mirror of
https://github.com/godotengine/godot.git
synced 2024-11-25 05:33:11 +00:00
594 lines
19 KiB
C++
594 lines
19 KiB
C++
/**************************************************************************/
|
|
/* line_builder.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "line_builder.h"
|
|
|
|
#include "core/math/geometry_2d.h"
|
|
|
|
// Utility method.
|
|
static inline Vector2 interpolate(const Rect2 &r, const Vector2 &v) {
|
|
return Vector2(
|
|
Math::lerp(r.position.x, r.position.x + r.get_size().x, v.x),
|
|
Math::lerp(r.position.y, r.position.y + r.get_size().y, v.y));
|
|
}
|
|
|
|
LineBuilder::LineBuilder() {
|
|
}
|
|
|
|
void LineBuilder::build() {
|
|
// Need at least 2 points to draw a line, so clear the output and return.
|
|
if (points.size() < 2) {
|
|
vertices.clear();
|
|
colors.clear();
|
|
indices.clear();
|
|
uvs.clear();
|
|
return;
|
|
}
|
|
|
|
ERR_FAIL_COND(tile_aspect <= 0.f);
|
|
|
|
const float hw = width / 2.f;
|
|
const float hw_sq = hw * hw;
|
|
const float sharp_limit_sq = sharp_limit * sharp_limit;
|
|
const int point_count = points.size();
|
|
const bool wrap_around = closed && point_count > 2;
|
|
|
|
_interpolate_color = gradient != nullptr;
|
|
const bool retrieve_curve = curve != nullptr;
|
|
const bool distance_required = _interpolate_color || retrieve_curve ||
|
|
texture_mode == Line2D::LINE_TEXTURE_TILE ||
|
|
texture_mode == Line2D::LINE_TEXTURE_STRETCH;
|
|
|
|
// Initial values
|
|
|
|
Vector2 pos0 = points[0];
|
|
Vector2 pos1 = points[1];
|
|
Vector2 f0 = (pos1 - pos0).normalized();
|
|
Vector2 u0 = f0.orthogonal();
|
|
Vector2 pos_up0 = pos0;
|
|
Vector2 pos_down0 = pos0;
|
|
|
|
Color color0;
|
|
Color color1;
|
|
|
|
float current_distance0 = 0.f;
|
|
float current_distance1 = 0.f;
|
|
float total_distance = 0.f;
|
|
|
|
float width_factor = 1.f;
|
|
float modified_hw = hw;
|
|
if (retrieve_curve) {
|
|
width_factor = curve->sample_baked(0.f);
|
|
modified_hw = hw * width_factor;
|
|
}
|
|
|
|
if (distance_required) {
|
|
// Calculate the total distance.
|
|
for (int i = 1; i < point_count; ++i) {
|
|
total_distance += points[i].distance_to(points[i - 1]);
|
|
}
|
|
if (wrap_around) {
|
|
total_distance += points[point_count - 1].distance_to(pos0);
|
|
} else {
|
|
// Adjust the total distance.
|
|
// The line's outer length may be a little higher due to the end caps.
|
|
if (begin_cap_mode == Line2D::LINE_CAP_BOX || begin_cap_mode == Line2D::LINE_CAP_ROUND) {
|
|
total_distance += modified_hw;
|
|
}
|
|
if (end_cap_mode == Line2D::LINE_CAP_BOX || end_cap_mode == Line2D::LINE_CAP_ROUND) {
|
|
if (retrieve_curve) {
|
|
total_distance += hw * curve->sample_baked(1.f);
|
|
} else {
|
|
total_distance += hw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_interpolate_color) {
|
|
color0 = gradient->get_color(0);
|
|
} else {
|
|
colors.push_back(default_color);
|
|
}
|
|
|
|
float uvx0 = 0.f;
|
|
float uvx1 = 0.f;
|
|
|
|
pos_up0 += u0 * modified_hw;
|
|
pos_down0 -= u0 * modified_hw;
|
|
|
|
// Begin cap
|
|
if (!wrap_around) {
|
|
if (begin_cap_mode == Line2D::LINE_CAP_BOX) {
|
|
// Push back first vertices a little bit.
|
|
pos_up0 -= f0 * modified_hw;
|
|
pos_down0 -= f0 * modified_hw;
|
|
|
|
current_distance0 += modified_hw;
|
|
current_distance1 = current_distance0;
|
|
} else if (begin_cap_mode == Line2D::LINE_CAP_ROUND) {
|
|
if (texture_mode == Line2D::LINE_TEXTURE_TILE) {
|
|
uvx0 = width_factor * 0.5f / tile_aspect;
|
|
} else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) {
|
|
uvx0 = width * width_factor / total_distance;
|
|
}
|
|
new_arc(pos0, pos_up0 - pos0, -Math_PI, color0, Rect2(0.f, 0.f, uvx0 * 2, 1.f));
|
|
current_distance0 += modified_hw;
|
|
current_distance1 = current_distance0;
|
|
}
|
|
strip_begin(pos_up0, pos_down0, color0, uvx0);
|
|
}
|
|
|
|
/*
|
|
* pos_up0 ------------- pos_up1 --------------------
|
|
* | |
|
|
* pos0 - - - - - - - - - pos1 - - - - - - - - - pos2
|
|
* | |
|
|
* pos_down0 ------------ pos_down1 ------------------
|
|
*
|
|
* i-1 i i+1
|
|
*/
|
|
|
|
// http://labs.hyperandroid.com/tag/opengl-lines
|
|
// (not the same implementation but visuals help a lot)
|
|
|
|
// If the polyline wraps around, then draw two more segments with joints:
|
|
// The last one, which should normally end with an end cap, and the one that matches the end and the beginning.
|
|
int segments_count = wrap_around ? point_count : (point_count - 2);
|
|
// The wraparound case starts with a "fake walk" from the end of the polyline
|
|
// to its beginning, so that its first joint is correct, without drawing anything.
|
|
int first_point = wrap_around ? -1 : 1;
|
|
|
|
// If the line wraps around, these variables will be used for the final segment.
|
|
Vector2 first_pos_up, first_pos_down;
|
|
bool is_first_joint_sharp = false;
|
|
|
|
// For each additional segment
|
|
for (int i = first_point; i <= segments_count; ++i) {
|
|
pos1 = points[(i == -1) ? point_count - 1 : i % point_count]; // First point.
|
|
Vector2 pos2 = points[(i + 1) % point_count]; // Second point.
|
|
|
|
Vector2 f1 = (pos2 - pos1).normalized();
|
|
Vector2 u1 = f1.orthogonal();
|
|
|
|
// Determine joint orientation.
|
|
float dp = u0.dot(f1);
|
|
const Orientation orientation = (dp > 0.f ? UP : DOWN);
|
|
|
|
if (distance_required && i >= 1) {
|
|
current_distance1 += pos0.distance_to(pos1);
|
|
}
|
|
if (_interpolate_color) {
|
|
color1 = gradient->get_color_at_offset(current_distance1 / total_distance);
|
|
}
|
|
if (retrieve_curve) {
|
|
width_factor = curve->sample_baked(current_distance1 / total_distance);
|
|
modified_hw = hw * width_factor;
|
|
}
|
|
|
|
Vector2 inner_normal0 = u0 * modified_hw;
|
|
Vector2 inner_normal1 = u1 * modified_hw;
|
|
if (orientation == DOWN) {
|
|
inner_normal0 = -inner_normal0;
|
|
inner_normal1 = -inner_normal1;
|
|
}
|
|
|
|
/*
|
|
* ---------------------------
|
|
* /
|
|
* 0 / 1
|
|
* / /
|
|
* --------------------x------ /
|
|
* / / (here shown with orientation == DOWN)
|
|
* / /
|
|
* / /
|
|
* / /
|
|
* 2 /
|
|
* /
|
|
*/
|
|
|
|
// Find inner intersection at the joint.
|
|
Vector2 corner_pos_in, corner_pos_out;
|
|
bool is_intersecting = Geometry2D::segment_intersects_segment(
|
|
pos0 + inner_normal0, pos1 + inner_normal0,
|
|
pos1 + inner_normal1, pos2 + inner_normal1,
|
|
&corner_pos_in);
|
|
|
|
if (is_intersecting) {
|
|
// Inner parts of the segments intersect.
|
|
corner_pos_out = 2.f * pos1 - corner_pos_in;
|
|
} else {
|
|
// No intersection, segments are too sharp or they overlap.
|
|
corner_pos_in = pos1 + inner_normal0;
|
|
corner_pos_out = pos1 - inner_normal0;
|
|
}
|
|
|
|
Vector2 corner_pos_up, corner_pos_down;
|
|
if (orientation == UP) {
|
|
corner_pos_up = corner_pos_in;
|
|
corner_pos_down = corner_pos_out;
|
|
} else {
|
|
corner_pos_up = corner_pos_out;
|
|
corner_pos_down = corner_pos_in;
|
|
}
|
|
|
|
Line2D::LineJointMode current_joint_mode = joint_mode;
|
|
|
|
Vector2 pos_up1, pos_down1;
|
|
if (is_intersecting) {
|
|
// Fallback on bevel if sharp angle is too high (because it would produce very long miters).
|
|
float width_factor_sq = width_factor * width_factor;
|
|
if (current_joint_mode == Line2D::LINE_JOINT_SHARP && corner_pos_out.distance_squared_to(pos1) / (hw_sq * width_factor_sq) > sharp_limit_sq) {
|
|
current_joint_mode = Line2D::LINE_JOINT_BEVEL;
|
|
}
|
|
if (current_joint_mode == Line2D::LINE_JOINT_SHARP) {
|
|
// In this case, we won't create joint geometry,
|
|
// The previous and next line quads will directly share an edge.
|
|
pos_up1 = corner_pos_up;
|
|
pos_down1 = corner_pos_down;
|
|
} else {
|
|
// Bevel or round
|
|
if (orientation == UP) {
|
|
pos_up1 = corner_pos_up;
|
|
pos_down1 = pos1 - u0 * modified_hw;
|
|
} else {
|
|
pos_up1 = pos1 + u0 * modified_hw;
|
|
pos_down1 = corner_pos_down;
|
|
}
|
|
}
|
|
} else {
|
|
// No intersection: fallback
|
|
if (current_joint_mode == Line2D::LINE_JOINT_SHARP) {
|
|
// There is no fallback implementation for LINE_JOINT_SHARP so switch to the LINE_JOINT_BEVEL.
|
|
current_joint_mode = Line2D::LINE_JOINT_BEVEL;
|
|
}
|
|
pos_up1 = corner_pos_up;
|
|
pos_down1 = corner_pos_down;
|
|
}
|
|
|
|
// Triangles are clockwise.
|
|
if (texture_mode == Line2D::LINE_TEXTURE_TILE) {
|
|
uvx1 = current_distance1 / (width * tile_aspect);
|
|
} else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) {
|
|
uvx1 = current_distance1 / total_distance;
|
|
}
|
|
|
|
// Swap vars for use in the next line.
|
|
color0 = color1;
|
|
u0 = u1;
|
|
f0 = f1;
|
|
pos0 = pos1;
|
|
if (is_intersecting) {
|
|
if (current_joint_mode == Line2D::LINE_JOINT_SHARP) {
|
|
pos_up0 = pos_up1;
|
|
pos_down0 = pos_down1;
|
|
} else {
|
|
if (orientation == UP) {
|
|
pos_up0 = corner_pos_up;
|
|
pos_down0 = pos1 - u1 * modified_hw;
|
|
} else {
|
|
pos_up0 = pos1 + u1 * modified_hw;
|
|
pos_down0 = corner_pos_down;
|
|
}
|
|
}
|
|
} else {
|
|
pos_up0 = pos1 + u1 * modified_hw;
|
|
pos_down0 = pos1 - u1 * modified_hw;
|
|
}
|
|
|
|
// End the "fake pass" in the closed line case before the drawing subroutine.
|
|
if (i == -1) {
|
|
continue;
|
|
}
|
|
|
|
// For wrap-around polylines, store some kind of start positions of the first joint for the final connection.
|
|
if (wrap_around && i == 0) {
|
|
Vector2 first_pos_center = (pos_up1 + pos_down1) / 2;
|
|
float lerp_factor = 1.0 / width_factor;
|
|
first_pos_up = first_pos_center.lerp(pos_up1, lerp_factor);
|
|
first_pos_down = first_pos_center.lerp(pos_down1, lerp_factor);
|
|
is_first_joint_sharp = current_joint_mode == Line2D::LINE_JOINT_SHARP;
|
|
}
|
|
|
|
// Add current line body quad.
|
|
if (wrap_around && retrieve_curve && !is_first_joint_sharp && i == segments_count) {
|
|
// If the width curve is not seamless, we might need to fetch the line's start points to use them for the final connection.
|
|
Vector2 first_pos_center = (first_pos_up + first_pos_down) / 2;
|
|
strip_add_quad(first_pos_center.lerp(first_pos_up, width_factor), first_pos_center.lerp(first_pos_down, width_factor), color1, uvx1);
|
|
return;
|
|
} else {
|
|
strip_add_quad(pos_up1, pos_down1, color1, uvx1);
|
|
}
|
|
|
|
// From this point, bu0 and bd0 concern the next segment.
|
|
// Add joint geometry.
|
|
if (current_joint_mode != Line2D::LINE_JOINT_SHARP) {
|
|
/* ________________ cbegin
|
|
* / \
|
|
* / \
|
|
* ____________/_ _ _\ cend
|
|
* | |
|
|
* | |
|
|
* | |
|
|
*/
|
|
|
|
Vector2 cbegin, cend;
|
|
if (orientation == UP) {
|
|
cbegin = pos_down1;
|
|
cend = pos_down0;
|
|
} else {
|
|
cbegin = pos_up1;
|
|
cend = pos_up0;
|
|
}
|
|
|
|
if (current_joint_mode == Line2D::LINE_JOINT_BEVEL && !(wrap_around && i == segments_count)) {
|
|
strip_add_tri(cend, orientation);
|
|
} else if (current_joint_mode == Line2D::LINE_JOINT_ROUND && !(wrap_around && i == segments_count)) {
|
|
Vector2 vbegin = cbegin - pos1;
|
|
Vector2 vend = cend - pos1;
|
|
// We want to use vbegin.angle_to(vend) below, which evaluates to
|
|
// Math::atan2(vbegin.cross(vend), vbegin.dot(vend)) but we need to
|
|
// calculate this ourselves as we need to check if the cross product
|
|
// in that calculation ends up being -0.f and flip it if so, effectively
|
|
// flipping the resulting angle_delta to not return -PI but +PI instead
|
|
float cross_product = vbegin.cross(vend);
|
|
float dot_product = vbegin.dot(vend);
|
|
// Note that we're comparing against -0.f for clarity but 0.f would
|
|
// match as well, therefore we need the explicit signbit check too.
|
|
if (cross_product == -0.f && signbit(cross_product)) {
|
|
cross_product = 0.f;
|
|
}
|
|
float angle_delta = Math::atan2(cross_product, dot_product);
|
|
strip_add_arc(pos1, angle_delta, orientation);
|
|
}
|
|
|
|
if (!is_intersecting) {
|
|
// In this case the joint is too corrupted to be re-used,
|
|
// start again the strip with fallback points
|
|
strip_begin(pos_up0, pos_down0, color1, uvx1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draw the last (or only) segment, with its end cap logic.
|
|
if (!wrap_around) {
|
|
pos1 = points[point_count - 1];
|
|
|
|
if (distance_required) {
|
|
current_distance1 += pos0.distance_to(pos1);
|
|
}
|
|
if (_interpolate_color) {
|
|
color1 = gradient->get_color(gradient->get_point_count() - 1);
|
|
}
|
|
if (retrieve_curve) {
|
|
width_factor = curve->sample_baked(1.f);
|
|
modified_hw = hw * width_factor;
|
|
}
|
|
|
|
Vector2 pos_up1 = pos1 + u0 * modified_hw;
|
|
Vector2 pos_down1 = pos1 - u0 * modified_hw;
|
|
|
|
// Add extra distance for a box end cap.
|
|
if (end_cap_mode == Line2D::LINE_CAP_BOX) {
|
|
pos_up1 += f0 * modified_hw;
|
|
pos_down1 += f0 * modified_hw;
|
|
|
|
current_distance1 += modified_hw;
|
|
}
|
|
|
|
if (texture_mode == Line2D::LINE_TEXTURE_TILE) {
|
|
uvx1 = current_distance1 / (width * tile_aspect);
|
|
} else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) {
|
|
uvx1 = current_distance1 / total_distance;
|
|
}
|
|
|
|
strip_add_quad(pos_up1, pos_down1, color1, uvx1);
|
|
|
|
// Custom drawing for a round end cap.
|
|
if (end_cap_mode == Line2D::LINE_CAP_ROUND) {
|
|
// Note: color is not used in case we don't interpolate.
|
|
Color color = _interpolate_color ? gradient->get_color(gradient->get_point_count() - 1) : Color(0, 0, 0);
|
|
float dist = 0;
|
|
if (texture_mode == Line2D::LINE_TEXTURE_TILE) {
|
|
dist = width_factor / tile_aspect;
|
|
} else if (texture_mode == Line2D::LINE_TEXTURE_STRETCH) {
|
|
dist = width * width_factor / total_distance;
|
|
}
|
|
new_arc(pos1, pos_up1 - pos1, Math_PI, color, Rect2(uvx1 - 0.5f * dist, 0.f, dist, 1.f));
|
|
}
|
|
}
|
|
}
|
|
|
|
void LineBuilder::strip_begin(Vector2 up, Vector2 down, Color color, float uvx) {
|
|
int vi = vertices.size();
|
|
|
|
vertices.push_back(up);
|
|
vertices.push_back(down);
|
|
|
|
if (_interpolate_color) {
|
|
colors.push_back(color);
|
|
colors.push_back(color);
|
|
}
|
|
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
uvs.push_back(Vector2(uvx, 0.f));
|
|
uvs.push_back(Vector2(uvx, 1.f));
|
|
}
|
|
|
|
_last_index[UP] = vi;
|
|
_last_index[DOWN] = vi + 1;
|
|
}
|
|
|
|
void LineBuilder::strip_add_quad(Vector2 up, Vector2 down, Color color, float uvx) {
|
|
int vi = vertices.size();
|
|
|
|
vertices.push_back(up);
|
|
vertices.push_back(down);
|
|
|
|
if (_interpolate_color) {
|
|
colors.push_back(color);
|
|
colors.push_back(color);
|
|
}
|
|
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
uvs.push_back(Vector2(uvx, 0.f));
|
|
uvs.push_back(Vector2(uvx, 1.f));
|
|
}
|
|
|
|
indices.push_back(_last_index[UP]);
|
|
indices.push_back(vi + 1);
|
|
indices.push_back(_last_index[DOWN]);
|
|
indices.push_back(_last_index[UP]);
|
|
indices.push_back(vi);
|
|
indices.push_back(vi + 1);
|
|
|
|
_last_index[UP] = vi;
|
|
_last_index[DOWN] = vi + 1;
|
|
}
|
|
|
|
void LineBuilder::strip_add_tri(Vector2 up, Orientation orientation) {
|
|
int vi = vertices.size();
|
|
|
|
vertices.push_back(up);
|
|
|
|
if (_interpolate_color) {
|
|
colors.push_back(colors[colors.size() - 1]);
|
|
}
|
|
|
|
Orientation opposite_orientation = orientation == UP ? DOWN : UP;
|
|
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
// UVs are just one slice of the texture all along
|
|
// (otherwise we can't share the bottom vertex)
|
|
uvs.push_back(uvs[_last_index[opposite_orientation]]);
|
|
}
|
|
|
|
indices.push_back(_last_index[opposite_orientation]);
|
|
indices.push_back(vi);
|
|
indices.push_back(_last_index[orientation]);
|
|
|
|
_last_index[opposite_orientation] = vi;
|
|
}
|
|
|
|
void LineBuilder::strip_add_arc(Vector2 center, float angle_delta, Orientation orientation) {
|
|
// Take the two last vertices and extrude an arc made of triangles
|
|
// that all share one of the initial vertices
|
|
|
|
Orientation opposite_orientation = orientation == UP ? DOWN : UP;
|
|
Vector2 vbegin = vertices[_last_index[opposite_orientation]] - center;
|
|
float radius = vbegin.length();
|
|
float angle_step = Math_PI / static_cast<float>(round_precision);
|
|
float steps = Math::abs(angle_delta) / angle_step;
|
|
|
|
if (angle_delta < 0.f) {
|
|
angle_step = -angle_step;
|
|
}
|
|
|
|
float t = Vector2(1, 0).angle_to(vbegin);
|
|
float end_angle = t + angle_delta;
|
|
Vector2 rpos(0, 0);
|
|
|
|
// Arc vertices
|
|
for (int ti = 0; ti < steps; ++ti, t += angle_step) {
|
|
rpos = center + Vector2(Math::cos(t), Math::sin(t)) * radius;
|
|
strip_add_tri(rpos, orientation);
|
|
}
|
|
|
|
// Last arc vertex
|
|
rpos = center + Vector2(Math::cos(end_angle), Math::sin(end_angle)) * radius;
|
|
strip_add_tri(rpos, orientation);
|
|
}
|
|
|
|
void LineBuilder::new_arc(Vector2 center, Vector2 vbegin, float angle_delta, Color color, Rect2 uv_rect) {
|
|
// Make a standalone arc that doesn't use existing vertices,
|
|
// with undistorted UVs from within a square section
|
|
|
|
float radius = vbegin.length();
|
|
float angle_step = Math_PI / static_cast<float>(round_precision);
|
|
float steps = Math::abs(angle_delta) / angle_step;
|
|
|
|
if (angle_delta < 0.f) {
|
|
angle_step = -angle_step;
|
|
}
|
|
|
|
float t = Vector2(1, 0).angle_to(vbegin);
|
|
float end_angle = t + angle_delta;
|
|
Vector2 rpos(0, 0);
|
|
float tt_begin = -Math_PI / 2.0f;
|
|
float tt = tt_begin;
|
|
|
|
// Center vertice
|
|
int vi = vertices.size();
|
|
vertices.push_back(center);
|
|
if (_interpolate_color) {
|
|
colors.push_back(color);
|
|
}
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
uvs.push_back(interpolate(uv_rect, Vector2(0.5f, 0.5f)));
|
|
}
|
|
|
|
// Arc vertices
|
|
for (int ti = 0; ti < steps; ++ti, t += angle_step) {
|
|
Vector2 sc = Vector2(Math::cos(t), Math::sin(t));
|
|
rpos = center + sc * radius;
|
|
|
|
vertices.push_back(rpos);
|
|
if (_interpolate_color) {
|
|
colors.push_back(color);
|
|
}
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt));
|
|
uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f))));
|
|
tt += angle_step;
|
|
}
|
|
}
|
|
|
|
// Last arc vertex
|
|
Vector2 sc = Vector2(Math::cos(end_angle), Math::sin(end_angle));
|
|
rpos = center + sc * radius;
|
|
vertices.push_back(rpos);
|
|
if (_interpolate_color) {
|
|
colors.push_back(color);
|
|
}
|
|
if (texture_mode != Line2D::LINE_TEXTURE_NONE) {
|
|
tt = tt_begin + angle_delta;
|
|
Vector2 tsc = Vector2(Math::cos(tt), Math::sin(tt));
|
|
uvs.push_back(interpolate(uv_rect, 0.5f * (tsc + Vector2(1.f, 1.f))));
|
|
}
|
|
|
|
// Make up triangles
|
|
int vi0 = vi;
|
|
for (int ti = 0; ti < steps; ++ti) {
|
|
indices.push_back(vi0);
|
|
indices.push_back(++vi);
|
|
indices.push_back(vi + 1);
|
|
}
|
|
}
|