mirror of
https://github.com/godotengine/godot.git
synced 2024-11-25 05:33:11 +00:00
82f20cdcc0
https://github.com/ARM-software/astc-encoder/releases/tag/4.5.0 https://github.com/ARM-software/astc-encoder/releases/tag/4.6.0 https://github.com/ARM-software/astc-encoder/releases/tag/4.7.0
1213 lines
29 KiB
C++
1213 lines
29 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright 2019-2024 Arm Limited
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
// use this file except in compliance with the License. You may obtain a copy
|
|
// of the License at:
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
// License for the specific language governing permissions and limitations
|
|
// under the License.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
* @brief 8x32-bit vectors, implemented using AVX2.
|
|
*
|
|
* This module implements 8-wide 32-bit float, int, and mask vectors for x86
|
|
* AVX2.
|
|
*
|
|
* There is a baseline level of functionality provided by all vector widths and
|
|
* implementations. This is implemented using identical function signatures,
|
|
* modulo data type, so we can use them as substitutable implementations in VLA
|
|
* code.
|
|
*/
|
|
|
|
#ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
|
|
#define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
|
|
|
|
#ifndef ASTCENC_SIMD_INLINE
|
|
#error "Include astcenc_vecmathlib.h, do not include directly"
|
|
#endif
|
|
|
|
#include <cstdio>
|
|
|
|
// Define convenience intrinsics that are missing on older compilers
|
|
#define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1)
|
|
|
|
// ============================================================================
|
|
// vfloat8 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 8-wide floats.
|
|
*/
|
|
struct vfloat8
|
|
{
|
|
/**
|
|
* @brief Construct from zero-initialized value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8() = default;
|
|
|
|
/**
|
|
* @brief Construct from 4 values loaded from an unaligned address.
|
|
*
|
|
* Consider using loada() which is better with vectors if data is aligned
|
|
* to vector length.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat8(const float *p)
|
|
{
|
|
m = _mm256_loadu_ps(p);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value replicated across all lanes.
|
|
*
|
|
* Consider using zero() for constexpr zeros.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat8(float a)
|
|
{
|
|
m = _mm256_set1_ps(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 8 scalar values.
|
|
*
|
|
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat8(
|
|
float a, float b, float c, float d,
|
|
float e, float f, float g, float h)
|
|
{
|
|
m = _mm256_set_ps(h, g, f, e, d, c, b, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the scalar value of a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE float lane() const
|
|
{
|
|
#if !defined(__clang__) && defined(_MSC_VER)
|
|
return m.m256_f32[l];
|
|
#else
|
|
union { __m256 m; float f[8]; } cvt;
|
|
cvt.m = m;
|
|
return cvt.f[l];
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector of zeros.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat8 zero()
|
|
{
|
|
return vfloat8(_mm256_setzero_ps());
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a replicated scalar loaded from memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p)
|
|
{
|
|
return vfloat8(_mm256_broadcast_ss(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from 32B aligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p)
|
|
{
|
|
return vfloat8(_mm256_load_ps(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector containing the lane IDs.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vfloat8 lane_id()
|
|
{
|
|
return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m256 m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vint8 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 8-wide ints.
|
|
*/
|
|
struct vint8
|
|
{
|
|
/**
|
|
* @brief Construct from zero-initialized value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8() = default;
|
|
|
|
/**
|
|
* @brief Construct from 8 values loaded from an unaligned address.
|
|
*
|
|
* Consider using loada() which is better with vectors if data is aligned
|
|
* to vector length.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint8(const int *p)
|
|
{
|
|
m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p));
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 8 uint8_t loaded from an unaligned address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p)
|
|
{
|
|
// _mm_loadu_si64 would be nicer syntax, but missing on older GCC
|
|
m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p)));
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value replicated across all lanes.
|
|
*
|
|
* Consider using vfloat4::zero() for constexpr zeros.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint8(int a)
|
|
{
|
|
m = _mm256_set1_epi32(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 8 scalar values.
|
|
*
|
|
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint8(
|
|
int a, int b, int c, int d,
|
|
int e, int f, int g, int h)
|
|
{
|
|
m = _mm256_set_epi32(h, g, f, e, d, c, b, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vint8(__m256i a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the scalar from a single lane.
|
|
*/
|
|
template <int l> ASTCENC_SIMD_INLINE int lane() const
|
|
{
|
|
#if !defined(__clang__) && defined(_MSC_VER)
|
|
return m.m256i_i32[l];
|
|
#else
|
|
union { __m256i m; int f[8]; } cvt;
|
|
cvt.m = m;
|
|
return cvt.f[l];
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector of zeros.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint8 zero()
|
|
{
|
|
return vint8(_mm256_setzero_si256());
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a replicated scalar loaded from memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint8 load1(const int* p)
|
|
{
|
|
__m128i a = _mm_set1_epi32(*p);
|
|
return vint8(_mm256_broadcastd_epi32(a));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from unaligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint8 load(const uint8_t* p)
|
|
{
|
|
return vint8(_mm256_lddqu_si256(reinterpret_cast<const __m256i*>(p)));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector loaded from 32B aligned memory.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint8 loada(const int* p)
|
|
{
|
|
return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p)));
|
|
}
|
|
|
|
/**
|
|
* @brief Factory that returns a vector containing the lane IDs.
|
|
*/
|
|
static ASTCENC_SIMD_INLINE vint8 lane_id()
|
|
{
|
|
return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m256i m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vmask8 data type
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Data type for 8-wide control plane masks.
|
|
*/
|
|
struct vmask8
|
|
{
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask8(__m256 a)
|
|
{
|
|
m = a;
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from an existing SIMD register.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask8(__m256i a)
|
|
{
|
|
m = _mm256_castsi256_ps(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct from 1 scalar value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE explicit vmask8(bool a)
|
|
{
|
|
vint8 mask(a == false ? 0 : -1);
|
|
m = _mm256_castsi256_ps(mask.m);
|
|
}
|
|
|
|
/**
|
|
* @brief The vector ...
|
|
*/
|
|
__m256 m;
|
|
};
|
|
|
|
// ============================================================================
|
|
// vmask8 operators and functions
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Overload: mask union (or).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b)
|
|
{
|
|
return vmask8(_mm256_or_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask intersect (and).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b)
|
|
{
|
|
return vmask8(_mm256_and_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask difference (xor).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b)
|
|
{
|
|
return vmask8(_mm256_xor_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: mask invert (not).
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a)
|
|
{
|
|
return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1)));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a 8-bit mask code indicating mask status.
|
|
*
|
|
* bit0 = lane 0
|
|
*/
|
|
ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a)
|
|
{
|
|
return static_cast<unsigned int>(_mm256_movemask_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief True if any lanes are enabled, false otherwise.
|
|
*/
|
|
ASTCENC_SIMD_INLINE bool any(vmask8 a)
|
|
{
|
|
return mask(a) != 0;
|
|
}
|
|
|
|
/**
|
|
* @brief True if all lanes are enabled, false otherwise.
|
|
*/
|
|
ASTCENC_SIMD_INLINE bool all(vmask8 a)
|
|
{
|
|
return mask(a) == 0xFF;
|
|
}
|
|
|
|
// ============================================================================
|
|
// vint8 operators and functions
|
|
// ============================================================================
|
|
/**
|
|
* @brief Overload: vector by vector addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_add_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector incremental addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b)
|
|
{
|
|
a = a + b;
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector subtraction.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_sub_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_mullo_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector bit invert.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator~(vint8 a)
|
|
{
|
|
return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1)));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise or.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_or_si256(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise and.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_and_si256(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector bitwise xor.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_xor_si256(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector equality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b)
|
|
{
|
|
return vmask8(_mm256_cmpeq_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector inequality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b)
|
|
{
|
|
return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b)
|
|
{
|
|
return vmask8(_mm256_cmpgt_epi32(b.m, a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b)
|
|
{
|
|
return vmask8(_mm256_cmpgt_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Logical shift left.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a)
|
|
{
|
|
return vint8(_mm256_slli_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Arithmetic shift right.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a)
|
|
{
|
|
return vint8(_mm256_srai_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Logical shift right.
|
|
*/
|
|
template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a)
|
|
{
|
|
return vint8(_mm256_srli_epi32(a.m, s));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the min vector of two vectors.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_min_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the max vector of two vectors.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b)
|
|
{
|
|
return vint8(_mm256_max_epi32(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal minimum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 hmin(vint8 a)
|
|
{
|
|
__m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
|
|
m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
|
|
m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
|
|
m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
__m256i r = astcenc_mm256_set_m128i(m, m);
|
|
vint8 vmin(r);
|
|
return vmin;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal maximum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 hmax(vint8 a)
|
|
{
|
|
__m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
|
|
m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
|
|
m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
|
|
m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
__m256i r = astcenc_mm256_set_m128i(m, m);
|
|
vint8 vmax(r);
|
|
return vmax;
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to a 16B aligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void storea(vint8 a, int* p)
|
|
{
|
|
_mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to an unaligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store(vint8 a, int* p)
|
|
{
|
|
_mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Store lowest N (vector width) bytes into an unaligned address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p)
|
|
{
|
|
// This is the most logical implementation, but the convenience intrinsic
|
|
// is missing on older compilers (supported in g++ 9 and clang++ 9).
|
|
// _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0))
|
|
_mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief Gather N (vector width) indices from the array.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices)
|
|
{
|
|
return vint8(_mm256_i32gather_epi32(base, indices.m, 4));
|
|
}
|
|
|
|
/**
|
|
* @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v)
|
|
{
|
|
__m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 28, 24, 20, 16,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 12, 8, 4, 0);
|
|
__m256i a = _mm256_shuffle_epi8(v.m, shuf);
|
|
__m128i a0 = _mm256_extracti128_si256(a, 0);
|
|
__m128i a1 = _mm256_extracti128_si256(a, 1);
|
|
__m128i b = _mm_unpacklo_epi32(a0, a1);
|
|
|
|
__m256i r = astcenc_mm256_set_m128i(b, b);
|
|
return vint8(r);
|
|
}
|
|
|
|
/**
|
|
* @brief Return lanes from @c b if @c cond is set, else @c a.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond)
|
|
{
|
|
__m256i condi = _mm256_castps_si256(cond.m);
|
|
return vint8(_mm256_blendv_epi8(a.m, b.m, condi));
|
|
}
|
|
|
|
// ============================================================================
|
|
// vfloat4 operators and functions
|
|
// ============================================================================
|
|
|
|
/**
|
|
* @brief Overload: vector by vector addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_add_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector incremental addition.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b)
|
|
{
|
|
a = a + b;
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector subtraction.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_sub_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_mul_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by scalar multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b)
|
|
{
|
|
return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b)));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: scalar by vector multiplication.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector division.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_div_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by scalar division.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b)
|
|
{
|
|
return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b)));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Overload: scalar by vector division.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Overload: vector by vector equality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector inequality.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector less than or equal.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Overload: vector by vector greater than or equal.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the min vector of two vectors.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_min_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the min vector of a vector and a scalar.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b)
|
|
{
|
|
return min(a, vfloat8(b));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the max vector of two vectors.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b)
|
|
{
|
|
return vfloat8(_mm256_max_ps(a.m, b.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the max vector of a vector and a scalar.
|
|
*
|
|
* If either lane value is NaN, @c b will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b)
|
|
{
|
|
return max(a, vfloat8(b));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the clamped value between min and max.
|
|
*
|
|
* It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN
|
|
* then @c min will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a)
|
|
{
|
|
// Do not reorder - second operand will return if either is NaN
|
|
a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min));
|
|
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Return a clamped value between 0.0f and max.
|
|
*
|
|
* It is assumed that @c max is not a NaN value. If @c a is NaN then zero will
|
|
* be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a)
|
|
{
|
|
a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
|
|
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Return a clamped value between 0.0f and 1.0f.
|
|
*
|
|
* If @c a is NaN then zero will be returned for that lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a)
|
|
{
|
|
a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
|
|
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f));
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* @brief Return the absolute value of the float vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a)
|
|
{
|
|
__m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff));
|
|
return vfloat8(_mm256_and_ps(a.m, msk));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float rounded to the nearest integer value.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a)
|
|
{
|
|
constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
|
|
return vfloat8(_mm256_round_ps(a.m, flags));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal minimum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a)
|
|
{
|
|
__m128 vlow = _mm256_castps256_ps128(a.m);
|
|
__m128 vhigh = _mm256_extractf128_ps(a.m, 1);
|
|
vlow = _mm_min_ps(vlow, vhigh);
|
|
|
|
// First do an horizontal reduction.
|
|
__m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m128 mins = _mm_min_ps(vlow, shuf);
|
|
shuf = _mm_movehl_ps(shuf, mins);
|
|
mins = _mm_min_ss(mins, shuf);
|
|
|
|
// This is the most logical implementation, but the convenience intrinsic
|
|
// is missing on older compilers (supported in g++ 9 and clang++ 9).
|
|
//__m256i r = _mm256_set_m128(m, m)
|
|
__m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1);
|
|
|
|
return vfloat8(_mm256_permute_ps(r, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal minimum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a)
|
|
{
|
|
return hmin(a).lane<0>();
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal maximum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a)
|
|
{
|
|
__m128 vlow = _mm256_castps256_ps128(a.m);
|
|
__m128 vhigh = _mm256_extractf128_ps(a.m, 1);
|
|
vhigh = _mm_max_ps(vlow, vhigh);
|
|
|
|
// First do an horizontal reduction.
|
|
__m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m128 maxs = _mm_max_ps(vhigh, shuf);
|
|
shuf = _mm_movehl_ps(shuf,maxs);
|
|
maxs = _mm_max_ss(maxs, shuf);
|
|
|
|
// This is the most logical implementation, but the convenience intrinsic
|
|
// is missing on older compilers (supported in g++ 9 and clang++ 9).
|
|
//__m256i r = _mm256_set_m128(m, m)
|
|
__m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1);
|
|
return vfloat8(_mm256_permute_ps(r, 0));
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal maximum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a)
|
|
{
|
|
return hmax(a).lane<0>();
|
|
}
|
|
|
|
/**
|
|
* @brief Return the horizontal sum of a vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a)
|
|
{
|
|
// Two sequential 4-wide adds gives invariance with 4-wide code
|
|
vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
|
|
vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
|
|
return hadd_s(lo) + hadd_s(hi);
|
|
}
|
|
|
|
/**
|
|
* @brief Return lanes from @c b if @c cond is set, else @c a.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond)
|
|
{
|
|
return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond)
|
|
{
|
|
return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Accumulate lane-wise sums for a vector, folded 4-wide.
|
|
*
|
|
* This is invariant with 4-wide implementations.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a)
|
|
{
|
|
vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
|
|
haccumulate(accum, lo);
|
|
|
|
vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
|
|
haccumulate(accum, hi);
|
|
}
|
|
|
|
/**
|
|
* @brief Accumulate lane-wise sums for a vector.
|
|
*
|
|
* This is NOT invariant with 4-wide implementations.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a)
|
|
{
|
|
accum += a;
|
|
}
|
|
|
|
/**
|
|
* @brief Accumulate masked lane-wise sums for a vector, folded 4-wide.
|
|
*
|
|
* This is invariant with 4-wide implementations.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m)
|
|
{
|
|
a = select(vfloat8::zero(), a, m);
|
|
haccumulate(accum, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Accumulate masked lane-wise sums for a vector.
|
|
*
|
|
* This is NOT invariant with 4-wide implementations.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m)
|
|
{
|
|
a = select(vfloat8::zero(), a, m);
|
|
haccumulate(accum, a);
|
|
}
|
|
|
|
/**
|
|
* @brief Return the sqrt of the lanes in the vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a)
|
|
{
|
|
return vfloat8(_mm256_sqrt_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Load a vector of gathered results from an array;
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices)
|
|
{
|
|
return vfloat8(_mm256_i32gather_ps(base, indices.m, 4));
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to an unaligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p)
|
|
{
|
|
_mm256_storeu_ps(p, a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector to a 32B aligned memory address.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p)
|
|
{
|
|
_mm256_store_ps(p, a.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value for a float vector, using truncation.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a)
|
|
{
|
|
return vint8(_mm256_cvttps_epi32(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value for a float vector, using round-to-nearest.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a)
|
|
{
|
|
a = a + vfloat8(0.5f);
|
|
return vint8(_mm256_cvttps_epi32(a.m));
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Return a float value for an integer vector.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a)
|
|
{
|
|
return vfloat8(_mm256_cvtepi32_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a float value as an integer bit pattern (i.e. no conversion).
|
|
*
|
|
* It is a common trick to convert floats into integer bit patterns, perform
|
|
* some bit hackery based on knowledge they are IEEE 754 layout, and then
|
|
* convert them back again. This is the first half of that flip.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a)
|
|
{
|
|
return vint8(_mm256_castps_si256(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Return a integer value as a float bit pattern (i.e. no conversion).
|
|
*
|
|
* It is a common trick to convert floats into integer bit patterns, perform
|
|
* some bit hackery based on knowledge they are IEEE 754 layout, and then
|
|
* convert them back again. This is the second half of that flip.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a)
|
|
{
|
|
return vfloat8(_mm256_castsi256_ps(a.m));
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table for use with the native SIMD size.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p)
|
|
{
|
|
// AVX2 duplicates the table within each 128-bit lane
|
|
__m128i t0n = t0.m;
|
|
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table for use with the native SIMD size.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p)
|
|
{
|
|
// AVX2 duplicates the table within each 128-bit lane
|
|
__m128i t0n = t0.m;
|
|
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
|
|
|
|
__m128i t1n = _mm_xor_si128(t0.m, t1.m);
|
|
t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
|
|
}
|
|
|
|
/**
|
|
* @brief Prepare a vtable lookup table for use with the native SIMD size.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void vtable_prepare(
|
|
vint4 t0, vint4 t1, vint4 t2, vint4 t3,
|
|
vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p)
|
|
{
|
|
// AVX2 duplicates the table within each 128-bit lane
|
|
__m128i t0n = t0.m;
|
|
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
|
|
|
|
__m128i t1n = _mm_xor_si128(t0.m, t1.m);
|
|
t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
|
|
|
|
__m128i t2n = _mm_xor_si128(t1.m, t2.m);
|
|
t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n));
|
|
|
|
__m128i t3n = _mm_xor_si128(t2.m, t3.m);
|
|
t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n));
|
|
}
|
|
|
|
/**
|
|
* @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx)
|
|
{
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
|
|
return vint8(result);
|
|
}
|
|
|
|
/**
|
|
* @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx)
|
|
{
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
|
|
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
|
|
|
|
__m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
|
|
result = _mm256_xor_si256(result, result2);
|
|
return vint8(result);
|
|
}
|
|
|
|
/**
|
|
* @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx)
|
|
{
|
|
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
|
|
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
|
|
|
|
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
|
|
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
|
|
|
|
__m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
|
|
result = _mm256_xor_si256(result, result2);
|
|
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
|
|
|
|
result2 = _mm256_shuffle_epi8(t2.m, idxx);
|
|
result = _mm256_xor_si256(result, result2);
|
|
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
|
|
|
|
result2 = _mm256_shuffle_epi8(t3.m, idxx);
|
|
result = _mm256_xor_si256(result, result2);
|
|
|
|
return vint8(result);
|
|
}
|
|
|
|
/**
|
|
* @brief Return a vector of interleaved RGBA data.
|
|
*
|
|
* Input vectors have the value stored in the bottom 8 bits of each lane,
|
|
* with high bits set to zero.
|
|
*
|
|
* Output vector stores a single RGBA texel packed in each lane.
|
|
*/
|
|
ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a)
|
|
{
|
|
return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
|
|
}
|
|
|
|
/**
|
|
* @brief Store a vector, skipping masked lanes.
|
|
*
|
|
* All masked lanes must be at the end of vector, after all non-masked lanes.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint8 data, vmask8 mask)
|
|
{
|
|
_mm256_maskstore_epi32(reinterpret_cast<int*>(base), _mm256_castps_si256(mask.m), data.m);
|
|
}
|
|
|
|
/**
|
|
* @brief Debug function to print a vector of ints.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void print(vint8 a)
|
|
{
|
|
alignas(32) int v[8];
|
|
storea(a, v);
|
|
printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n",
|
|
v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
|
|
}
|
|
|
|
/**
|
|
* @brief Debug function to print a vector of ints.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void printx(vint8 a)
|
|
{
|
|
alignas(32) int v[8];
|
|
storea(a, v);
|
|
printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n",
|
|
v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
|
|
}
|
|
|
|
/**
|
|
* @brief Debug function to print a vector of floats.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void print(vfloat8 a)
|
|
{
|
|
alignas(32) float v[8];
|
|
storea(a, v);
|
|
printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n",
|
|
static_cast<double>(v[0]), static_cast<double>(v[1]),
|
|
static_cast<double>(v[2]), static_cast<double>(v[3]),
|
|
static_cast<double>(v[4]), static_cast<double>(v[5]),
|
|
static_cast<double>(v[6]), static_cast<double>(v[7]));
|
|
}
|
|
|
|
/**
|
|
* @brief Debug function to print a vector of masks.
|
|
*/
|
|
ASTCENC_SIMD_INLINE void print(vmask8 a)
|
|
{
|
|
print(select(vint8(0), vint8(1), a));
|
|
}
|
|
|
|
#endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
|