godot/thirdparty/embree/kernels/geometry/curve_intersector_ribbon.h
Jakub Mateusz Marcowski c43eab55a4
embree: Update to 4.3.1
2024-03-27 22:10:35 +01:00

226 lines
9.2 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/ray.h"
#include "quad_intersector.h"
#include "curve_intersector_precalculations.h"
#define Bezier1Intersector1 RibbonCurve1Intersector1
#define Bezier1IntersectorK RibbonCurve1IntersectorK
namespace embree
{
namespace isa
{
template<typename NativeCurve3ff, int M>
struct RibbonHit
{
__forceinline RibbonHit() {}
__forceinline RibbonHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N,
const NativeCurve3ff& curve3D)
: U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {}
__forceinline void finalize()
{
vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N));
vv = V;
vt = T;
}
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
__forceinline float t (const size_t i) const { return vt[i]; }
__forceinline Vec3fa Ng(const size_t i) const { return curve3D.eval_du(vu[i]); }
__forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
__forceinline vfloat<M> t () const { return vt; }
__forceinline Vec3vf<M> Ng() const { return (Vec3vf<M>) curve3D.template veval_du<M>(vu); }
public:
vfloat<M> U;
vfloat<M> V;
vfloat<M> T;
int i, N;
NativeCurve3ff curve3D;
public:
vbool<M> valid;
vfloat<M> vu;
vfloat<M> vv;
vfloat<M> vt;
};
/* calculate squared distance of point p0 to line p1->p2 */
template<int M>
__forceinline std::pair<vfloat<M>,vfloat<M>> sqr_point_line_distance(const Vec2vf<M>& p0, const Vec2vf<M>& p1, const Vec2vf<M>& p2)
{
const vfloat<M> num = det(p2-p1,p1-p0);
const vfloat<M> den2 = dot(p2-p1,p2-p1);
return std::make_pair(num*num,den2);
}
/* performs culling against a cylinder */
template<int M>
__forceinline vbool<M> cylinder_culling_test(const Vec2vf<M>& p0, const Vec2vf<M>& p1, const Vec2vf<M>& p2, const vfloat<M>& r)
{
const std::pair<vfloat<M>,vfloat<M>> d = sqr_point_line_distance<M>(p0,p1,p2);
return d.first <= r*r*d.second;
}
template<int M = VSIZEX, typename NativeCurve3ff, typename Epilog>
__forceinline bool intersect_ribbon(const Vec3fa& ray_org, const Vec3fa& ray_dir, const float ray_tnear, const float& ray_tfar,
const LinearSpace3fa& ray_space, const float& depth_scale,
const NativeCurve3ff& curve3D, const int N,
const Epilog& epilog)
{
/* transform control points into ray space */
const NativeCurve3ff curve2D = curve3D.xfm_pr(ray_space,ray_org);
float eps = 4.0f*float(ulp)*reduce_max(max(abs(curve2D.v0),abs(curve2D.v1),abs(curve2D.v2),abs(curve2D.v3)));
int i=0;
bool ishit = false;
#if !defined(__SYCL_DEVICE_ONLY__)
{
/* evaluate the bezier curve */
vbool<M> valid = vfloat<M>(step) < vfloat<M>(float(N));
const Vec4vf<M> p0 = curve2D.template eval0<M>(0,N);
const Vec4vf<M> p1 = curve2D.template eval1<M>(0,N);
valid &= cylinder_culling_test<M>(zero,Vec2vf<M>(p0.x,p0.y),Vec2vf<M>(p1.x,p1.y),max(p0.w,p1.w));
if (any(valid))
{
Vec3vf<M> dp0dt = curve2D.template derivative0<M>(0,N);
Vec3vf<M> dp1dt = curve2D.template derivative1<M>(0,N);
dp0dt = select(reduce_max(abs(dp0dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp0dt);
dp1dt = select(reduce_max(abs(dp1dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp1dt);
const Vec3vf<M> n0(dp0dt.y,-dp0dt.x,0.0f);
const Vec3vf<M> n1(dp1dt.y,-dp1dt.x,0.0f);
const Vec3vf<M> nn0 = normalize(n0);
const Vec3vf<M> nn1 = normalize(n1);
const Vec3vf<M> lp0 = madd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> lp1 = madd(p1.w,nn1,Vec3vf<M>(p1));
const Vec3vf<M> up0 = nmadd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> up1 = nmadd(p1.w,nn1,Vec3vf<M>(p1));
vfloat<M> vu,vv,vt;
vbool<M> valid0 = intersect_quad_backface_culling<M>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
if (any(valid0))
{
/* ignore self intersections */
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
vfloat<M> r = lerp(p0.w, p1.w, vu);
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
}
if (any(valid0))
{
vv = madd(2.0f,vv,vfloat<M>(-1.0f));
RibbonHit<NativeCurve3ff,M> bhit(valid0,vu,vv,vt,0,N,curve3D);
ishit |= epilog(bhit.valid,bhit);
}
}
}
i += M;
}
if (unlikely(i < N))
#endif
{
/* process SIMD-size many segments per iteration */
for (; i<N; i+=M)
{
/* evaluate the bezier curve */
vbool<M> valid = vint<M>(i)+vint<M>(step) < vint<M>(N);
const Vec4vf<M> p0 = curve2D.template eval0<M>(i,N);
const Vec4vf<M> p1 = curve2D.template eval1<M>(i,N);
valid &= cylinder_culling_test<M>(zero,Vec2vf<M>(p0.x,p0.y),Vec2vf<M>(p1.x,p1.y),max(p0.w,p1.w));
if (none(valid)) continue;
Vec3vf<M> dp0dt = curve2D.template derivative0<M>(i,N);
Vec3vf<M> dp1dt = curve2D.template derivative1<M>(i,N);
dp0dt = select(reduce_max(abs(dp0dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp0dt);
dp1dt = select(reduce_max(abs(dp1dt)) < vfloat<M>(eps),Vec3vf<M>(p1-p0),dp1dt);
const Vec3vf<M> n0(dp0dt.y,-dp0dt.x,0.0f);
const Vec3vf<M> n1(dp1dt.y,-dp1dt.x,0.0f);
const Vec3vf<M> nn0 = normalize(n0);
const Vec3vf<M> nn1 = normalize(n1);
const Vec3vf<M> lp0 = madd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> lp1 = madd(p1.w,nn1,Vec3vf<M>(p1));
const Vec3vf<M> up0 = nmadd(p0.w,nn0,Vec3vf<M>(p0));
const Vec3vf<M> up1 = nmadd(p1.w,nn1,Vec3vf<M>(p1));
vfloat<M> vu,vv,vt;
vbool<M> valid0 = intersect_quad_backface_culling<M>(valid,zero,Vec3fa(0,0,1),ray_tnear,ray_tfar,lp0,lp1,up1,up0,vu,vv,vt);
if (any(valid0))
{
/* ignore self intersections */
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) {
vfloat<M> r = lerp(p0.w, p1.w, vu);
valid0 &= vt > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*depth_scale;
}
if (any(valid0))
{
vv = madd(2.0f,vv,vfloat<M>(-1.0f));
RibbonHit<NativeCurve3ff,M> bhit(valid0,vu,vv,vt,i,N,curve3D);
ishit |= epilog(bhit.valid,bhit);
}
}
}
}
return ishit;
}
template<template<typename Ty> class NativeCurve, int M = VSIZEX>
struct RibbonCurve1Intersector1
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
template<typename Ray, typename Epilog>
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
const int N = geom->tessellationRate;
NativeCurve3ff curve(v0,v1,v2,v3);
curve = enlargeRadiusToMinWidth(context,geom,ray.org,curve);
return intersect_ribbon<M,NativeCurve3ff>(ray.org,ray.dir,ray.tnear(),ray.tfar,
pre.ray_space,pre.depth_scale,
curve,N,
epilog);
}
};
template<template<typename Ty> class NativeCurve, int K, int M = VSIZEX>
struct RibbonCurve1IntersectorK
{
typedef NativeCurve<Vec3ff> NativeCurve3ff;
template<typename Epilog>
__forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& ray, size_t k,
RayQueryContext* context,
const CurveGeometry* geom, const unsigned int primID,
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
const Epilog& epilog)
{
const int N = geom->tessellationRate;
const Vec3fa ray_org(ray.org.x[k],ray.org.y[k],ray.org.z[k]);
const Vec3fa ray_dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]);
NativeCurve3ff curve(v0,v1,v2,v3);
curve = enlargeRadiusToMinWidth(context,geom,ray_org,curve);
return intersect_ribbon<M,NativeCurve3ff>(ray_org,ray_dir,ray.tnear()[k],ray.tfar[k],
pre.ray_space[k],pre.depth_scale[k],
curve,N,
epilog);
}
};
}
}