|
|
/*Assume that a 1MV with a single coded block is always cheaper than a 4MV
|
|
with a single coded block.
|
|
This may not be strictly true: a 4MV computes chroma MVs using (0,0) for
|
|
skipped blocks, while a 1MV does not.*/
|
|
else if(ncoded==1&&mb_mode==OC_MODE_INTER_MV_FOUR){
|
|
mb_modes[_mbi]=OC_MODE_INTER_MV;
|
|
}
|
|
}
|
|
_pipe->ncoded_fragis[0]=ncoded_fragis;
|
|
_pipe->nuncoded_fragis[0]=nuncoded_fragis;
|
|
return ncoded;
|
|
}
|
|
|
|
static void oc_enc_sb_transform_quantize_chroma(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,int _pli,int _sbi_start,int _sbi_end){
|
|
const oc_sb_map *sb_maps;
|
|
oc_sb_flags *sb_flags;
|
|
ptrdiff_t *coded_fragis;
|
|
ptrdiff_t ncoded_fragis;
|
|
ptrdiff_t *uncoded_fragis;
|
|
ptrdiff_t nuncoded_fragis;
|
|
int sbi;
|
|
sb_maps=(const oc_sb_map *)_enc->state.sb_maps;
|
|
sb_flags=_enc->state.sb_flags;
|
|
coded_fragis=_pipe->coded_fragis[_pli];
|
|
ncoded_fragis=_pipe->ncoded_fragis[_pli];
|
|
uncoded_fragis=_pipe->uncoded_fragis[_pli];
|
|
nuncoded_fragis=_pipe->nuncoded_fragis[_pli];
|
|
for(sbi=_sbi_start;sbi<_sbi_end;sbi++){
|
|
/*Worst case token stack usage for 1 fragment.*/
|
|
oc_token_checkpoint stack[64];
|
|
oc_rd_metric mo;
|
|
int quadi;
|
|
int bi;
|
|
memset(&mo,0,sizeof(mo));
|
|
for(quadi=0;quadi<4;quadi++)for(bi=0;bi<4;bi++){
|
|
ptrdiff_t fragi;
|
|
fragi=sb_maps[sbi][quadi][bi];
|
|
if(fragi>=0){
|
|
oc_token_checkpoint *stackptr;
|
|
stackptr=stack;
|
|
if(oc_enc_block_transform_quantize(_enc,
|
|
_pipe,_pli,fragi,oc_fr_cost1(_pipe->fr+_pli),&mo,&stackptr)){
|
|
coded_fragis[ncoded_fragis++]=fragi;
|
|
oc_fr_code_block(_pipe->fr+_pli);
|
|
}
|
|
else{
|
|
*(uncoded_fragis-++nuncoded_fragis)=fragi;
|
|
oc_fr_skip_block(_pipe->fr+_pli);
|
|
}
|
|
}
|
|
}
|
|
oc_fr_state_flush_sb(_pipe->fr+_pli);
|
|
sb_flags[sbi].coded_fully=_pipe->fr[_pli].sb_full;
|
|
sb_flags[sbi].coded_partially=_pipe->fr[_pli].sb_partial;
|
|
}
|
|
_pipe->ncoded_fragis[_pli]=ncoded_fragis;
|
|
_pipe->nuncoded_fragis[_pli]=nuncoded_fragis;
|
|
}
|
|
|
|
/*Mode decision is done by exhaustively examining all potential choices.
|
|
Obviously, doing the motion compensation, fDCT, tokenization, and then
|
|
counting the bits each token uses is computationally expensive.
|
|
Theora's EOB runs can also split the cost of these tokens across multiple
|
|
fragments, and naturally we don't know what the optimal choice of Huffman
|
|
codes will be until we know all the tokens we're going to encode in all the
|
|
fragments.
|
|
So we use a simple approach to estimating the bit cost and distortion of each
|
|
mode based upon the SATD value of the residual before coding.
|
|
The mathematics behind the technique are outlined by Kim \cite{Kim03}, but
|
|
the process (modified somewhat from that of the paper) is very simple.
|
|
We build a non-linear regression of the mappings from
|
|
(pre-transform+quantization) SATD to (post-transform+quantization) bits and
|
|
SSD for each qi.
|
|
A separate set of mappings is kept for each quantization type and color
|
|
plane.
|
|
The mappings are constructed by partitioning the SATD values into a small
|
|
number of bins (currently 24) and using a linear regression in each bin
|
|
(as opposed to the 0th-order regression used by Kim).
|
|
The bit counts and SSD measurements are obtained by examining actual encoded
|
|
frames, with appropriate lambda values and optimal Huffman codes selected.
|
|
EOB bits are assigned to the fragment that started the EOB run (as opposed to
|
|
dividing them among all the blocks in the run; though the latter approach
|
|
seems more theoretically correct, Monty's testing showed a small improvement
|
|
with the former, though that may have been merely statistical noise).
|
|
|
|
@ARTICLE{Kim03,
|
|
author="Hyun Mun Kim",
|
|
title="Adaptive Rate Control Using Nonlinear Regression",
|
|
journal="IEEE Transactions on Circuits and Systems for Video Technology",
|
|
volume=13,
|
|
number=5,
|
|
pages="432--439",
|
|
month=May,
|
|
year=2003
|
|
}*/
|
|
|
|
/*Computes (_ssd+_lambda*_rate)/(1<<OC_BIT_SCALE) with rounding, avoiding
|
|
overflow for large lambda values.*/
|
|
#define OC_MODE_RD_COST(_ssd,_rate,_lambda) \
|
|
((_ssd)>>OC_BIT_SCALE)+((_rate)>>OC_BIT_SCALE)*(_lambda) \
|
|
+(((_ssd)&(1<<OC_BIT_SCALE)-1)+((_rate)&(1<<OC_BIT_SCALE)-1)*(_lambda) \
|
|
+((1<<OC_BIT_SCALE)>>1)>>OC_BIT_SCALE)
|
|
|
|
/*Estimate the R-D cost of the DCT coefficients given the SATD of a block after
|
|
prediction.*/
|
|
static unsigned oc_dct_cost2(unsigned *_ssd,
|
|
int _qi,int _pli,int _qti,int _satd){
|
|
unsigned rmse;
|
|
int bin;
|
|
int dx;
|
|
int y0;
|
|
int z0;
|
|
int dy;
|
|
int dz;
|
|
/*SATD metrics for chroma planes vary much less than luma, so we scale them
|
|
by 4 to distribute them into the mode decision bins more evenly.*/
|
|
_satd<<=_pli+1&2;
|
|
bin=OC_MINI(_satd>>OC_SAD_SHIFT,OC_SAD_BINS-2);
|
|
dx=_satd-(bin<<OC_SAD_SHIFT);
|
|
y0=OC_MODE_RD[_qi][_pli][_qti][bin].rate;
|
|
z0=OC_MODE_RD[_qi][_pli][_qti][bin].rmse;
|
|
dy=OC_MODE_RD[_qi][_pli][_qti][bin+1].rate-y0;
|
|
dz=OC_MODE_RD[_qi][_pli][_qti][bin+1].rmse-z0;
|
|
rmse=OC_MAXI(z0+(dz*dx>>OC_SAD_SHIFT),0);
|
|
*_ssd=rmse*rmse>>2*OC_RMSE_SCALE-OC_BIT_SCALE;
|
|
return OC_MAXI(y0+(dy*dx>>OC_SAD_SHIFT),0);
|
|
}
|
|
|
|
/*Select luma block-level quantizers for a MB in an INTRA frame.*/
|
|
static unsigned oc_analyze_intra_mb_luma(oc_enc_ctx *_enc,
|
|
const oc_qii_state *_qs,unsigned _mbi){
|
|
const unsigned char *src;
|
|
const ptrdiff_t *frag_buf_offs;
|
|
const oc_sb_map *sb_maps;
|
|
oc_fragment *frags;
|
|
ptrdiff_t frag_offs;
|
|
ptrdiff_t fragi;
|
|
oc_qii_state qs[4][3];
|
|
unsigned cost[4][3];
|
|
unsigned ssd[4][3];
|
|
unsigned rate[4][3];
|
|
int prev[3][3];
|
|
unsigned satd;
|
|
unsigned best_cost;
|
|
unsigned best_ssd;
|
|
unsigned best_rate;
|
|
int best_qii;
|
|
int qii;
|
|
int lambda;
|
|
int ystride;
|
|
int nqis;
|
|
int bi;
|
|
frag_buf_offs=_enc->state.frag_buf_offs;
|
|
sb_maps=(const oc_sb_map *)_enc->state.sb_maps;
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ystride=_enc->state.ref_ystride[0];
|
|
fragi=sb_maps[_mbi>>2][_mbi&3][0];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
satd=oc_enc_frag_intra_satd(_enc,src+frag_offs,ystride);
|
|
nqis=_enc->state.nqis;
|
|
lambda=_enc->lambda;
|
|
for(qii=0;qii<nqis;qii++){
|
|
oc_qii_state_advance(qs[0]+qii,_qs,qii);
|
|
rate[0][qii]=oc_dct_cost2(ssd[0]+qii,_enc->state.qis[qii],0,0,satd)
|
|
+(qs[0][qii].bits-_qs->bits<<OC_BIT_SCALE);
|
|
cost[0][qii]=OC_MODE_RD_COST(ssd[0][qii],rate[0][qii],lambda);
|
|
}
|
|
for(bi=1;bi<4;bi++){
|
|
fragi=sb_maps[_mbi>>2][_mbi&3][bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
satd=oc_enc_frag_intra_satd(_enc,src+frag_offs,ystride);
|
|
for(qii=0;qii<nqis;qii++){
|
|
oc_qii_state qt[3];
|
|
unsigned cur_ssd;
|
|
unsigned cur_rate;
|
|
int best_qij;
|
|
int qij;
|
|
oc_qii_state_advance(qt+0,qs[bi-1]+0,qii);
|
|
cur_rate=oc_dct_cost2(&cur_ssd,_enc->state.qis[qii],0,0,satd);
|
|
best_ssd=ssd[bi-1][0]+cur_ssd;
|
|
best_rate=rate[bi-1][0]+cur_rate
|
|
+(qt[0].bits-qs[bi-1][0].bits<<OC_BIT_SCALE);
|
|
best_cost=OC_MODE_RD_COST(best_ssd,best_rate,lambda);
|
|
best_qij=0;
|
|
for(qij=1;qij<nqis;qij++){
|
|
unsigned chain_ssd;
|
|
unsigned chain_rate;
|
|
unsigned chain_cost;
|
|
oc_qii_state_advance(qt+qij,qs[bi-1]+qij,qii);
|
|
chain_ssd=ssd[bi-1][qij]+cur_ssd;
|
|
chain_rate=rate[bi-1][qij]+cur_rate
|
|
+(qt[qij].bits-qs[bi-1][qij].bits<<OC_BIT_SCALE);
|
|
chain_cost=OC_MODE_RD_COST(chain_ssd,chain_rate,lambda);
|
|
if(chain_cost<best_cost){
|
|
best_cost=chain_cost;
|
|
best_ssd=chain_ssd;
|
|
best_rate=chain_rate;
|
|
best_qij=qij;
|
|
}
|
|
}
|
|
*(qs[bi]+qii)=*(qt+best_qij);
|
|
cost[bi][qii]=best_cost;
|
|
ssd[bi][qii]=best_ssd;
|
|
rate[bi][qii]=best_rate;
|
|
prev[bi-1][qii]=best_qij;
|
|
}
|
|
}
|
|
best_qii=0;
|
|
best_cost=cost[3][0];
|
|
for(qii=1;qii<nqis;qii++){
|
|
if(cost[3][qii]<best_cost){
|
|
best_cost=cost[3][qii];
|
|
best_qii=qii;
|
|
}
|
|
}
|
|
frags=_enc->state.frags;
|
|
for(bi=3;;){
|
|
fragi=sb_maps[_mbi>>2][_mbi&3][bi];
|
|
frags[fragi].qii=best_qii;
|
|
if(bi--<=0)break;
|
|
best_qii=prev[bi][best_qii];
|
|
}
|
|
return best_cost;
|
|
}
|
|
|
|
/*Select a block-level quantizer for a single chroma block in an INTRA frame.*/
|
|
static unsigned oc_analyze_intra_chroma_block(oc_enc_ctx *_enc,
|
|
const oc_qii_state *_qs,int _pli,ptrdiff_t _fragi){
|
|
const unsigned char *src;
|
|
oc_fragment *frags;
|
|
ptrdiff_t frag_offs;
|
|
oc_qii_state qt[3];
|
|
unsigned cost[3];
|
|
unsigned satd;
|
|
unsigned best_cost;
|
|
int best_qii;
|
|
int qii;
|
|
int lambda;
|
|
int ystride;
|
|
int nqis;
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ystride=_enc->state.ref_ystride[_pli];
|
|
frag_offs=_enc->state.frag_buf_offs[_fragi];
|
|
satd=oc_enc_frag_intra_satd(_enc,src+frag_offs,ystride);
|
|
nqis=_enc->state.nqis;
|
|
lambda=_enc->lambda;
|
|
best_qii=0;
|
|
for(qii=0;qii<nqis;qii++){
|
|
unsigned cur_rate;
|
|
unsigned cur_ssd;
|
|
oc_qii_state_advance(qt+qii,_qs,qii);
|
|
cur_rate=oc_dct_cost2(&cur_ssd,_enc->state.qis[qii],_pli,0,satd)
|
|
+(qt[qii].bits-_qs->bits<<OC_BIT_SCALE);
|
|
cost[qii]=OC_MODE_RD_COST(cur_ssd,cur_rate,lambda);
|
|
}
|
|
best_cost=cost[0];
|
|
for(qii=1;qii<nqis;qii++){
|
|
if(cost[qii]<best_cost){
|
|
best_cost=cost[qii];
|
|
best_qii=qii;
|
|
}
|
|
}
|
|
frags=_enc->state.frags;
|
|
frags[_fragi].qii=best_qii;
|
|
return best_cost;
|
|
}
|
|
|
|
static void oc_enc_sb_transform_quantize_intra_chroma(oc_enc_ctx *_enc,
|
|
oc_enc_pipeline_state *_pipe,int _pli,int _sbi_start,int _sbi_end){
|
|
const oc_sb_map *sb_maps;
|
|
oc_sb_flags *sb_flags;
|
|
ptrdiff_t *coded_fragis;
|
|
ptrdiff_t ncoded_fragis;
|
|
int sbi;
|
|
sb_maps=(const oc_sb_map *)_enc->state.sb_maps;
|
|
sb_flags=_enc->state.sb_flags;
|
|
coded_fragis=_pipe->coded_fragis[_pli];
|
|
ncoded_fragis=_pipe->ncoded_fragis[_pli];
|
|
for(sbi=_sbi_start;sbi<_sbi_end;sbi++){
|
|
/*Worst case token stack usage for 1 fragment.*/
|
|
oc_token_checkpoint stack[64];
|
|
int quadi;
|
|
int bi;
|
|
for(quadi=0;quadi<4;quadi++)for(bi=0;bi<4;bi++){
|
|
ptrdiff_t fragi;
|
|
fragi=sb_maps[sbi][quadi][bi];
|
|
if(fragi>=0){
|
|
oc_token_checkpoint *stackptr;
|
|
oc_analyze_intra_chroma_block(_enc,_pipe->qs+_pli,_pli,fragi);
|
|
stackptr=stack;
|
|
oc_enc_block_transform_quantize(_enc,
|
|
_pipe,_pli,fragi,0,NULL,&stackptr);
|
|
coded_fragis[ncoded_fragis++]=fragi;
|
|
}
|
|
}
|
|
}
|
|
_pipe->ncoded_fragis[_pli]=ncoded_fragis;
|
|
}
|
|
|
|
/*Analysis stage for an INTRA frame.*/
|
|
void oc_enc_analyze_intra(oc_enc_ctx *_enc,int _recode){
|
|
oc_enc_pipeline_state pipe;
|
|
const unsigned char *map_idxs;
|
|
int nmap_idxs;
|
|
oc_sb_flags *sb_flags;
|
|
signed char *mb_modes;
|
|
const oc_mb_map *mb_maps;
|
|
oc_mb_enc_info *embs;
|
|
oc_fragment *frags;
|
|
unsigned stripe_sby;
|
|
unsigned mcu_nvsbs;
|
|
int notstart;
|
|
int notdone;
|
|
int refi;
|
|
int pli;
|
|
_enc->state.frame_type=OC_INTRA_FRAME;
|
|
oc_enc_tokenize_start(_enc);
|
|
oc_enc_pipeline_init(_enc,&pipe);
|
|
/*Choose MVs and MB modes and quantize and code luma.
|
|
Must be done in Hilbert order.*/
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
nmap_idxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
_enc->state.ncoded_fragis[0]=0;
|
|
_enc->state.ncoded_fragis[1]=0;
|
|
_enc->state.ncoded_fragis[2]=0;
|
|
sb_flags=_enc->state.sb_flags;
|
|
mb_modes=_enc->state.mb_modes;
|
|
mb_maps=(const oc_mb_map *)_enc->state.mb_maps;
|
|
embs=_enc->mb_info;
|
|
frags=_enc->state.frags;
|
|
notstart=0;
|
|
notdone=1;
|
|
mcu_nvsbs=_enc->mcu_nvsbs;
|
|
for(stripe_sby=0;notdone;stripe_sby+=mcu_nvsbs){
|
|
unsigned sbi;
|
|
unsigned sbi_end;
|
|
notdone=oc_enc_pipeline_set_stripe(_enc,&pipe,stripe_sby);
|
|
sbi_end=pipe.sbi_end[0];
|
|
for(sbi=pipe.sbi0[0];sbi<sbi_end;sbi++){
|
|
int quadi;
|
|
/*Mode addressing is through Y plane, always 4 MB per SB.*/
|
|
for(quadi=0;quadi<4;quadi++)if(sb_flags[sbi].quad_valid&1<<quadi){
|
|
unsigned mbi;
|
|
int mapii;
|
|
int mapi;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
mbi=sbi<<2|quadi;
|
|
/*Motion estimation:
|
|
We always do a basic 1MV search for all macroblocks, coded or not,
|
|
keyframe or not.*/
|
|
if(!_recode&&_enc->state.curframe_num>0)oc_mcenc_search(_enc,mbi);
|
|
oc_analyze_intra_mb_luma(_enc,pipe.qs+0,mbi);
|
|
mb_modes[mbi]=OC_MODE_INTRA;
|
|
oc_enc_mb_transform_quantize_luma(_enc,&pipe,mbi,0);
|
|
/*Propagate final MB mode and MVs to the chroma blocks.*/
|
|
for(mapii=4;mapii<nmap_idxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_maps[mbi][pli][bi];
|
|
frags[fragi].mb_mode=OC_MODE_INTRA;
|
|
}
|
|
}
|
|
}
|
|
oc_enc_pipeline_finish_mcu_plane(_enc,&pipe,0,notstart,notdone);
|
|
/*Code chroma planes.*/
|
|
for(pli=1;pli<3;pli++){
|
|
oc_enc_sb_transform_quantize_intra_chroma(_enc,&pipe,
|
|
pli,pipe.sbi0[pli],pipe.sbi_end[pli]);
|
|
oc_enc_pipeline_finish_mcu_plane(_enc,&pipe,pli,notstart,notdone);
|
|
}
|
|
notstart=1;
|
|
}
|
|
/*Finish filling in the reference frame borders.*/
|
|
refi=_enc->state.ref_frame_idx[OC_FRAME_SELF];
|
|
for(pli=0;pli<3;pli++)oc_state_borders_fill_caps(&_enc->state,refi,pli);
|
|
_enc->state.ntotal_coded_fragis=_enc->state.nfrags;
|
|
}
|
|
|
|
|
|
|
|
/*Cost information about a MB mode.*/
|
|
struct oc_mode_choice{
|
|
unsigned cost;
|
|
unsigned ssd;
|
|
unsigned rate;
|
|
unsigned overhead;
|
|
unsigned char qii[12];
|
|
};
|
|
|
|
|
|
|
|
static void oc_mode_set_cost(oc_mode_choice *_modec,int _lambda){
|
|
_modec->cost=OC_MODE_RD_COST(_modec->ssd,
|
|
_modec->rate+_modec->overhead,_lambda);
|
|
}
|
|
|
|
/*A set of skip SSD's to use to disable early skipping.*/
|
|
static const unsigned OC_NOSKIP[12]={
|
|
UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,
|
|
UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX,
|
|
UINT_MAX,UINT_MAX,UINT_MAX,UINT_MAX
|
|
};
|
|
|
|
/*The estimated number of bits used by a coded chroma block to specify the AC
|
|
quantizer.
|
|
TODO: Currently this is just 0.5*log2(3) (estimating about 50% compression);
|
|
measurements suggest this is in the right ballpark, but it varies somewhat
|
|
with lambda.*/
|
|
#define OC_CHROMA_QII_RATE ((0xCAE00D1DU>>31-OC_BIT_SCALE)+1>>1)
|
|
|
|
static void oc_analyze_mb_mode_luma(oc_enc_ctx *_enc,
|
|
oc_mode_choice *_modec,const oc_fr_state *_fr,const oc_qii_state *_qs,
|
|
const unsigned _frag_satd[12],const unsigned _skip_ssd[12],int _qti){
|
|
oc_fr_state fr;
|
|
oc_qii_state qs;
|
|
unsigned ssd;
|
|
unsigned rate;
|
|
int overhead;
|
|
unsigned satd;
|
|
unsigned best_ssd;
|
|
unsigned best_rate;
|
|
int best_overhead;
|
|
int best_fri;
|
|
int best_qii;
|
|
unsigned cur_cost;
|
|
unsigned cur_ssd;
|
|
unsigned cur_rate;
|
|
int cur_overhead;
|
|
int lambda;
|
|
int nqis;
|
|
int nskipped;
|
|
int bi;
|
|
int qii;
|
|
lambda=_enc->lambda;
|
|
nqis=_enc->state.nqis;
|
|
/*We could do a trellis optimization here, but we don't make final skip
|
|
decisions until after transform+quantization, so the result wouldn't be
|
|
optimal anyway.
|
|
Instead we just use a greedy approach; for most SATD values, the
|
|
differences between the qiis are large enough to drown out the cost to
|
|
code the flags, anyway.*/
|
|
*&fr=*_fr;
|
|
*&qs=*_qs;
|
|
ssd=rate=overhead=nskipped=0;
|
|
for(bi=0;bi<4;bi++){
|
|
oc_fr_state ft[2];
|
|
oc_qii_state qt[3];
|
|
unsigned best_cost;
|
|
satd=_frag_satd[bi];
|
|
*(ft+0)=*&fr;
|
|
oc_fr_code_block(ft+0);
|
|
oc_qii_state_advance(qt+0,&qs,0);
|
|
best_overhead=(ft[0].bits-fr.bits<<OC_BIT_SCALE);
|
|
best_rate=oc_dct_cost2(&best_ssd,_enc->state.qis[0],0,_qti,satd)
|
|
+(qt[0].bits-qs.bits<<OC_BIT_SCALE);
|
|
best_cost=OC_MODE_RD_COST(ssd+best_ssd,rate+best_rate+best_overhead,lambda);
|
|
best_fri=0;
|
|
best_qii=0;
|
|
for(qii=1;qii<nqis;qii++){
|
|
oc_qii_state_advance(qt+qii,&qs,qii);
|
|
cur_rate=oc_dct_cost2(&cur_ssd,_enc->state.qis[qii],0,_qti,satd)
|
|
+(qt[qii].bits-qs.bits<<OC_BIT_SCALE);
|
|
cur_cost=OC_MODE_RD_COST(ssd+cur_ssd,rate+cur_rate+best_overhead,lambda);
|
|
if(cur_cost<best_cost){
|
|
best_cost=cur_cost;
|
|
best_ssd=cur_ssd;
|
|
best_rate=cur_rate;
|
|
best_qii=qii;
|
|
}
|
|
}
|
|
if(_skip_ssd[bi]<UINT_MAX&&nskipped<3){
|
|
*(ft+1)=*&fr;
|
|
oc_fr_skip_block(ft+1);
|
|
cur_overhead=ft[1].bits-fr.bits<<OC_BIT_SCALE;
|
|
cur_ssd=_skip_ssd[bi]<<OC_BIT_SCALE;
|
|
cur_cost=OC_MODE_RD_COST(ssd+cur_ssd,rate+cur_overhead,lambda);
|
|
if(cur_cost<=best_cost){
|
|
best_ssd=cur_ssd;
|
|
best_rate=0;
|
|
best_overhead=cur_overhead;
|
|
best_fri=1;
|
|
best_qii+=4;
|
|
}
|
|
}
|
|
rate+=best_rate;
|
|
ssd+=best_ssd;
|
|
overhead+=best_overhead;
|
|
*&fr=*(ft+best_fri);
|
|
if(best_fri==0)*&qs=*(qt+best_qii);
|
|
else nskipped++;
|
|
_modec->qii[bi]=best_qii;
|
|
}
|
|
_modec->ssd=ssd;
|
|
_modec->rate=rate;
|
|
_modec->overhead=OC_MAXI(overhead,0);
|
|
}
|
|
|
|
static void oc_analyze_mb_mode_chroma(oc_enc_ctx *_enc,
|
|
oc_mode_choice *_modec,const oc_fr_state *_fr,const oc_qii_state *_qs,
|
|
const unsigned _frag_satd[12],const unsigned _skip_ssd[12],int _qti){
|
|
unsigned ssd;
|
|
unsigned rate;
|
|
unsigned satd;
|
|
unsigned best_ssd;
|
|
unsigned best_rate;
|
|
int best_qii;
|
|
unsigned cur_cost;
|
|
unsigned cur_ssd;
|
|
unsigned cur_rate;
|
|
int lambda;
|
|
int nblocks;
|
|
int nqis;
|
|
int pli;
|
|
int bi;
|
|
int qii;
|
|
lambda=_enc->lambda;
|
|
nqis=_enc->state.nqis;
|
|
ssd=_modec->ssd;
|
|
rate=_modec->rate;
|
|
/*Because (except in 4:4:4 mode) we aren't considering chroma blocks in coded
|
|
order, we assume a constant overhead for coded block and qii flags.*/
|
|
nblocks=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
nblocks=(nblocks-4>>1)+4;
|
|
bi=4;
|
|
for(pli=1;pli<3;pli++){
|
|
for(;bi<nblocks;bi++){
|
|
unsigned best_cost;
|
|
satd=_frag_satd[bi];
|
|
best_rate=oc_dct_cost2(&best_ssd,_enc->state.qis[0],pli,_qti,satd)
|
|
+OC_CHROMA_QII_RATE;
|
|
best_cost=OC_MODE_RD_COST(ssd+best_ssd,rate+best_rate,lambda);
|
|
best_qii=0;
|
|
for(qii=1;qii<nqis;qii++){
|
|
cur_rate=oc_dct_cost2(&cur_ssd,_enc->state.qis[qii],0,_qti,satd)
|
|
+OC_CHROMA_QII_RATE;
|
|
cur_cost=OC_MODE_RD_COST(ssd+cur_ssd,rate+cur_rate,lambda);
|
|
if(cur_cost<best_cost){
|
|
best_cost=cur_cost;
|
|
best_ssd=cur_ssd;
|
|
best_rate=cur_rate;
|
|
best_qii=qii;
|
|
}
|
|
}
|
|
if(_skip_ssd[bi]<UINT_MAX){
|
|
cur_ssd=_skip_ssd[bi]<<OC_BIT_SCALE;
|
|
cur_cost=OC_MODE_RD_COST(ssd+cur_ssd,rate,lambda);
|
|
if(cur_cost<=best_cost){
|
|
best_ssd=cur_ssd;
|
|
best_rate=0;
|
|
best_qii+=4;
|
|
}
|
|
}
|
|
rate+=best_rate;
|
|
ssd+=best_ssd;
|
|
_modec->qii[bi]=best_qii;
|
|
}
|
|
nblocks=(nblocks-4<<1)+4;
|
|
}
|
|
_modec->ssd=ssd;
|
|
_modec->rate=rate;
|
|
}
|
|
|
|
static void oc_skip_cost(oc_enc_ctx *_enc,oc_enc_pipeline_state *_pipe,
|
|
unsigned _mbi,unsigned _ssd[12]){
|
|
OC_ALIGN16(ogg_int16_t buffer[64]);
|
|
const unsigned char *src;
|
|
const unsigned char *ref;
|
|
int ystride;
|
|
const oc_fragment *frags;
|
|
const ptrdiff_t *frag_buf_offs;
|
|
const ptrdiff_t *sb_map;
|
|
const oc_mb_map_plane *mb_map;
|
|
const unsigned char *map_idxs;
|
|
int map_nidxs;
|
|
ogg_int64_t mask;
|
|
unsigned uncoded_ssd;
|
|
int uncoded_dc;
|
|
unsigned dc_dequant;
|
|
int dc_flag;
|
|
int mapii;
|
|
int mapi;
|
|
int pli;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
ptrdiff_t frag_offs;
|
|
int borderi;
|
|
int pi;
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ref=_enc->state.ref_frame_data[_enc->state.ref_frame_idx[OC_FRAME_PREV]];
|
|
ystride=_enc->state.ref_ystride[0];
|
|
frags=_enc->state.frags;
|
|
frag_buf_offs=_enc->state.frag_buf_offs;
|
|
sb_map=_enc->state.sb_maps[_mbi>>2][_mbi&3];
|
|
dc_dequant=_enc->state.dequant_tables[_enc->state.qis[0]][0][1][0];
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_map[bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
oc_enc_frag_sub(_enc,buffer,src+frag_offs,ref+frag_offs,ystride);
|
|
borderi=frags[fragi].borderi;
|
|
uncoded_ssd=uncoded_dc=0;
|
|
if(borderi<0){
|
|
for(pi=0;pi<64;pi++){
|
|
uncoded_ssd+=buffer[pi]*buffer[pi];
|
|
uncoded_dc+=buffer[pi];
|
|
}
|
|
}
|
|
else{
|
|
ogg_int64_t mask;
|
|
mask=_enc->state.borders[borderi].mask;
|
|
for(pi=0;pi<64;pi++,mask>>=1)if(mask&1){
|
|
uncoded_ssd+=buffer[pi]*buffer[pi];
|
|
uncoded_dc+=buffer[pi];
|
|
}
|
|
}
|
|
/*Scale to match DCT domain.*/
|
|
uncoded_ssd<<=4;
|
|
/*We actually only want the AC contribution to the SSD.*/
|
|
uncoded_ssd-=uncoded_dc*uncoded_dc>>2;
|
|
/*DC is a special case; if there's more than a full-quantizer improvement
|
|
in the effective DC component, always force-code the block.*/
|
|
dc_flag=abs(uncoded_dc)>dc_dequant<<1;
|
|
uncoded_ssd|=-dc_flag;
|
|
_pipe->skip_ssd[0][fragi-_pipe->froffset[0]]=_ssd[bi]=uncoded_ssd;
|
|
}
|
|
mb_map=(const oc_mb_map_plane *)_enc->state.mb_maps[_mbi];
|
|
map_nidxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
map_nidxs=(map_nidxs-4>>1)+4;
|
|
mapii=4;
|
|
for(pli=1;pli<3;pli++){
|
|
ystride=_enc->state.ref_ystride[pli];
|
|
dc_dequant=_enc->state.dequant_tables[_enc->state.qis[0]][pli][1][0];
|
|
for(;mapii<map_nidxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
bi=mapi&3;
|
|
fragi=mb_map[pli][bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
oc_enc_frag_sub(_enc,buffer,src+frag_offs,ref+frag_offs,ystride);
|
|
borderi=frags[fragi].borderi;
|
|
uncoded_ssd=uncoded_dc=0;
|
|
if(borderi<0){
|
|
for(pi=0;pi<64;pi++){
|
|
uncoded_ssd+=buffer[pi]*buffer[pi];
|
|
uncoded_dc+=buffer[pi];
|
|
}
|
|
}
|
|
else{
|
|
mask=_enc->state.borders[borderi].mask;
|
|
for(pi=0;pi<64;pi++,mask>>=1)if(mask&1){
|
|
uncoded_ssd+=buffer[pi]*buffer[pi];
|
|
uncoded_dc+=buffer[pi];
|
|
}
|
|
}
|
|
/*Scale to match DCT domain.*/
|
|
uncoded_ssd<<=4;
|
|
/*We actually only want the AC contribution to the SSD.*/
|
|
uncoded_ssd-=uncoded_dc*uncoded_dc>>2;
|
|
/*DC is a special case; if there's more than a full-quantizer improvement
|
|
in the effective DC component, always force-code the block.*/
|
|
dc_flag=abs(uncoded_dc)>dc_dequant<<1;
|
|
uncoded_ssd|=-dc_flag;
|
|
_pipe->skip_ssd[pli][fragi-_pipe->froffset[pli]]=_ssd[mapii]=uncoded_ssd;
|
|
}
|
|
map_nidxs=(map_nidxs-4<<1)+4;
|
|
}
|
|
}
|
|
|
|
static void oc_mb_intra_satd(oc_enc_ctx *_enc,unsigned _mbi,
|
|
unsigned _frag_satd[12]){
|
|
const unsigned char *src;
|
|
const ptrdiff_t *frag_buf_offs;
|
|
const ptrdiff_t *sb_map;
|
|
const oc_mb_map_plane *mb_map;
|
|
const unsigned char *map_idxs;
|
|
int map_nidxs;
|
|
int mapii;
|
|
int mapi;
|
|
int ystride;
|
|
int pli;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
ptrdiff_t frag_offs;
|
|
frag_buf_offs=_enc->state.frag_buf_offs;
|
|
sb_map=_enc->state.sb_maps[_mbi>>2][_mbi&3];
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ystride=_enc->state.ref_ystride[0];
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_map[bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
_frag_satd[bi]=oc_enc_frag_intra_satd(_enc,src+frag_offs,ystride);
|
|
}
|
|
mb_map=(const oc_mb_map_plane *)_enc->state.mb_maps[_mbi];
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
map_nidxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
/*Note: This assumes ref_ystride[1]==ref_ystride[2].*/
|
|
ystride=_enc->state.ref_ystride[1];
|
|
for(mapii=4;mapii<map_nidxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_map[pli][bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
_frag_satd[mapii]=oc_enc_frag_intra_satd(_enc,src+frag_offs,ystride);
|
|
}
|
|
}
|
|
|
|
static void oc_cost_intra(oc_enc_ctx *_enc,oc_mode_choice *_modec,
|
|
unsigned _mbi,const oc_fr_state *_fr,const oc_qii_state *_qs,
|
|
const unsigned _frag_satd[12],const unsigned _skip_ssd[12]){
|
|
oc_analyze_mb_mode_luma(_enc,_modec,_fr,_qs,_frag_satd,_skip_ssd,0);
|
|
oc_analyze_mb_mode_chroma(_enc,_modec,_fr,_qs,_frag_satd,_skip_ssd,0);
|
|
_modec->overhead+=
|
|
oc_mode_scheme_chooser_cost(&_enc->chooser,OC_MODE_INTRA)<<OC_BIT_SCALE;
|
|
oc_mode_set_cost(_modec,_enc->lambda);
|
|
}
|
|
|
|
static void oc_cost_inter(oc_enc_ctx *_enc,oc_mode_choice *_modec,
|
|
unsigned _mbi,int _mb_mode,const signed char *_mv,
|
|
const oc_fr_state *_fr,const oc_qii_state *_qs,const unsigned _skip_ssd[12]){
|
|
unsigned frag_satd[12];
|
|
const unsigned char *src;
|
|
const unsigned char *ref;
|
|
int ystride;
|
|
const ptrdiff_t *frag_buf_offs;
|
|
const ptrdiff_t *sb_map;
|
|
const oc_mb_map_plane *mb_map;
|
|
const unsigned char *map_idxs;
|
|
int map_nidxs;
|
|
int mapii;
|
|
int mapi;
|
|
int mv_offs[2];
|
|
int dx;
|
|
int dy;
|
|
int pli;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
ptrdiff_t frag_offs;
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ref=_enc->state.ref_frame_data[
|
|
_enc->state.ref_frame_idx[OC_FRAME_FOR_MODE(_mb_mode)]];
|
|
ystride=_enc->state.ref_ystride[0];
|
|
frag_buf_offs=_enc->state.frag_buf_offs;
|
|
sb_map=_enc->state.sb_maps[_mbi>>2][_mbi&3];
|
|
dx=_mv[0];
|
|
dy=_mv[1];
|
|
_modec->rate=_modec->ssd=0;
|
|
if(oc_state_get_mv_offsets(&_enc->state,mv_offs,0,dx,dy)>1){
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_map[bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
frag_satd[bi]=oc_enc_frag_satd2_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ref+frag_offs+mv_offs[1],ystride,UINT_MAX);
|
|
}
|
|
}
|
|
else{
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_map[bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
frag_satd[bi]=oc_enc_frag_satd_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ystride,UINT_MAX);
|
|
}
|
|
}
|
|
mb_map=(const oc_mb_map_plane *)_enc->state.mb_maps[_mbi];
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
map_nidxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
/*Note: This assumes ref_ystride[1]==ref_ystride[2].*/
|
|
ystride=_enc->state.ref_ystride[1];
|
|
if(oc_state_get_mv_offsets(&_enc->state,mv_offs,1,dx,dy)>1){
|
|
for(mapii=4;mapii<map_nidxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_map[pli][bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
frag_satd[mapii]=oc_enc_frag_satd2_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ref+frag_offs+mv_offs[1],ystride,UINT_MAX);
|
|
}
|
|
}
|
|
else{
|
|
for(mapii=4;mapii<map_nidxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_map[pli][bi];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
frag_satd[mapii]=oc_enc_frag_satd_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ystride,UINT_MAX);
|
|
}
|
|
}
|
|
oc_analyze_mb_mode_luma(_enc,_modec,_fr,_qs,frag_satd,_skip_ssd,1);
|
|
oc_analyze_mb_mode_chroma(_enc,_modec,_fr,_qs,frag_satd,_skip_ssd,1);
|
|
_modec->overhead+=
|
|
oc_mode_scheme_chooser_cost(&_enc->chooser,_mb_mode)<<OC_BIT_SCALE;
|
|
oc_mode_set_cost(_modec,_enc->lambda);
|
|
}
|
|
|
|
static void oc_cost_inter_nomv(oc_enc_ctx *_enc,oc_mode_choice *_modec,
|
|
unsigned _mbi,int _mb_mode,const oc_fr_state *_fr,const oc_qii_state *_qs,
|
|
const unsigned _skip_ssd[12]){
|
|
static const oc_mv OC_MV_ZERO;
|
|
oc_cost_inter(_enc,_modec,_mbi,_mb_mode,OC_MV_ZERO,_fr,_qs,_skip_ssd);
|
|
}
|
|
|
|
static int oc_cost_inter1mv(oc_enc_ctx *_enc,oc_mode_choice *_modec,
|
|
unsigned _mbi,int _mb_mode,const signed char *_mv,
|
|
const oc_fr_state *_fr,const oc_qii_state *_qs,const unsigned _skip_ssd[12]){
|
|
int bits0;
|
|
oc_cost_inter(_enc,_modec,_mbi,_mb_mode,_mv,_fr,_qs,_skip_ssd);
|
|
bits0=OC_MV_BITS[0][_mv[0]+31]+OC_MV_BITS[0][_mv[1]+31];
|
|
_modec->overhead+=OC_MINI(_enc->mv_bits[0]+bits0,_enc->mv_bits[1]+12)
|
|
-OC_MINI(_enc->mv_bits[0],_enc->mv_bits[1])<<OC_BIT_SCALE;
|
|
oc_mode_set_cost(_modec,_enc->lambda);
|
|
return bits0;
|
|
}
|
|
|
|
/*A mapping from oc_mb_map (raster) ordering to oc_sb_map (Hilbert) ordering.*/
|
|
static const unsigned char OC_MB_PHASE[4][4]={
|
|
{0,1,3,2},{0,3,1,2},{0,3,1,2},{2,3,1,0}
|
|
};
|
|
|
|
static void oc_cost_inter4mv(oc_enc_ctx *_enc,oc_mode_choice *_modec,
|
|
unsigned _mbi,oc_mv _mv[4],const oc_fr_state *_fr,const oc_qii_state *_qs,
|
|
const unsigned _skip_ssd[12]){
|
|
unsigned frag_satd[12];
|
|
oc_mv lbmvs[4];
|
|
oc_mv cbmvs[4];
|
|
const unsigned char *src;
|
|
const unsigned char *ref;
|
|
int ystride;
|
|
const ptrdiff_t *frag_buf_offs;
|
|
oc_mv *frag_mvs;
|
|
const oc_mb_map_plane *mb_map;
|
|
const unsigned char *map_idxs;
|
|
int map_nidxs;
|
|
int nqis;
|
|
int mapii;
|
|
int mapi;
|
|
int mv_offs[2];
|
|
int dx;
|
|
int dy;
|
|
int pli;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
ptrdiff_t frag_offs;
|
|
int bits0;
|
|
int bits1;
|
|
unsigned satd;
|
|
src=_enc->state.ref_frame_data[OC_FRAME_IO];
|
|
ref=_enc->state.ref_frame_data[_enc->state.ref_frame_idx[OC_FRAME_PREV]];
|
|
ystride=_enc->state.ref_ystride[0];
|
|
frag_buf_offs=_enc->state.frag_buf_offs;
|
|
frag_mvs=_enc->state.frag_mvs;
|
|
mb_map=(const oc_mb_map_plane *)_enc->state.mb_maps[_mbi];
|
|
_modec->rate=_modec->ssd=0;
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=mb_map[0][bi];
|
|
dx=_mv[bi][0];
|
|
dy=_mv[bi][1];
|
|
/*Save the block MVs as the current ones while we're here; we'll replace
|
|
them if we don't ultimately choose 4MV mode.*/
|
|
frag_mvs[fragi][0]=(signed char)dx;
|
|
frag_mvs[fragi][1]=(signed char)dy;
|
|
frag_offs=frag_buf_offs[fragi];
|
|
if(oc_state_get_mv_offsets(&_enc->state,mv_offs,0,dx,dy)>1){
|
|
satd=oc_enc_frag_satd2_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ref+frag_offs+mv_offs[1],ystride,UINT_MAX);
|
|
}
|
|
else{
|
|
satd=oc_enc_frag_satd_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ystride,UINT_MAX);
|
|
}
|
|
frag_satd[OC_MB_PHASE[_mbi&3][bi]]=satd;
|
|
}
|
|
oc_analyze_mb_mode_luma(_enc,_modec,_fr,_qs,frag_satd,
|
|
_enc->vp3_compatible?OC_NOSKIP:_skip_ssd,1);
|
|
/*Figure out which blocks are being skipped and give them (0,0) MVs.*/
|
|
bits0=0;
|
|
bits1=0;
|
|
nqis=_enc->state.nqis;
|
|
for(bi=0;bi<4;bi++){
|
|
if(_modec->qii[OC_MB_PHASE[_mbi&3][bi]]>=nqis){
|
|
memset(lbmvs+bi,0,sizeof(*lbmvs));
|
|
}
|
|
else{
|
|
memcpy(lbmvs+bi,_mv+bi,sizeof(*lbmvs));
|
|
bits0+=OC_MV_BITS[0][_mv[bi][0]+31]+OC_MV_BITS[0][_mv[bi][1]+31];
|
|
bits1+=12;
|
|
}
|
|
}
|
|
(*OC_SET_CHROMA_MVS_TABLE[_enc->state.info.pixel_fmt])(cbmvs,
|
|
(const oc_mv *)lbmvs);
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
map_nidxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
/*Note: This assumes ref_ystride[1]==ref_ystride[2].*/
|
|
ystride=_enc->state.ref_ystride[1];
|
|
for(mapii=4;mapii<map_nidxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_map[pli][bi];
|
|
dx=cbmvs[bi][0];
|
|
dy=cbmvs[bi][1];
|
|
frag_offs=frag_buf_offs[fragi];
|
|
/*TODO: We could save half these calls by re-using the results for the Cb
|
|
and Cr planes; is it worth it?*/
|
|
if(oc_state_get_mv_offsets(&_enc->state,mv_offs,pli,dx,dy)>1){
|
|
satd=oc_enc_frag_satd2_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ref+frag_offs+mv_offs[1],ystride,UINT_MAX);
|
|
}
|
|
else{
|
|
satd=oc_enc_frag_satd_thresh(_enc,src+frag_offs,
|
|
ref+frag_offs+mv_offs[0],ystride,UINT_MAX);
|
|
}
|
|
frag_satd[mapii]=satd;
|
|
}
|
|
oc_analyze_mb_mode_chroma(_enc,_modec,_fr,_qs,frag_satd,_skip_ssd,1);
|
|
_modec->overhead+=
|
|
oc_mode_scheme_chooser_cost(&_enc->chooser,OC_MODE_INTER_MV_FOUR)
|
|
+OC_MINI(_enc->mv_bits[0]+bits0,_enc->mv_bits[1]+bits1)
|
|
-OC_MINI(_enc->mv_bits[0],_enc->mv_bits[1])<<OC_BIT_SCALE;
|
|
oc_mode_set_cost(_modec,_enc->lambda);
|
|
}
|
|
|
|
int oc_enc_analyze_inter(oc_enc_ctx *_enc,int _allow_keyframe,int _recode){
|
|
oc_set_chroma_mvs_func set_chroma_mvs;
|
|
oc_enc_pipeline_state pipe;
|
|
oc_qii_state intra_luma_qs;
|
|
oc_mv last_mv;
|
|
oc_mv prior_mv;
|
|
ogg_int64_t interbits;
|
|
ogg_int64_t intrabits;
|
|
const unsigned char *map_idxs;
|
|
int nmap_idxs;
|
|
unsigned *coded_mbis;
|
|
unsigned *uncoded_mbis;
|
|
size_t ncoded_mbis;
|
|
size_t nuncoded_mbis;
|
|
oc_sb_flags *sb_flags;
|
|
signed char *mb_modes;
|
|
const oc_sb_map *sb_maps;
|
|
const oc_mb_map *mb_maps;
|
|
oc_mb_enc_info *embs;
|
|
oc_fragment *frags;
|
|
oc_mv *frag_mvs;
|
|
int qi;
|
|
unsigned stripe_sby;
|
|
unsigned mcu_nvsbs;
|
|
int notstart;
|
|
int notdone;
|
|
int vdec;
|
|
unsigned sbi;
|
|
unsigned sbi_end;
|
|
int refi;
|
|
int pli;
|
|
set_chroma_mvs=OC_SET_CHROMA_MVS_TABLE[_enc->state.info.pixel_fmt];
|
|
_enc->state.frame_type=OC_INTER_FRAME;
|
|
oc_mode_scheme_chooser_reset(&_enc->chooser);
|
|
oc_enc_tokenize_start(_enc);
|
|
oc_enc_pipeline_init(_enc,&pipe);
|
|
if(_allow_keyframe)oc_qii_state_init(&intra_luma_qs);
|
|
_enc->mv_bits[0]=_enc->mv_bits[1]=0;
|
|
interbits=intrabits=0;
|
|
last_mv[0]=last_mv[1]=prior_mv[0]=prior_mv[1]=0;
|
|
/*Choose MVs and MB modes and quantize and code luma.
|
|
Must be done in Hilbert order.*/
|
|
map_idxs=OC_MB_MAP_IDXS[_enc->state.info.pixel_fmt];
|
|
nmap_idxs=OC_MB_MAP_NIDXS[_enc->state.info.pixel_fmt];
|
|
qi=_enc->state.qis[0];
|
|
coded_mbis=_enc->coded_mbis;
|
|
uncoded_mbis=coded_mbis+_enc->state.nmbs;
|
|
ncoded_mbis=0;
|
|
nuncoded_mbis=0;
|
|
_enc->state.ncoded_fragis[0]=0;
|
|
_enc->state.ncoded_fragis[1]=0;
|
|
_enc->state.ncoded_fragis[2]=0;
|
|
sb_flags=_enc->state.sb_flags;
|
|
mb_modes=_enc->state.mb_modes;
|
|
sb_maps=(const oc_sb_map *)_enc->state.sb_maps;
|
|
mb_maps=(const oc_mb_map *)_enc->state.mb_maps;
|
|
embs=_enc->mb_info;
|
|
frags=_enc->state.frags;
|
|
frag_mvs=_enc->state.frag_mvs;
|
|
vdec=!(_enc->state.info.pixel_fmt&2);
|
|
notstart=0;
|
|
notdone=1;
|
|
mcu_nvsbs=_enc->mcu_nvsbs;
|
|
for(stripe_sby=0;notdone;stripe_sby+=mcu_nvsbs){
|
|
notdone=oc_enc_pipeline_set_stripe(_enc,&pipe,stripe_sby);
|
|
sbi_end=pipe.sbi_end[0];
|
|
for(sbi=pipe.sbi0[0];sbi<sbi_end;sbi++){
|
|
int quadi;
|
|
/*Mode addressing is through Y plane, always 4 MB per SB.*/
|
|
for(quadi=0;quadi<4;quadi++)if(sb_flags[sbi].quad_valid&1<<quadi){
|
|
oc_mode_choice modes[8];
|
|
unsigned skip_ssd[12];
|
|
unsigned intra_satd[12];
|
|
int mb_mv_bits_0;
|
|
int mb_gmv_bits_0;
|
|
int inter_mv_pref;
|
|
int mb_mode;
|
|
int dx;
|
|
int dy;
|
|
unsigned mbi;
|
|
int mapii;
|
|
int mapi;
|
|
int bi;
|
|
ptrdiff_t fragi;
|
|
mbi=sbi<<2|quadi;
|
|
/*Motion estimation:
|
|
We always do a basic 1MV search for all macroblocks, coded or not,
|
|
keyframe or not.*/
|
|
if(!_recode&&_enc->sp_level<OC_SP_LEVEL_NOMC)oc_mcenc_search(_enc,mbi);
|
|
dx=dy=0;
|
|
/*Find the block choice with the lowest estimated coding cost.
|
|
If a Cb or Cr block is coded but no Y' block from a macro block then
|
|
the mode MUST be OC_MODE_INTER_NOMV.
|
|
This is the default state to which the mode data structure is
|
|
initialised in encoder and decoder at the start of each frame.*/
|
|
/*Block coding cost is estimated from correlated SATD metrics.*/
|
|
/*At this point, all blocks that are in frame are still marked coded.*/
|
|
if(!_recode){
|
|
memcpy(embs[mbi].unref_mv,
|
|
embs[mbi].analysis_mv[0],sizeof(embs[mbi].unref_mv));
|
|
embs[mbi].refined=0;
|
|
}
|
|
oc_mb_intra_satd(_enc,mbi,intra_satd);
|
|
/*Estimate the cost of coding this MB in a keyframe.*/
|
|
if(_allow_keyframe){
|
|
oc_cost_intra(_enc,modes+OC_MODE_INTRA,mbi,
|
|
pipe.fr+0,&intra_luma_qs,intra_satd,OC_NOSKIP);
|
|
intrabits+=modes[OC_MODE_INTRA].rate;
|
|
for(bi=0;bi<4;bi++){
|
|
oc_qii_state_advance(&intra_luma_qs,&intra_luma_qs,
|
|
modes[OC_MODE_INTRA].qii[bi]);
|
|
}
|
|
}
|
|
/*Estimate the cost in a delta frame for various modes.*/
|
|
oc_skip_cost(_enc,&pipe,mbi,skip_ssd);
|
|
oc_cost_inter_nomv(_enc,modes+OC_MODE_INTER_NOMV,mbi,
|
|
OC_MODE_INTER_NOMV,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
if(_enc->sp_level<OC_SP_LEVEL_NOMC){
|
|
oc_cost_intra(_enc,modes+OC_MODE_INTRA,mbi,
|
|
pipe.fr+0,pipe.qs+0,intra_satd,skip_ssd);
|
|
mb_mv_bits_0=oc_cost_inter1mv(_enc,modes+OC_MODE_INTER_MV,mbi,
|
|
OC_MODE_INTER_MV,embs[mbi].unref_mv[OC_FRAME_PREV],
|
|
pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
oc_cost_inter(_enc,modes+OC_MODE_INTER_MV_LAST,mbi,
|
|
OC_MODE_INTER_MV_LAST,last_mv,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
oc_cost_inter(_enc,modes+OC_MODE_INTER_MV_LAST2,mbi,
|
|
OC_MODE_INTER_MV_LAST2,prior_mv,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
oc_cost_inter4mv(_enc,modes+OC_MODE_INTER_MV_FOUR,mbi,
|
|
embs[mbi].block_mv,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
oc_cost_inter_nomv(_enc,modes+OC_MODE_GOLDEN_NOMV,mbi,
|
|
OC_MODE_GOLDEN_NOMV,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
mb_gmv_bits_0=oc_cost_inter1mv(_enc,modes+OC_MODE_GOLDEN_MV,mbi,
|
|
OC_MODE_GOLDEN_MV,embs[mbi].unref_mv[OC_FRAME_GOLD],
|
|
pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
/*The explicit MV modes (2,6,7) have not yet gone through halfpel
|
|
refinement.
|
|
We choose the explicit MV mode that's already furthest ahead on
|
|
R-D cost and refine only that one.
|
|
We have to be careful to remember which ones we've refined so that
|
|
we don't refine it again if we re-encode this frame.*/
|
|
inter_mv_pref=_enc->lambda*3;
|
|
if(modes[OC_MODE_INTER_MV_FOUR].cost<modes[OC_MODE_INTER_MV].cost&&
|
|
modes[OC_MODE_INTER_MV_FOUR].cost<modes[OC_MODE_GOLDEN_MV].cost){
|
|
if(!(embs[mbi].refined&0x80)){
|
|
oc_mcenc_refine4mv(_enc,mbi);
|
|
embs[mbi].refined|=0x80;
|
|
}
|
|
oc_cost_inter4mv(_enc,modes+OC_MODE_INTER_MV_FOUR,mbi,
|
|
embs[mbi].ref_mv,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
}
|
|
else if(modes[OC_MODE_GOLDEN_MV].cost+inter_mv_pref<
|
|
modes[OC_MODE_INTER_MV].cost){
|
|
if(!(embs[mbi].refined&0x40)){
|
|
oc_mcenc_refine1mv(_enc,mbi,OC_FRAME_GOLD);
|
|
embs[mbi].refined|=0x40;
|
|
}
|
|
mb_gmv_bits_0=oc_cost_inter1mv(_enc,modes+OC_MODE_GOLDEN_MV,mbi,
|
|
OC_MODE_GOLDEN_MV,embs[mbi].analysis_mv[0][OC_FRAME_GOLD],
|
|
pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
}
|
|
if(!(embs[mbi].refined&0x04)){
|
|
oc_mcenc_refine1mv(_enc,mbi,OC_FRAME_PREV);
|
|
embs[mbi].refined|=0x04;
|
|
}
|
|
mb_mv_bits_0=oc_cost_inter1mv(_enc,modes+OC_MODE_INTER_MV,mbi,
|
|
OC_MODE_INTER_MV,embs[mbi].analysis_mv[0][OC_FRAME_PREV],
|
|
pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
/*Finally, pick the mode with the cheapest estimated R-D cost.*/
|
|
mb_mode=OC_MODE_INTER_NOMV;
|
|
if(modes[OC_MODE_INTRA].cost<modes[OC_MODE_INTER_NOMV].cost){
|
|
mb_mode=OC_MODE_INTRA;
|
|
}
|
|
if(modes[OC_MODE_INTER_MV_LAST].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_INTER_MV_LAST;
|
|
}
|
|
if(modes[OC_MODE_INTER_MV_LAST2].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_INTER_MV_LAST2;
|
|
}
|
|
if(modes[OC_MODE_GOLDEN_NOMV].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_GOLDEN_NOMV;
|
|
}
|
|
if(modes[OC_MODE_GOLDEN_MV].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_GOLDEN_MV;
|
|
}
|
|
if(modes[OC_MODE_INTER_MV_FOUR].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_INTER_MV_FOUR;
|
|
}
|
|
/*We prefer OC_MODE_INTER_MV, but not over LAST and LAST2.*/
|
|
if(mb_mode==OC_MODE_INTER_MV_LAST||mb_mode==OC_MODE_INTER_MV_LAST2){
|
|
inter_mv_pref=0;
|
|
}
|
|
if(modes[OC_MODE_INTER_MV].cost<modes[mb_mode].cost+inter_mv_pref){
|
|
mb_mode=OC_MODE_INTER_MV;
|
|
}
|
|
}
|
|
else{
|
|
oc_cost_inter_nomv(_enc,modes+OC_MODE_GOLDEN_NOMV,mbi,
|
|
OC_MODE_GOLDEN_NOMV,pipe.fr+0,pipe.qs+0,skip_ssd);
|
|
mb_mode=OC_MODE_INTER_NOMV;
|
|
if(modes[OC_MODE_INTRA].cost<modes[OC_MODE_INTER_NOMV].cost){
|
|
mb_mode=OC_MODE_INTRA;
|
|
}
|
|
if(modes[OC_MODE_GOLDEN_NOMV].cost<modes[mb_mode].cost){
|
|
mb_mode=OC_MODE_GOLDEN_NOMV;
|
|
}
|
|
mb_mv_bits_0=mb_gmv_bits_0=0;
|
|
}
|
|
mb_modes[mbi]=mb_mode;
|
|
/*Propagate the MVs to the luma blocks.*/
|
|
if(mb_mode!=OC_MODE_INTER_MV_FOUR){
|
|
switch(mb_mode){
|
|
case OC_MODE_INTER_MV:{
|
|
dx=embs[mbi].analysis_mv[0][OC_FRAME_PREV][0];
|
|
dy=embs[mbi].analysis_mv[0][OC_FRAME_PREV][1];
|
|
}break;
|
|
case OC_MODE_INTER_MV_LAST:{
|
|
dx=last_mv[0];
|
|
dy=last_mv[1];
|
|
}break;
|
|
case OC_MODE_INTER_MV_LAST2:{
|
|
dx=prior_mv[0];
|
|
dy=prior_mv[1];
|
|
}break;
|
|
case OC_MODE_GOLDEN_MV:{
|
|
dx=embs[mbi].analysis_mv[0][OC_FRAME_GOLD][0];
|
|
dy=embs[mbi].analysis_mv[0][OC_FRAME_GOLD][1];
|
|
}break;
|
|
}
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=mb_maps[mbi][0][bi];
|
|
frag_mvs[fragi][0]=(signed char)dx;
|
|
frag_mvs[fragi][1]=(signed char)dy;
|
|
}
|
|
}
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=sb_maps[mbi>>2][mbi&3][bi];
|
|
frags[fragi].qii=modes[mb_mode].qii[bi];
|
|
}
|
|
if(oc_enc_mb_transform_quantize_luma(_enc,&pipe,mbi,
|
|
modes[mb_mode].overhead>>OC_BIT_SCALE)>0){
|
|
int orig_mb_mode;
|
|
orig_mb_mode=mb_mode;
|
|
mb_mode=mb_modes[mbi];
|
|
switch(mb_mode){
|
|
case OC_MODE_INTER_MV:{
|
|
memcpy(prior_mv,last_mv,sizeof(prior_mv));
|
|
/*If we're backing out from 4MV, find the MV we're actually
|
|
using.*/
|
|
if(orig_mb_mode==OC_MODE_INTER_MV_FOUR){
|
|
for(bi=0;;bi++){
|
|
fragi=mb_maps[mbi][0][bi];
|
|
if(frags[fragi].coded){
|
|
memcpy(last_mv,frag_mvs[fragi],sizeof(last_mv));
|
|
dx=frag_mvs[fragi][0];
|
|
dy=frag_mvs[fragi][1];
|
|
break;
|
|
}
|
|
}
|
|
mb_mv_bits_0=OC_MV_BITS[0][dx+31]+OC_MV_BITS[0][dy+31];
|
|
}
|
|
/*Otherwise we used the original analysis MV.*/
|
|
else{
|
|
memcpy(last_mv,
|
|
embs[mbi].analysis_mv[0][OC_FRAME_PREV],sizeof(last_mv));
|
|
}
|
|
_enc->mv_bits[0]+=mb_mv_bits_0;
|
|
_enc->mv_bits[1]+=12;
|
|
}break;
|
|
case OC_MODE_INTER_MV_LAST2:{
|
|
oc_mv tmp_mv;
|
|
memcpy(tmp_mv,prior_mv,sizeof(tmp_mv));
|
|
memcpy(prior_mv,last_mv,sizeof(prior_mv));
|
|
memcpy(last_mv,tmp_mv,sizeof(last_mv));
|
|
}break;
|
|
case OC_MODE_GOLDEN_MV:{
|
|
_enc->mv_bits[0]+=mb_gmv_bits_0;
|
|
_enc->mv_bits[1]+=12;
|
|
}break;
|
|
case OC_MODE_INTER_MV_FOUR:{
|
|
oc_mv lbmvs[4];
|
|
oc_mv cbmvs[4];
|
|
memcpy(prior_mv,last_mv,sizeof(prior_mv));
|
|
for(bi=0;bi<4;bi++){
|
|
fragi=mb_maps[mbi][0][bi];
|
|
if(frags[fragi].coded){
|
|
memcpy(last_mv,frag_mvs[fragi],sizeof(last_mv));
|
|
memcpy(lbmvs[bi],frag_mvs[fragi],sizeof(lbmvs[bi]));
|
|
_enc->mv_bits[0]+=OC_MV_BITS[0][frag_mvs[fragi][0]+31]
|
|
+OC_MV_BITS[0][frag_mvs[fragi][1]+31];
|
|
_enc->mv_bits[1]+=12;
|
|
}
|
|
/*Replace the block MVs for not-coded blocks with (0,0).*/
|
|
else memset(lbmvs[bi],0,sizeof(lbmvs[bi]));
|
|
}
|
|
(*set_chroma_mvs)(cbmvs,(const oc_mv *)lbmvs);
|
|
for(mapii=4;mapii<nmap_idxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_maps[mbi][pli][bi];
|
|
frags[fragi].mb_mode=mb_mode;
|
|
frags[fragi].qii=modes[OC_MODE_INTER_MV_FOUR].qii[mapii];
|
|
memcpy(frag_mvs[fragi],cbmvs[bi],sizeof(frag_mvs[fragi]));
|
|
}
|
|
}break;
|
|
}
|
|
coded_mbis[ncoded_mbis++]=mbi;
|
|
oc_mode_scheme_chooser_update(&_enc->chooser,mb_mode);
|
|
interbits+=modes[mb_mode].rate+modes[mb_mode].overhead;
|
|
}
|
|
else{
|
|
*(uncoded_mbis-++nuncoded_mbis)=mbi;
|
|
mb_mode=OC_MODE_INTER_NOMV;
|
|
dx=dy=0;
|
|
}
|
|
/*Propagate final MB mode and MVs to the chroma blocks.
|
|
This has already been done for 4MV mode, since it requires individual
|
|
block motion vectors.*/
|
|
if(mb_mode!=OC_MODE_INTER_MV_FOUR){
|
|
for(mapii=4;mapii<nmap_idxs;mapii++){
|
|
mapi=map_idxs[mapii];
|
|
pli=mapi>>2;
|
|
bi=mapi&3;
|
|
fragi=mb_maps[mbi][pli][bi];
|
|
frags[fragi].mb_mode=mb_mode;
|
|
/*If we switched from 4MV mode to INTER_MV mode, then the qii
|
|
values won't have been chosen with the right MV, but it's
|
|
probaby not worth re-estimating them.*/
|
|
frags[fragi].qii=modes[mb_mode].qii[mapii];
|
|
frag_mvs[fragi][0]=(signed char)dx;
|
|
frag_mvs[fragi][1]=(signed char)dy;
|
|
}
|
|
}
|
|
}
|
|
oc_fr_state_flush_sb(pipe.fr+0);
|
|
sb_flags[sbi].coded_fully=pipe.fr[0].sb_full;
|
|
sb_flags[sbi].coded_partially=pipe.fr[0].sb_partial;
|
|
}
|
|
oc_enc_pipeline_finish_mcu_plane(_enc,&pipe,0,notstart,notdone);
|
|
/*Code chroma planes.*/
|
|
for(pli=1;pli<3;pli++){
|
|
oc_enc_sb_transform_quantize_chroma(_enc,&pipe,
|
|
pli,pipe.sbi0[pli],pipe.sbi_end[pli]);
|
|
oc_enc_pipeline_finish_mcu_plane(_enc,&pipe,pli,notstart,notdone);
|
|
}
|
|
notstart=1;
|
|
}
|
|
/*Finish filling in the reference frame borders.*/
|
|
refi=_enc->state.ref_frame_idx[OC_FRAME_SELF];
|
|
for(pli=0;pli<3;pli++)oc_state_borders_fill_caps(&_enc->state,refi,pli);
|
|
/*Finish adding flagging overhead costs to inter bit counts to determine if
|
|
we should have coded a key frame instead.*/
|
|
if(_allow_keyframe){
|
|
if(interbits>intrabits)return 1;
|
|
/*Technically the chroma plane counts are over-estimations, because they
|
|
don't account for continuing runs from the luma planes, but the
|
|
inaccuracy is small.*/
|
|
for(pli=0;pli<3;pli++)interbits+=pipe.fr[pli].bits<<OC_BIT_SCALE;
|
|
interbits+=OC_MINI(_enc->mv_bits[0],_enc->mv_bits[1])<<OC_BIT_SCALE;
|
|
interbits+=
|
|
_enc->chooser.scheme_bits[_enc->chooser.scheme_list[0]]<<OC_BIT_SCALE;
|
|
if(interbits>intrabits)return 1;
|
|
}
|
|
_enc->ncoded_mbis=ncoded_mbis;
|
|
/*Compact the coded fragment list.*/
|
|
{
|
|
ptrdiff_t ncoded_fragis;
|
|
ncoded_fragis=_enc->state.ncoded_fragis[0];
|
|
for(pli=1;pli<3;pli++){
|
|
memmove(_enc->state.coded_fragis+ncoded_fragis,
|
|
_enc->state.coded_fragis+_enc->state.fplanes[pli].froffset,
|
|
_enc->state.ncoded_fragis[pli]*sizeof(*_enc->state.coded_fragis));
|
|
ncoded_fragis+=_enc->state.ncoded_fragis[pli];
|
|
}
|
|
_enc->state.ntotal_coded_fragis=ncoded_fragis;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(OC_COLLECT_METRICS)
|
|
# include <stdio.h>
|
|
# include <math.h>
|
|
|
|
/*TODO: It may be helpful (for block-level quantizers especially) to separate
|
|
out the contributions from AC and DC into separate tables.*/
|
|
|
|
# define OC_ZWEIGHT (0.25)
|
|
|
|
static void oc_mode_metrics_add(oc_mode_metrics *_metrics,
|
|
double _w,int _satd,int _rate,double _rmse){
|
|
double rate;
|
|
/*Accumulate statistics without the scaling; this lets us change the scale
|
|
factor yet still use old data.*/
|
|
rate=ldexp(_rate,-OC_BIT_SCALE);
|
|
if(_metrics->fragw>0){
|
|
double dsatd;
|
|
double drate;
|
|
double drmse;
|
|
double w;
|
|
dsatd=_satd-_metrics->satd/_metrics->fragw;
|
|
drate=rate-_metrics->rate/_metrics->fragw;
|
|
drmse=_rmse-_metrics->rmse/_metrics->fragw;
|
|
w=_metrics->fragw*_w/(_metrics->fragw+_w);
|
|
_metrics->satd2+=dsatd*dsatd*w;
|
|
_metrics->satdrate+=dsatd*drate*w;
|
|
_metrics->rate2+=drate*drate*w;
|
|
_metrics->satdrmse+=dsatd*drmse*w;
|
|
_metrics->rmse2+=drmse*drmse*w;
|
|
}
|
|
_metrics->fragw+=_w;
|
|
_metrics->satd+=_satd*_w;
|
|
_metrics->rate+=rate*_w;
|
|
_metrics->rmse+=_rmse*_w;
|
|
}
|
|
|
|
static void oc_mode_metrics_merge(oc_mode_metrics *_dst,
|
|
const oc_mode_metrics *_src,int _n){
|
|
int i;
|
|
/*Find a non-empty set of metrics.*/
|
|
for(i=0;i<_n&&_src[i].fragw<=0;i++);
|
|
if(i>=_n){
|
|
memset(_dst,0,sizeof(*_dst));
|
|
return;
|
|
}
|
|
memcpy(_dst,_src+i,sizeof(*_dst));
|
|
/*And iterate over the remaining non-empty sets of metrics.*/
|
|
for(i++;i<_n;i++)if(_src[i].fragw>0){
|
|
double wa;
|
|
double wb;
|
|
double dsatd;
|
|
double drate;
|
|
double drmse;
|
|
double w;
|
|
wa=_dst->fragw;
|
|
wb=_src[i].fragw;
|
|
dsatd=_src[i].satd/wb-_dst->satd/wa;
|
|
drate=_src[i].rate/wb-_dst->rate/wa;
|
|
drmse=_src[i].rmse/wb-_dst->rmse/wa;
|
|
w=wa*wb/(wa+wb);
|
|
_dst->fragw+=_src[i].fragw;
|
|
_dst->satd+=_src[i].satd;
|
|
_dst->rate+=_src[i].rate;
|
|
_dst->rmse+=_src[i].rmse;
|
|
_dst->satd2+=_src[i].satd2+dsatd*dsatd*w;
|
|
_dst->satdrate+=_src[i].satdrate+dsatd*drate*w;
|
|
_dst->rate2+=_src[i].rate2+drate*drate*w;
|
|
_dst->satdrmse+=_src[i].satdrmse+dsatd*drmse*w;
|
|
_dst->rmse2+=_src[i].rmse2+drmse*drmse*w;
|
|
}
|
|
}
|
|
|
|
/*Compile collected SATD/rate/RMSE metrics into a form that's immediately
|
|
useful for mode decision.*/
|
|
static void oc_enc_mode_metrics_update(oc_enc_ctx *_enc,int _qi){
|
|
int pli;
|
|
int qti;
|
|
oc_restore_fpu(&_enc->state);
|
|
/*Convert raw collected data into cleaned up sample points.*/
|
|
for(pli=0;pli<3;pli++){
|
|
for(qti=0;qti<2;qti++){
|
|
double fragw;
|
|
int bin0;
|
|
int bin1;
|
|
int bin;
|
|
fragw=0;
|
|
bin0=bin1=0;
|
|
for(bin=0;bin<OC_SAD_BINS;bin++){
|
|
oc_mode_metrics metrics;
|
|
OC_MODE_RD[_qi][pli][qti][bin].rate=0;
|
|
OC_MODE_RD[_qi][pli][qti][bin].rmse=0;
|
|
/*Find some points on either side of the current bin.*/
|
|
while((bin1<bin+1||fragw<OC_ZWEIGHT)&&bin1<OC_SAD_BINS-1){
|
|
fragw+=OC_MODE_METRICS[_qi][pli][qti][bin1++].fragw;
|
|
}
|
|
while(bin0+1<bin&&bin0+1<bin1&&
|
|
fragw-OC_MODE_METRICS[_qi][pli][qti][bin0].fragw>=OC_ZWEIGHT){
|
|
fragw-=OC_MODE_METRICS[_qi][pli][qti][bin0++].fragw;
|
|
}
|
|
/*Merge statistics and fit lines.*/
|
|
oc_mode_metrics_merge(&metrics,
|
|
OC_MODE_METRICS[_qi][pli][qti]+bin0,bin1-bin0);
|
|
if(metrics.fragw>0&&metrics.satd2>0){
|
|
double a;
|
|
double b;
|
|
double msatd;
|
|
double mrate;
|
|
double mrmse;
|
|
double rate;
|
|
double rmse;
|
|
msatd=metrics.satd/metrics.fragw;
|
|
mrate=metrics.rate/metrics.fragw;
|
|
mrmse=metrics.rmse/metrics.fragw;
|
|
/*Compute the points on these lines corresponding to the actual bin
|
|
value.*/
|
|
b=metrics.satdrate/metrics.satd2;
|
|
a=mrate-b*msatd;
|
|
rate=ldexp(a+b*(bin<<OC_SAD_SHIFT),OC_BIT_SCALE);
|
|
OC_MODE_RD[_qi][pli][qti][bin].rate=
|
|
(ogg_int16_t)OC_CLAMPI(-32768,(int)(rate+0.5),32767);
|
|
b=metrics.satdrmse/metrics.satd2;
|
|
a=mrmse-b*msatd;
|
|
rmse=ldexp(a+b*(bin<<OC_SAD_SHIFT),OC_RMSE_SCALE);
|
|
OC_MODE_RD[_qi][pli][qti][bin].rmse=
|
|
(ogg_int16_t)OC_CLAMPI(-32768,(int)(rmse+0.5),32767);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*The following token skipping code used to also be used in the decoder (and
|
|
even at one point other places in the encoder).
|
|
However, it was obsoleted by other optimizations, and is now only used here.
|
|
It has been moved here to avoid generating the code when it's not needed.*/
|
|
|
|
/*Determines the number of blocks or coefficients to be skipped for a given
|
|
token value.
|
|
_token: The token value to skip.
|
|
_extra_bits: The extra bits attached to this token.
|
|
Return: A positive value indicates that number of coefficients are to be
|
|
skipped in the current block.
|
|
Otherwise, the negative of the return value indicates that number of
|
|
blocks are to be ended.*/
|
|
typedef ptrdiff_t (*oc_token_skip_func)(int _token,int _extra_bits);
|
|
|
|
/*Handles the simple end of block tokens.*/
|
|
static ptrdiff_t oc_token_skip_eob(int _token,int _extra_bits){
|
|
int nblocks_adjust;
|
|
nblocks_adjust=OC_UNIBBLE_TABLE32(0,1,2,3,7,15,0,0,_token)+1;
|
|
return -_extra_bits-nblocks_adjust;
|
|
}
|
|
|
|
/*The last EOB token has a special case, where an EOB run of size zero ends all
|
|
the remaining blocks in the frame.*/
|
|
static ptrdiff_t oc_token_skip_eob6(int _token,int _extra_bits){
|
|
/*Note: We want to return -PTRDIFF_MAX, but that requires C99, which is not
|
|
yet available everywhere; this should be equivalent.*/
|
|
if(!_extra_bits)return -(~(size_t)0>>1);
|
|
return -_extra_bits;
|
|
}
|
|
|
|
/*Handles the pure zero run tokens.*/
|
|
static ptrdiff_t oc_token_skip_zrl(int _token,int _extra_bits){
|
|
return _extra_bits+1;
|
|
}
|
|
|
|
/*Handles a normal coefficient value token.*/
|
|
static ptrdiff_t oc_token_skip_val(void){
|
|
return 1;
|
|
}
|
|
|
|
/*Handles a category 1A zero run/coefficient value combo token.*/
|
|
static ptrdiff_t oc_token_skip_run_cat1a(int _token){
|
|
return _token-OC_DCT_RUN_CAT1A+2;
|
|
}
|
|
|
|
/*Handles category 1b, 1c, 2a, and 2b zero run/coefficient value combo tokens.*/
|
|
static ptrdiff_t oc_token_skip_run(int _token,int _extra_bits){
|
|
int run_cati;
|
|
int ncoeffs_mask;
|
|
int ncoeffs_adjust;
|
|
run_cati=_token-OC_DCT_RUN_CAT1B;
|
|
ncoeffs_mask=OC_BYTE_TABLE32(3,7,0,1,run_cati);
|
|
ncoeffs_adjust=OC_BYTE_TABLE32(7,11,2,3,run_cati);
|
|
return (_extra_bits&ncoeffs_mask)+ncoeffs_adjust;
|
|
}
|
|
|
|
/*A jump table for computing the number of coefficients or blocks to skip for
|
|
a given token value.
|
|
This reduces all the conditional branches, etc., needed to parse these token
|
|
values down to one indirect jump.*/
|
|
static const oc_token_skip_func OC_TOKEN_SKIP_TABLE[TH_NDCT_TOKENS]={
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob,
|
|
oc_token_skip_eob6,
|
|
oc_token_skip_zrl,
|
|
oc_token_skip_zrl,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_val,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
(oc_token_skip_func)oc_token_skip_run_cat1a,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run,
|
|
oc_token_skip_run
|
|
};
|
|
|
|
/*Determines the number of blocks or coefficients to be skipped for a given
|
|
token value.
|
|
_token: The token value to skip.
|
|
_extra_bits: The extra bits attached to this token.
|
|
Return: A positive value indicates that number of coefficients are to be
|
|
skipped in the current block.
|
|
Otherwise, the negative of the return value indicates that number of
|
|
blocks are to be ended.
|
|
0 will never be returned, so that at least one coefficient in one
|
|
block will always be decoded for every token.*/
|
|
static ptrdiff_t oc_dct_token_skip(int _token,int _extra_bits){
|
|
return (*OC_TOKEN_SKIP_TABLE[_token])(_token,_extra_bits);
|
|
}
|
|
|
|
|
|
|
|
void oc_enc_mode_metrics_collect(oc_enc_ctx *_enc){
|
|
static const unsigned char OC_ZZI_HUFF_OFFSET[64]={
|
|
0,16,16,16,16,16,32,32,
|
|
32,32,32,32,32,32,32,48,
|
|
48,48,48,48,48,48,48,48,
|
|
48,48,48,48,64,64,64,64,
|
|
64,64,64,64,64,64,64,64,
|
|
64,64,64,64,64,64,64,64,
|
|
64,64,64,64,64,64,64,64
|
|
};
|
|
const oc_fragment *frags;
|
|
const unsigned *frag_satd;
|
|
const unsigned *frag_ssd;
|
|
const ptrdiff_t *coded_fragis;
|
|
ptrdiff_t ncoded_fragis;
|
|
ptrdiff_t fragii;
|
|
double fragw;
|
|
int qti;
|
|
int qii;
|
|
int qi;
|
|
int pli;
|
|
int zzi;
|
|
int token;
|
|
int eb;
|
|
oc_restore_fpu(&_enc->state);
|
|
/*Load any existing mode metrics if we haven't already.*/
|
|
if(!oc_has_mode_metrics){
|
|
FILE *fmetrics;
|
|
memset(OC_MODE_METRICS,0,sizeof(OC_MODE_METRICS));
|
|
fmetrics=fopen("modedec.stats","rb");
|
|
if(fmetrics!=NULL){
|
|
fread(OC_MODE_METRICS,sizeof(OC_MODE_METRICS),1,fmetrics);
|
|
fclose(fmetrics);
|
|
}
|
|
for(qi=0;qi<64;qi++)oc_enc_mode_metrics_update(_enc,qi);
|
|
oc_has_mode_metrics=1;
|
|
}
|
|
qti=_enc->state.frame_type;
|
|
frags=_enc->state.frags;
|
|
frag_satd=_enc->frag_satd;
|
|
frag_ssd=_enc->frag_ssd;
|
|
coded_fragis=_enc->state.coded_fragis;
|
|
ncoded_fragis=fragii=0;
|
|
/*Weight the fragments by the inverse frame size; this prevents HD content
|
|
from dominating the statistics.*/
|
|
fragw=1.0/_enc->state.nfrags;
|
|
for(pli=0;pli<3;pli++){
|
|
ptrdiff_t ti[64];
|
|
int eob_token[64];
|
|
int eob_run[64];
|
|
/*Set up token indices and eob run counts.
|
|
We don't bother trying to figure out the real cost of the runs that span
|
|
coefficients; instead we use the costs that were available when R-D
|
|
token optimization was done.*/
|
|
for(zzi=0;zzi<64;zzi++){
|
|
ti[zzi]=_enc->dct_token_offs[pli][zzi];
|
|
if(ti[zzi]>0){
|
|
token=_enc->dct_tokens[pli][zzi][0];
|
|
eb=_enc->extra_bits[pli][zzi][0];
|
|
eob_token[zzi]=token;
|
|
eob_run[zzi]=-oc_dct_token_skip(token,eb);
|
|
}
|
|
else{
|
|
eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
|
|
eob_run[zzi]=0;
|
|
}
|
|
}
|
|
/*Scan the list of coded fragments for this plane.*/
|
|
ncoded_fragis+=_enc->state.ncoded_fragis[pli];
|
|
for(;fragii<ncoded_fragis;fragii++){
|
|
ptrdiff_t fragi;
|
|
ogg_uint32_t frag_bits;
|
|
int huffi;
|
|
int skip;
|
|
int mb_mode;
|
|
unsigned satd;
|
|
int bin;
|
|
fragi=coded_fragis[fragii];
|
|
frag_bits=0;
|
|
for(zzi=0;zzi<64;){
|
|
if(eob_run[zzi]>0){
|
|
/*We've reached the end of the block.*/
|
|
eob_run[zzi]--;
|
|
break;
|
|
}
|
|
huffi=_enc->huff_idxs[qti][zzi>0][pli+1>>1]
|
|
+OC_ZZI_HUFF_OFFSET[zzi];
|
|
if(eob_token[zzi]<OC_NDCT_EOB_TOKEN_MAX){
|
|
/*This token caused an EOB run to be flushed.
|
|
Therefore it gets the bits associated with it.*/
|
|
frag_bits+=_enc->huff_codes[huffi][eob_token[zzi]].nbits
|
|
+OC_DCT_TOKEN_EXTRA_BITS[eob_token[zzi]];
|
|
eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
|
|
}
|
|
token=_enc->dct_tokens[pli][zzi][ti[zzi]];
|
|
eb=_enc->extra_bits[pli][zzi][ti[zzi]];
|
|
ti[zzi]++;
|
|
skip=oc_dct_token_skip(token,eb);
|
|
if(skip<0){
|
|
eob_token[zzi]=token;
|
|
eob_run[zzi]=-skip;
|
|
}
|
|
else{
|
|
/*A regular DCT value token; accumulate the bits for it.*/
|
|
frag_bits+=_enc->huff_codes[huffi][token].nbits
|
|
+OC_DCT_TOKEN_EXTRA_BITS[token];
|
|
zzi+=skip;
|
|
}
|
|
}
|
|
mb_mode=frags[fragi].mb_mode;
|
|
qi=_enc->state.qis[frags[fragi].qii];
|
|
satd=frag_satd[fragi]<<(pli+1&2);
|
|
bin=OC_MINI(satd>>OC_SAD_SHIFT,OC_SAD_BINS-1);
|
|
oc_mode_metrics_add(OC_MODE_METRICS[qi][pli][mb_mode!=OC_MODE_INTRA]+bin,
|
|
fragw,satd,frag_bits<<OC_BIT_SCALE,sqrt(frag_ssd[fragi]));
|
|
}
|
|
}
|
|
/*Update global SATD/rate/RMSE estimation matrix.*/
|
|
for(qii=0;qii<_enc->state.nqis;qii++){
|
|
oc_enc_mode_metrics_update(_enc,_enc->state.qis[qii]);
|
|
}
|
|
}
|
|
|
|
void oc_enc_mode_metrics_dump(oc_enc_ctx *_enc){
|
|
FILE *fmetrics;
|
|
int qi;
|
|
/*Generate sample points for complete list of QI values.*/
|
|
for(qi=0;qi<64;qi++)oc_enc_mode_metrics_update(_enc,qi);
|
|
fmetrics=fopen("modedec.stats","wb");
|
|
if(fmetrics!=NULL){
|
|
fwrite(OC_MODE_METRICS,sizeof(OC_MODE_METRICS),1,fmetrics);
|
|
fclose(fmetrics);
|
|
}
|
|
fprintf(stdout,
|
|
"/*File generated by libtheora with OC_COLLECT_METRICS"
|
|
" defined at compile time.*/\n"
|
|
"#if !defined(_modedec_H)\n"
|
|
"# define _modedec_H (1)\n"
|
|
"\n"
|
|
"\n"
|
|
"\n"
|
|
"# if defined(OC_COLLECT_METRICS)\n"
|
|
"typedef struct oc_mode_metrics oc_mode_metrics;\n"
|
|
"# endif\n"
|
|
"typedef struct oc_mode_rd oc_mode_rd;\n"
|
|
"\n"
|
|
"\n"
|
|
"\n"
|
|
"/*The number of extra bits of precision at which to store rate"
|
|
" metrics.*/\n"
|
|
"# define OC_BIT_SCALE (%i)\n"
|
|
"/*The number of extra bits of precision at which to store RMSE metrics.\n"
|
|
" This must be at least half OC_BIT_SCALE (rounded up).*/\n"
|
|
"# define OC_RMSE_SCALE (%i)\n"
|
|
"/*The number of bins to partition statistics into.*/\n"
|
|
"# define OC_SAD_BINS (%i)\n"
|
|
"/*The number of bits of precision to drop"
|
|
" from SAD scores to assign them to a\n"
|
|
" bin.*/\n"
|
|
"# define OC_SAD_SHIFT (%i)\n"
|
|
"\n"
|
|
"\n"
|
|
"\n"
|
|
"# if defined(OC_COLLECT_METRICS)\n"
|
|
"struct oc_mode_metrics{\n"
|
|
" double fragw;\n"
|
|
" double satd;\n"
|
|
" double rate;\n"
|
|
" double rmse;\n"
|
|
" double satd2;\n"
|
|
" double satdrate;\n"
|
|
" double rate2;\n"
|
|
" double satdrmse;\n"
|
|
" double rmse2;\n"
|
|
"};\n"
|
|
"\n"
|
|
"\n"
|
|
"int oc_has_mode_metrics;\n"
|
|
"oc_mode_metrics OC_MODE_METRICS[64][3][2][OC_SAD_BINS];\n"
|
|
"# endif\n"
|
|
"\n"
|
|
"\n"
|
|
"\n"
|
|
"struct oc_mode_rd{\n"
|
|
" ogg_int16_t rate;\n"
|
|
" ogg_int16_t rmse;\n"
|
|
"};\n"
|
|
"\n"
|
|
"\n"
|
|
"# if !defined(OC_COLLECT_METRICS)\n"
|
|
"static const\n"
|
|
"# endif\n"
|
|
"oc_mode_rd OC_MODE_RD[64][3][2][OC_SAD_BINS]={\n",
|
|
OC_BIT_SCALE,OC_RMSE_SCALE,OC_SAD_BINS,OC_SAD_SHIFT);
|
|
for(qi=0;qi<64;qi++){
|
|
int pli;
|
|
fprintf(stdout," {\n");
|
|
for(pli=0;pli<3;pli++){
|
|
int qti;
|
|
fprintf(stdout," {\n");
|
|
for(qti=0;qti<2;qti++){
|
|
int bin;
|
|
static const char *pl_names[3]={"Y'","Cb","Cr"};
|
|
static const char *qti_names[2]={"INTRA","INTER"};
|
|
fprintf(stdout," /*%s qi=%i %s*/\n",
|
|
pl_names[pli],qi,qti_names[qti]);
|
|
fprintf(stdout," {\n");
|
|
fprintf(stdout," ");
|
|
for(bin=0;bin<OC_SAD_BINS;bin++){
|
|
if(bin&&!(bin&0x3))fprintf(stdout,"\n ");
|
|
fprintf(stdout,"{%5i,%5i}",
|
|
OC_MODE_RD[qi][pli][qti][bin].rate,
|
|
OC_MODE_RD[qi][pli][qti][bin].rmse);
|
|
if(bin+1<OC_SAD_BINS)fprintf(stdout,",");
|
|
}
|
|
fprintf(stdout,"\n }");
|
|
if(qti<1)fprintf(stdout,",");
|
|
fprintf(stdout,"\n");
|
|
}
|
|
fprintf(stdout," }");
|
|
if(pli<2)fprintf(stdout,",");
|
|
fprintf(stdout,"\n");
|
|
}
|
|
fprintf(stdout," }");
|
|
if(qi<63)fprintf(stdout,",");
|
|
fprintf(stdout,"\n");
|
|
}
|
|
fprintf(stdout,
|
|
"};\n"
|
|
"\n"
|
|
"#endif\n");
|
|
}
|
|
#endif
|