godot/servers/rendering/rendering_light_culler.h
lawnjelly 70cd25f3eb Tighter shadow culling - fix light colinear to frustum edge
In rare situations if a light is placed near colinear to a frustum edge, the extra culling plane derived can have an inaccurate normal due to floating point error.
This PR detects colinear triangles, and prevents adding a culling plane in this situation.
2024-03-20 16:47:54 +00:00

282 lines
11 KiB
C++

/**************************************************************************/
/* rendering_light_culler.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef RENDERING_LIGHT_CULLER_H
#define RENDERING_LIGHT_CULLER_H
#include "core/math/plane.h"
#include "core/math/vector3.h"
#include "renderer_scene_cull.h"
struct Projection;
struct Transform3D;
// For testing performance improvements from the LightCuller:
// Uncomment LIGHT_CULLER_DEBUG_FLASH and it will turn the culler
// on and off every LIGHT_CULLER_DEBUG_FLASH_FREQUENCY camera prepares.
// Uncomment LIGHT_CULLER_DEBUG_LOGGING to get periodic print of the number of casters culled before / after.
// Uncomment LIGHT_CULLER_DEBUG_DIRECTIONAL_LIGHT to get periodic print of the number of casters culled for the directional light..
// #define LIGHT_CULLER_DEBUG_LOGGING
// #define LIGHT_CULLER_DEBUG_DIRECTIONAL_LIGHT
// #define LIGHT_CULLER_DEBUG_REGULAR_LIGHT
// #define LIGHT_CULLER_DEBUG_FLASH
#define LIGHT_CULLER_DEBUG_FLASH_FREQUENCY 1024
////////////////////////////////////////////////////////////////////////////////////////////////
// The code to generate the lookup table is included but commented out.
// This may be useful for debugging / regenerating the LUT in the future,
// especially if the order of planes changes.
// When this define is set, the generated lookup table will be printed to debug output.
// The generated lookup table can be copy pasted
// straight to LUT_entry_sizes and LUT_entries.
// See the referenced article for explanation.
// #define RENDERING_LIGHT_CULLER_CALCULATE_LUT
////////////////////////////////////////////////////////////////////////////////////////////////
// This define will be set automatically depending on earlier defines, you can leave this as is.
#if defined(LIGHT_CULLER_DEBUG_LOGGING) || defined(RENDERING_LIGHT_CULLER_CALCULATE_LUT)
#define RENDERING_LIGHT_CULLER_DEBUG_STRINGS
#endif
// Culls shadow casters that can't cast shadows into the camera frustum.
class RenderingLightCuller {
public:
RenderingLightCuller();
private:
class LightSource {
public:
enum SourceType {
ST_UNKNOWN,
ST_DIRECTIONAL,
ST_SPOTLIGHT,
ST_OMNI,
};
LightSource() {
type = ST_UNKNOWN;
angle = 0.0f;
range = FLT_MAX;
}
// All in world space, culling done in world space.
Vector3 pos;
Vector3 dir;
SourceType type;
float angle; // For spotlight.
float range;
};
// Same order as godot.
enum PlaneOrder {
PLANE_NEAR,
PLANE_FAR,
PLANE_LEFT,
PLANE_TOP,
PLANE_RIGHT,
PLANE_BOTTOM,
PLANE_TOTAL,
};
// Same order as godot.
enum PointOrder {
PT_FAR_LEFT_TOP,
PT_FAR_LEFT_BOTTOM,
PT_FAR_RIGHT_TOP,
PT_FAR_RIGHT_BOTTOM,
PT_NEAR_LEFT_TOP,
PT_NEAR_LEFT_BOTTOM,
PT_NEAR_RIGHT_TOP,
PT_NEAR_RIGHT_BOTTOM,
};
// 6 bits, 6 planes.
enum {
NUM_CAM_PLANES = 6,
NUM_CAM_POINTS = 8,
MAX_CULL_PLANES = 17,
LUT_SIZE = 64,
};
public:
// Before each pass with a different camera, you must call this so the culler can pre-create
// the camera frustum planes and corner points in world space which are used for the culling.
bool prepare_camera(const Transform3D &p_cam_transform, const Projection &p_cam_matrix);
// REGULAR LIGHTS (SPOT, OMNI).
// These are prepared then used for culling one by one, single threaded.
// prepare_regular_light() returns false if the entire light is culled (i.e. there is no intersection between the light and the view frustum).
bool prepare_regular_light(const RendererSceneCull::Instance &p_instance) { return _prepare_light(p_instance, -1); }
// Cull according to the regular light planes that were setup in the previous call to prepare_regular_light.
void cull_regular_light(PagedArray<RendererSceneCull::Instance *> &r_instance_shadow_cull_result);
// Directional lights are prepared in advance, and can be culled multithreaded chopping and changing between
// different directional_light_id.
void prepare_directional_light(const RendererSceneCull::Instance *p_instance, int32_t p_directional_light_id);
// Return false if the instance is to be culled.
bool cull_directional_light(const RendererSceneCull::InstanceBounds &p_bound, int32_t p_directional_light_id);
// Can turn on and off from the engine if desired.
void set_caster_culling_active(bool p_active) { data.caster_culling_active = p_active; }
void set_light_culling_active(bool p_active) { data.light_culling_active = p_active; }
private:
struct LightCullPlanes {
void add_cull_plane(const Plane &p);
Plane cull_planes[MAX_CULL_PLANES];
int num_cull_planes = 0;
#ifdef LIGHT_CULLER_DEBUG_DIRECTIONAL_LIGHT
uint32_t rejected_count = 0;
#endif
};
bool _prepare_light(const RendererSceneCull::Instance &p_instance, int32_t p_directional_light_id = -1);
// Avoid adding extra culling planes derived from near colinear triangles.
// The normals derived from these will be inaccurate, and can lead to false
// culling of objects that should be within the light volume.
bool _is_colinear_tri(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c) const {
// Lengths of sides a, b and c.
float la = (p_b - p_a).length();
float lb = (p_c - p_b).length();
float lc = (p_c - p_a).length();
// Get longest side into lc.
if (lb < la) {
SWAP(la, lb);
}
if (lc < lb) {
SWAP(lb, lc);
}
// Prevent divide by zero.
if (lc > 0.00001f) {
// If the summed length of the smaller two
// sides is close to the length of the longest side,
// the points are colinear, and the triangle is near degenerate.
float ld = ((la + lb) - lc) / lc;
// ld will be close to zero for colinear tris.
return ld < 0.00001f;
}
// Don't create planes from tiny triangles,
// they won't be accurate.
return true;
}
// Internal version uses LightSource.
bool _add_light_camera_planes(LightCullPlanes &r_cull_planes, const LightSource &p_light_source);
// Directional light gives parallel culling planes (as opposed to point lights).
bool add_light_camera_planes_directional(LightCullPlanes &r_cull_planes, const LightSource &p_light_source);
// Is the light culler active? maybe not in the editor...
bool is_caster_culling_active() const { return data.caster_culling_active; }
bool is_light_culling_active() const { return data.light_culling_active; }
// Do we want to log some debug output?
bool is_logging() const { return data.debug_count == 0; }
struct Data {
// Camera frustum planes (world space) - order ePlane.
Vector<Plane> frustum_planes;
// Camera frustum corners (world space) - order ePoint.
Vector3 frustum_points[NUM_CAM_POINTS];
// Master can have multiple directional lights.
// These need to store their own cull planes individually, as master
// chops and changes between culling different lights
// instead of doing one by one, and we don't want to prepare
// lights multiple times per frame.
LocalVector<LightCullPlanes> directional_cull_planes;
// Single threaded cull planes for regular lights
// (OMNI, SPOT). These lights reuse the same set of cull plane data.
LightCullPlanes regular_cull_planes;
#ifdef LIGHT_CULLER_DEBUG_REGULAR_LIGHT
uint32_t regular_rejected_count = 0;
#endif
// The whole regular light can be out of range of the view frustum, in which case all casters should be culled.
bool out_of_range = false;
#ifdef RENDERING_LIGHT_CULLER_DEBUG_STRINGS
static String plane_bitfield_to_string(unsigned int BF);
// Names of the plane and point enums, useful for debugging.
static const char *string_planes[];
static const char *string_points[];
#endif
// Precalculated look up table.
static uint8_t LUT_entry_sizes[LUT_SIZE];
static uint8_t LUT_entries[LUT_SIZE][8];
bool caster_culling_active = true;
bool light_culling_active = true;
// Light culling is a basic on / off switch.
// Caster culling only works if light culling is also on.
bool is_active() const { return light_culling_active; }
// Ideally a frame counter, but for ease of implementation
// this is just incremented on each prepare_camera.
// used to turn on and off debugging features.
int debug_count = -1;
} data;
// This functionality is not required in general use (and is compiled out),
// as the lookup table can normally be hard coded
// (provided order of planes etc does not change).
// It is provided for debugging / future maintenance.
#ifdef RENDERING_LIGHT_CULLER_CALCULATE_LUT
void get_neighbouring_planes(PlaneOrder p_plane, PlaneOrder r_neigh_planes[4]) const;
void get_corners_of_planes(PlaneOrder p_plane_a, PlaneOrder p_plane_b, PointOrder r_points[2]) const;
void create_LUT();
void compact_LUT_entry(uint32_t p_entry_id);
void debug_print_LUT();
void debug_print_LUT_as_table();
void add_LUT(int p_plane_0, int p_plane_1, PointOrder p_pts[2]);
void add_LUT_entry(uint32_t p_entry_id, PointOrder p_pts[2]);
String debug_string_LUT_entry(const LocalVector<uint8_t> &p_entry, bool p_pair = false);
String string_LUT_entry(const LocalVector<uint8_t> &p_entry);
// Contains a list of points for each combination of plane facing directions.
LocalVector<uint8_t> _calculated_LUT[LUT_SIZE];
#endif
};
#endif // RENDERING_LIGHT_CULLER_H