mirror of
https://github.com/godotengine/godot.git
synced 2024-11-22 20:23:53 +00:00
c4903a603b
This makes them display in a nicer way in the editor help. (The title will display instead of the full URL.)
234 lines
9.0 KiB
XML
234 lines
9.0 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
||
<class name="Basis" version="4.0">
|
||
<brief_description>
|
||
3×3 matrix datatype.
|
||
</brief_description>
|
||
<description>
|
||
3×3 matrix used for 3D rotation and scale. Almost always used as an orthogonal basis for a Transform.
|
||
Contains 3 vector fields X, Y and Z as its columns, which are typically interpreted as the local basis vectors of a transformation. For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
|
||
Can also be accessed as array of 3D vectors. These vectors are normally orthogonal to each other, but are not necessarily normalized (due to scaling).
|
||
For more information, read the "Matrices and transforms" documentation article.
|
||
</description>
|
||
<tutorials>
|
||
<link title="Matrices and transforms">https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link>
|
||
<link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
|
||
</tutorials>
|
||
<methods>
|
||
<method name="Basis">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="from" type="Quat">
|
||
</argument>
|
||
<description>
|
||
Constructs a pure rotation basis matrix from the given quaternion.
|
||
</description>
|
||
</method>
|
||
<method name="Basis">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="from" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle).
|
||
Consider using the [Quat] constructor instead, which uses a quaternion instead of Euler angles.
|
||
</description>
|
||
</method>
|
||
<method name="Basis">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="axis" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="phi" type="float">
|
||
</argument>
|
||
<description>
|
||
Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]phi[/code], in radians. The axis must be a normalized vector.
|
||
</description>
|
||
</method>
|
||
<method name="Basis">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="x_axis" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="y_axis" type="Vector3">
|
||
</argument>
|
||
<argument index="2" name="z_axis" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Constructs a basis matrix from 3 axis vectors (matrix columns).
|
||
</description>
|
||
</method>
|
||
<method name="determinant">
|
||
<return type="float">
|
||
</return>
|
||
<description>
|
||
Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale.
|
||
A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
|
||
</description>
|
||
</method>
|
||
<method name="get_euler">
|
||
<return type="Vector3">
|
||
</return>
|
||
<description>
|
||
Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
|
||
Consider using the [method get_rotation_quat] method instead, which returns a [Quat] quaternion instead of Euler angles.
|
||
</description>
|
||
</method>
|
||
<method name="get_orthogonal_index">
|
||
<return type="int">
|
||
</return>
|
||
<description>
|
||
This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code.
|
||
</description>
|
||
</method>
|
||
<method name="get_rotation_quat">
|
||
<return type="Quat">
|
||
</return>
|
||
<description>
|
||
Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
|
||
</description>
|
||
</method>
|
||
<method name="get_scale">
|
||
<return type="Vector3">
|
||
</return>
|
||
<description>
|
||
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
|
||
</description>
|
||
</method>
|
||
<method name="inverse">
|
||
<return type="Basis">
|
||
</return>
|
||
<description>
|
||
Returns the inverse of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="is_equal_approx">
|
||
<return type="bool">
|
||
</return>
|
||
<argument index="0" name="b" type="Basis">
|
||
</argument>
|
||
<argument index="1" name="epsilon" type="float" default="1e-05">
|
||
</argument>
|
||
<description>
|
||
Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
|
||
</description>
|
||
</method>
|
||
<method name="orthonormalized">
|
||
<return type="Basis">
|
||
</return>
|
||
<description>
|
||
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="rotated">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="axis" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="phi" type="float">
|
||
</argument>
|
||
<description>
|
||
Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector.
|
||
</description>
|
||
</method>
|
||
<method name="scaled">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="scale" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Introduce an additional scaling specified by the given 3D scaling factor.
|
||
</description>
|
||
</method>
|
||
<method name="slerp">
|
||
<return type="Basis">
|
||
</return>
|
||
<argument index="0" name="b" type="Basis">
|
||
</argument>
|
||
<argument index="1" name="t" type="float">
|
||
</argument>
|
||
<description>
|
||
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
|
||
</description>
|
||
</method>
|
||
<method name="tdotx">
|
||
<return type="float">
|
||
</return>
|
||
<argument index="0" name="with" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Transposed dot product with the X axis of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="tdoty">
|
||
<return type="float">
|
||
</return>
|
||
<argument index="0" name="with" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Transposed dot product with the Y axis of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="tdotz">
|
||
<return type="float">
|
||
</return>
|
||
<argument index="0" name="with" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Transposed dot product with the Z axis of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="transposed">
|
||
<return type="Basis">
|
||
</return>
|
||
<description>
|
||
Returns the transposed version of the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="xform">
|
||
<return type="Vector3">
|
||
</return>
|
||
<argument index="0" name="v" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Returns a vector transformed (multiplied) by the matrix.
|
||
</description>
|
||
</method>
|
||
<method name="xform_inv">
|
||
<return type="Vector3">
|
||
</return>
|
||
<argument index="0" name="v" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Returns a vector transformed (multiplied) by the transposed basis matrix.
|
||
[b]Note:[/b] This results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection.
|
||
</description>
|
||
</method>
|
||
</methods>
|
||
<members>
|
||
<member name="x" type="Vector3" setter="" getter="" default="Vector3( 1, 0, 0 )">
|
||
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
|
||
</member>
|
||
<member name="y" type="Vector3" setter="" getter="" default="Vector3( 0, 1, 0 )">
|
||
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
|
||
</member>
|
||
<member name="z" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 1 )">
|
||
The basis matrix's Z vector (column 2). Equivalent to array index [code]2[/code].
|
||
</member>
|
||
</members>
|
||
<constants>
|
||
<constant name="IDENTITY" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
|
||
The identity basis, with no rotation or scaling applied.
|
||
This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
|
||
</constant>
|
||
<constant name="FLIP_X" value="Basis( -1, 0, 0, 0, 1, 0, 0, 0, 1 )">
|
||
The basis that will flip something along the X axis when used in a transformation.
|
||
</constant>
|
||
<constant name="FLIP_Y" value="Basis( 1, 0, 0, 0, -1, 0, 0, 0, 1 )">
|
||
The basis that will flip something along the Y axis when used in a transformation.
|
||
</constant>
|
||
<constant name="FLIP_Z" value="Basis( 1, 0, 0, 0, 1, 0, 0, 0, -1 )">
|
||
The basis that will flip something along the Z axis when used in a transformation.
|
||
</constant>
|
||
</constants>
|
||
</class>
|