godot/scene/2d/tile_map.cpp
2022-10-06 14:06:33 +02:00

3985 lines
154 KiB
C++

/*************************************************************************/
/* tile_map.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "tile_map.h"
#include "core/io/marshalls.h"
#include "scene/resources/world_2d.h"
#include "servers/navigation_server_2d.h"
#ifdef DEBUG_ENABLED
#include "servers/navigation_server_3d.h"
#endif // DEBUG_ENABLED
HashMap<Vector2i, TileSet::CellNeighbor> TileMap::TerrainConstraint::get_overlapping_coords_and_peering_bits() const {
HashMap<Vector2i, TileSet::CellNeighbor> output;
ERR_FAIL_COND_V(is_center_bit(), output);
Ref<TileSet> tile_set = tile_map->get_tileset();
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
TileSet::TileShape shape = tile_set->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_CORNER)] = TileSet::CELL_NEIGHBOR_TOP_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_RIGHT_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else {
// Half offset shapes.
TileSet::TileOffsetAxis offset_axis = tile_set->get_tile_offset_axis();
if (offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 4:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER;
break;
case 5:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
break;
case 4:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_SIDE;
break;
case 5:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
}
}
return output;
}
TileMap::TerrainConstraint::TerrainConstraint(const TileMap *p_tile_map, const Vector2i &p_position, int p_terrain) {
tile_map = p_tile_map;
Ref<TileSet> tile_set = tile_map->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
bit = 0;
base_cell_coords = p_position;
terrain = p_terrain;
}
TileMap::TerrainConstraint::TerrainConstraint(const TileMap *p_tile_map, const Vector2i &p_position, const TileSet::CellNeighbor &p_bit, int p_terrain) {
// The way we build the constraint make it easy to detect conflicting constraints.
tile_map = p_tile_map;
Ref<TileSet> tile_set = tile_map->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
TileSet::TileShape shape = tile_set->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER);
break;
case TileSet::CELL_NEIGHBOR_TOP_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_CORNER);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else {
// Half-offset shapes
TileSet::TileOffsetAxis offset_axis = tile_set->get_tile_offset_axis();
if (offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_CORNER:
bit = 4;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 5;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 5;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_CORNER:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_SIDE:
bit = 4;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 5;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_LEFT_CORNER:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_SIDE:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 5;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
}
}
terrain = p_terrain;
}
Vector2i TileMap::transform_coords_layout(Vector2i p_coords, TileSet::TileOffsetAxis p_offset_axis, TileSet::TileLayout p_from_layout, TileSet::TileLayout p_to_layout) {
// Transform to stacked layout.
Vector2i output = p_coords;
if (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL) {
SWAP(output.x, output.y);
}
switch (p_from_layout) {
case TileSet::TILE_LAYOUT_STACKED:
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
if (output.y % 2) {
output.x -= 1;
}
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
if ((p_from_layout == TileSet::TILE_LAYOUT_STAIRS_RIGHT) ^ (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if (output.y < 0 && bool(output.y % 2)) {
output = Vector2i(output.x + output.y / 2 - 1, output.y);
} else {
output = Vector2i(output.x + output.y / 2, output.y);
}
} else {
if (output.x < 0 && bool(output.x % 2)) {
output = Vector2i(output.x / 2 - 1, output.x + output.y * 2);
} else {
output = Vector2i(output.x / 2, output.x + output.y * 2);
}
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
if ((p_from_layout == TileSet::TILE_LAYOUT_DIAMOND_RIGHT) ^ (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if ((output.x + output.y) < 0 && (output.x - output.y) % 2) {
output = Vector2i((output.x + output.y) / 2 - 1, output.y - output.x);
} else {
output = Vector2i((output.x + output.y) / 2, -output.x + output.y);
}
} else {
if ((output.x - output.y) < 0 && (output.x + output.y) % 2) {
output = Vector2i((output.x - output.y) / 2 - 1, output.x + output.y);
} else {
output = Vector2i((output.x - output.y) / 2, output.x + output.y);
}
}
break;
}
switch (p_to_layout) {
case TileSet::TILE_LAYOUT_STACKED:
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
if (output.y % 2) {
output.x += 1;
}
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
if ((p_to_layout == TileSet::TILE_LAYOUT_STAIRS_RIGHT) ^ (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if (output.y < 0 && (output.y % 2)) {
output = Vector2i(output.x - output.y / 2 + 1, output.y);
} else {
output = Vector2i(output.x - output.y / 2, output.y);
}
} else {
if (output.y % 2) {
if (output.y < 0) {
output = Vector2i(2 * output.x + 1, -output.x + output.y / 2 - 1);
} else {
output = Vector2i(2 * output.x + 1, -output.x + output.y / 2);
}
} else {
output = Vector2i(2 * output.x, -output.x + output.y / 2);
}
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
if ((p_to_layout == TileSet::TILE_LAYOUT_DIAMOND_RIGHT) ^ (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if (output.y % 2) {
if (output.y > 0) {
output = Vector2i(output.x - output.y / 2, output.x + output.y / 2 + 1);
} else {
output = Vector2i(output.x - output.y / 2 + 1, output.x + output.y / 2);
}
} else {
output = Vector2i(output.x - output.y / 2, output.x + output.y / 2);
}
} else {
if (output.y % 2) {
if (output.y < 0) {
output = Vector2i(output.x + output.y / 2, -output.x + output.y / 2 - 1);
} else {
output = Vector2i(output.x + output.y / 2 + 1, -output.x + output.y / 2);
}
} else {
output = Vector2i(output.x + output.y / 2, -output.x + output.y / 2);
}
}
break;
}
if (p_offset_axis == TileSet::TILE_OFFSET_AXIS_VERTICAL) {
SWAP(output.x, output.y);
}
return output;
}
int TileMap::get_effective_quadrant_size(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), 1);
// When using YSort, the quadrant size is reduced to 1 to have one CanvasItem per quadrant
if (is_y_sort_enabled() && layers[p_layer].y_sort_enabled) {
return 1;
} else {
return quadrant_size;
}
}
void TileMap::set_selected_layer(int p_layer_id) {
ERR_FAIL_COND(p_layer_id < -1 || p_layer_id >= (int)layers.size());
selected_layer = p_layer_id;
emit_signal(SNAME("changed"));
_make_all_quadrants_dirty();
}
int TileMap::get_selected_layer() const {
return selected_layer;
}
void TileMap::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
_clear_internals();
_recreate_internals();
} break;
case NOTIFICATION_EXIT_TREE: {
_clear_internals();
} break;
}
// Transfers the notification to tileset plugins.
if (tile_set.is_valid()) {
_rendering_notification(p_what);
_physics_notification(p_what);
_navigation_notification(p_what);
}
}
Ref<TileSet> TileMap::get_tileset() const {
return tile_set;
}
void TileMap::set_tileset(const Ref<TileSet> &p_tileset) {
if (p_tileset == tile_set) {
return;
}
// Set the tileset, registering to its changes.
if (tile_set.is_valid()) {
tile_set->disconnect("changed", callable_mp(this, &TileMap::_tile_set_changed));
}
if (!p_tileset.is_valid()) {
_clear_internals();
}
tile_set = p_tileset;
if (tile_set.is_valid()) {
tile_set->connect("changed", callable_mp(this, &TileMap::_tile_set_changed));
_clear_internals();
_recreate_internals();
}
emit_signal(SNAME("changed"));
}
void TileMap::set_quadrant_size(int p_size) {
ERR_FAIL_COND_MSG(p_size < 1, "TileMapQuadrant size cannot be smaller than 1.");
quadrant_size = p_size;
_clear_internals();
_recreate_internals();
emit_signal(SNAME("changed"));
}
int TileMap::get_quadrant_size() const {
return quadrant_size;
}
int TileMap::get_layers_count() const {
return layers.size();
}
void TileMap::add_layer(int p_to_pos) {
if (p_to_pos < 0) {
p_to_pos = layers.size() + p_to_pos + 1;
}
ERR_FAIL_INDEX(p_to_pos, (int)layers.size() + 1);
// Must clear before adding the layer.
_clear_internals();
layers.insert(p_to_pos, TileMapLayer());
_recreate_internals();
notify_property_list_changed();
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
void TileMap::move_layer(int p_layer, int p_to_pos) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
ERR_FAIL_INDEX(p_to_pos, (int)layers.size() + 1);
// Clear before shuffling layers.
_clear_internals();
TileMapLayer tl = layers[p_layer];
layers.insert(p_to_pos, tl);
layers.remove_at(p_to_pos < p_layer ? p_layer + 1 : p_layer);
_recreate_internals();
notify_property_list_changed();
if (selected_layer == p_layer) {
selected_layer = p_to_pos < p_layer ? p_to_pos - 1 : p_to_pos;
}
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
void TileMap::remove_layer(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
// Clear before removing the layer.
_clear_internals();
layers.remove_at(p_layer);
_recreate_internals();
notify_property_list_changed();
if (selected_layer >= p_layer) {
selected_layer -= 1;
}
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
void TileMap::set_layer_name(int p_layer, String p_name) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].name = p_name;
emit_signal(SNAME("changed"));
}
String TileMap::get_layer_name(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), String());
return layers[p_layer].name;
}
void TileMap::set_layer_enabled(int p_layer, bool p_enabled) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].enabled = p_enabled;
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
bool TileMap::is_layer_enabled(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), false);
return layers[p_layer].enabled;
}
void TileMap::set_layer_modulate(int p_layer, Color p_modulate) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].modulate = p_modulate;
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
emit_signal(SNAME("changed"));
}
Color TileMap::get_layer_modulate(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), Color());
return layers[p_layer].modulate;
}
void TileMap::set_layer_y_sort_enabled(int p_layer, bool p_y_sort_enabled) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].y_sort_enabled = p_y_sort_enabled;
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
bool TileMap::is_layer_y_sort_enabled(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), false);
return layers[p_layer].y_sort_enabled;
}
void TileMap::set_layer_y_sort_origin(int p_layer, int p_y_sort_origin) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].y_sort_origin = p_y_sort_origin;
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
emit_signal(SNAME("changed"));
}
int TileMap::get_layer_y_sort_origin(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), false);
return layers[p_layer].y_sort_origin;
}
void TileMap::set_layer_z_index(int p_layer, int p_z_index) {
if (p_layer < 0) {
p_layer = layers.size() + p_layer;
}
ERR_FAIL_INDEX(p_layer, (int)layers.size());
layers[p_layer].z_index = p_z_index;
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
int TileMap::get_layer_z_index(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), false);
return layers[p_layer].z_index;
}
void TileMap::set_collision_animatable(bool p_enabled) {
collision_animatable = p_enabled;
_clear_internals();
set_notify_local_transform(p_enabled);
set_physics_process_internal(p_enabled);
_recreate_internals();
emit_signal(SNAME("changed"));
}
bool TileMap::is_collision_animatable() const {
return collision_animatable;
}
void TileMap::set_collision_visibility_mode(TileMap::VisibilityMode p_show_collision) {
collision_visibility_mode = p_show_collision;
_clear_internals();
_recreate_internals();
emit_signal(SNAME("changed"));
}
TileMap::VisibilityMode TileMap::get_collision_visibility_mode() {
return collision_visibility_mode;
}
void TileMap::set_navigation_visibility_mode(TileMap::VisibilityMode p_show_navigation) {
navigation_visibility_mode = p_show_navigation;
_clear_internals();
_recreate_internals();
emit_signal(SNAME("changed"));
}
TileMap::VisibilityMode TileMap::get_navigation_visibility_mode() {
return navigation_visibility_mode;
}
void TileMap::set_y_sort_enabled(bool p_enable) {
Node2D::set_y_sort_enabled(p_enable);
_clear_internals();
_recreate_internals();
emit_signal(SNAME("changed"));
}
Vector2i TileMap::_coords_to_quadrant_coords(int p_layer, const Vector2i &p_coords) const {
int quadrant_size = get_effective_quadrant_size(p_layer);
// Rounding down, instead of simply rounding towards zero (truncating)
return Vector2i(
p_coords.x > 0 ? p_coords.x / quadrant_size : (p_coords.x - (quadrant_size - 1)) / quadrant_size,
p_coords.y > 0 ? p_coords.y / quadrant_size : (p_coords.y - (quadrant_size - 1)) / quadrant_size);
}
HashMap<Vector2i, TileMapQuadrant>::Iterator TileMap::_create_quadrant(int p_layer, const Vector2i &p_qk) {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), nullptr);
TileMapQuadrant q;
q.layer = p_layer;
q.coords = p_qk;
rect_cache_dirty = true;
// Create the debug canvas item.
RenderingServer *rs = RenderingServer::get_singleton();
q.debug_canvas_item = rs->canvas_item_create();
rs->canvas_item_set_z_index(q.debug_canvas_item, RS::CANVAS_ITEM_Z_MAX - 1);
rs->canvas_item_set_parent(q.debug_canvas_item, get_canvas_item());
// Call the create_quadrant method on plugins
if (tile_set.is_valid()) {
_rendering_create_quadrant(&q);
}
return layers[p_layer].quadrant_map.insert(p_qk, q);
}
void TileMap::_make_quadrant_dirty(HashMap<Vector2i, TileMapQuadrant>::Iterator Q) {
// Make the given quadrant dirty, then trigger an update later.
TileMapQuadrant &q = Q->value;
if (!q.dirty_list_element.in_list()) {
layers[q.layer].dirty_quadrant_list.add(&q.dirty_list_element);
}
_queue_update_dirty_quadrants();
}
void TileMap::_make_all_quadrants_dirty() {
// Make all quandrants dirty, then trigger an update later.
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
if (!E.value.dirty_list_element.in_list()) {
layers[layer].dirty_quadrant_list.add(&E.value.dirty_list_element);
}
}
}
_queue_update_dirty_quadrants();
}
void TileMap::_queue_update_dirty_quadrants() {
if (pending_update || !is_inside_tree()) {
return;
}
pending_update = true;
call_deferred(SNAME("_update_dirty_quadrants"));
}
void TileMap::_update_dirty_quadrants() {
if (!pending_update) {
return;
}
if (!is_inside_tree() || !tile_set.is_valid()) {
pending_update = false;
return;
}
for (unsigned int layer = 0; layer < layers.size(); layer++) {
SelfList<TileMapQuadrant>::List &dirty_quadrant_list = layers[layer].dirty_quadrant_list;
// Update the coords cache.
for (SelfList<TileMapQuadrant> *q = dirty_quadrant_list.first(); q; q = q->next()) {
q->self()->map_to_local.clear();
q->self()->local_to_map.clear();
for (const Vector2i &E : q->self()->cells) {
Vector2i pk = E;
Vector2i pk_local_coords = map_to_local(pk);
q->self()->map_to_local[pk] = pk_local_coords;
q->self()->local_to_map[pk_local_coords] = pk;
}
}
// Find TileData that need a runtime modification.
_build_runtime_update_tile_data(dirty_quadrant_list);
// Call the update_dirty_quadrant method on plugins.
_rendering_update_dirty_quadrants(dirty_quadrant_list);
_physics_update_dirty_quadrants(dirty_quadrant_list);
_navigation_update_dirty_quadrants(dirty_quadrant_list);
_scenes_update_dirty_quadrants(dirty_quadrant_list);
// Redraw the debug canvas_items.
RenderingServer *rs = RenderingServer::get_singleton();
for (SelfList<TileMapQuadrant> *q = dirty_quadrant_list.first(); q; q = q->next()) {
rs->canvas_item_clear(q->self()->debug_canvas_item);
Transform2D xform;
xform.set_origin(map_to_local(q->self()->coords * get_effective_quadrant_size(layer)));
rs->canvas_item_set_transform(q->self()->debug_canvas_item, xform);
_rendering_draw_quadrant_debug(q->self());
_physics_draw_quadrant_debug(q->self());
_navigation_draw_quadrant_debug(q->self());
_scenes_draw_quadrant_debug(q->self());
}
// Clear the list
while (dirty_quadrant_list.first()) {
// Clear the runtime tile data.
for (const KeyValue<Vector2i, TileData *> &kv : dirty_quadrant_list.first()->self()->runtime_tile_data_cache) {
memdelete(kv.value);
}
dirty_quadrant_list.remove(dirty_quadrant_list.first());
}
}
pending_update = false;
_recompute_rect_cache();
}
void TileMap::_recreate_layer_internals(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
// Make sure that _clear_internals() was called prior.
ERR_FAIL_COND_MSG(layers[p_layer].quadrant_map.size() > 0, "TileMap layer " + itos(p_layer) + " had a non-empty quadrant map.");
if (!layers[p_layer].enabled) {
return;
}
// Update the layer internals.
_rendering_update_layer(p_layer);
// Recreate the quadrants.
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
for (const KeyValue<Vector2i, TileMapCell> &E : tile_map) {
Vector2i qk = _coords_to_quadrant_coords(p_layer, Vector2i(E.key.x, E.key.y));
HashMap<Vector2i, TileMapQuadrant>::Iterator Q = layers[p_layer].quadrant_map.find(qk);
if (!Q) {
Q = _create_quadrant(p_layer, qk);
layers[p_layer].dirty_quadrant_list.add(&Q->value.dirty_list_element);
}
Vector2i pk = E.key;
Q->value.cells.insert(pk);
_make_quadrant_dirty(Q);
}
_queue_update_dirty_quadrants();
}
void TileMap::_recreate_internals() {
for (unsigned int layer = 0; layer < layers.size(); layer++) {
_recreate_layer_internals(layer);
}
}
void TileMap::_erase_quadrant(HashMap<Vector2i, TileMapQuadrant>::Iterator Q) {
// Remove a quadrant.
TileMapQuadrant *q = &(Q->value);
// Call the cleanup_quadrant method on plugins.
if (tile_set.is_valid()) {
_rendering_cleanup_quadrant(q);
_physics_cleanup_quadrant(q);
_navigation_cleanup_quadrant(q);
_scenes_cleanup_quadrant(q);
}
// Remove the quadrant from the dirty_list if it is there.
if (q->dirty_list_element.in_list()) {
layers[q->layer].dirty_quadrant_list.remove(&(q->dirty_list_element));
}
// Free the debug canvas item.
RenderingServer *rs = RenderingServer::get_singleton();
rs->free(q->debug_canvas_item);
layers[q->layer].quadrant_map.remove(Q);
rect_cache_dirty = true;
}
void TileMap::_clear_layer_internals(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
// Clear quadrants.
while (layers[p_layer].quadrant_map.size()) {
_erase_quadrant(layers[p_layer].quadrant_map.begin());
}
// Clear the layers internals.
_rendering_cleanup_layer(p_layer);
// Clear the dirty quadrants list.
while (layers[p_layer].dirty_quadrant_list.first()) {
layers[p_layer].dirty_quadrant_list.remove(layers[p_layer].dirty_quadrant_list.first());
}
}
void TileMap::_clear_internals() {
// Clear quadrants.
for (unsigned int layer = 0; layer < layers.size(); layer++) {
_clear_layer_internals(layer);
}
}
void TileMap::_recompute_rect_cache() {
// Compute the displayed area of the tilemap.
#ifdef DEBUG_ENABLED
if (!rect_cache_dirty) {
return;
}
Rect2 r_total;
bool first = true;
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (const KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
Rect2 r;
r.position = map_to_local(E.key * get_effective_quadrant_size(layer));
r.expand_to(map_to_local((E.key + Vector2i(1, 0)) * get_effective_quadrant_size(layer)));
r.expand_to(map_to_local((E.key + Vector2i(1, 1)) * get_effective_quadrant_size(layer)));
r.expand_to(map_to_local((E.key + Vector2i(0, 1)) * get_effective_quadrant_size(layer)));
if (first) {
r_total = r;
first = false;
} else {
r_total = r_total.merge(r);
}
}
}
rect_cache = r_total;
item_rect_changed();
rect_cache_dirty = false;
#endif
}
/////////////////////////////// Rendering //////////////////////////////////////
void TileMap::_rendering_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_CANVAS: {
bool visible = is_visible_in_tree();
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E_quadrant : layers[layer].quadrant_map) {
TileMapQuadrant &q = E_quadrant.value;
for (const KeyValue<Vector2i, RID> &kv : q.occluders) {
Transform2D xform;
xform.set_origin(map_to_local(kv.key));
RS::get_singleton()->canvas_light_occluder_attach_to_canvas(kv.value, get_canvas());
RS::get_singleton()->canvas_light_occluder_set_transform(kv.value, get_global_transform() * xform);
RS::get_singleton()->canvas_light_occluder_set_enabled(kv.value, visible);
}
}
}
} break;
case NOTIFICATION_VISIBILITY_CHANGED: {
bool visible = is_visible_in_tree();
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E_quadrant : layers[layer].quadrant_map) {
TileMapQuadrant &q = E_quadrant.value;
// Update occluders transform.
for (const KeyValue<Vector2i, Vector2i> &E_cell : q.local_to_map) {
Transform2D xform;
xform.set_origin(E_cell.key);
for (const KeyValue<Vector2i, RID> &kv : q.occluders) {
RS::get_singleton()->canvas_light_occluder_set_enabled(kv.value, visible);
}
}
}
}
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
if (!is_inside_tree()) {
return;
}
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E_quadrant : layers[layer].quadrant_map) {
TileMapQuadrant &q = E_quadrant.value;
// Update occluders transform.
for (const KeyValue<Vector2i, RID> &kv : q.occluders) {
Transform2D xform;
xform.set_origin(map_to_local(kv.key));
RenderingServer::get_singleton()->canvas_light_occluder_set_transform(kv.value, get_global_transform() * xform);
}
}
}
} break;
case NOTIFICATION_DRAW: {
if (tile_set.is_valid()) {
RenderingServer::get_singleton()->canvas_item_set_sort_children_by_y(get_canvas_item(), is_y_sort_enabled());
}
} break;
case NOTIFICATION_EXIT_CANVAS: {
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E_quadrant : layers[layer].quadrant_map) {
TileMapQuadrant &q = E_quadrant.value;
for (const KeyValue<Vector2i, RID> &kv : q.occluders) {
RS::get_singleton()->canvas_light_occluder_attach_to_canvas(kv.value, RID());
}
}
}
} break;
}
}
void TileMap::_rendering_update_layer(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
RenderingServer *rs = RenderingServer::get_singleton();
if (!layers[p_layer].canvas_item.is_valid()) {
RID ci = rs->canvas_item_create();
rs->canvas_item_set_parent(ci, get_canvas_item());
/*Transform2D xform;
xform.set_origin(Vector2(0, p_layer));
rs->canvas_item_set_transform(ci, xform);*/
rs->canvas_item_set_draw_index(ci, p_layer);
layers[p_layer].canvas_item = ci;
}
RID &ci = layers[p_layer].canvas_item;
rs->canvas_item_set_sort_children_by_y(ci, layers[p_layer].y_sort_enabled);
rs->canvas_item_set_use_parent_material(ci, get_use_parent_material() || get_material().is_valid());
rs->canvas_item_set_z_index(ci, layers[p_layer].z_index);
rs->canvas_item_set_default_texture_filter(ci, RS::CanvasItemTextureFilter(get_texture_filter()));
rs->canvas_item_set_default_texture_repeat(ci, RS::CanvasItemTextureRepeat(get_texture_repeat()));
rs->canvas_item_set_light_mask(ci, get_light_mask());
}
void TileMap::_rendering_cleanup_layer(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
RenderingServer *rs = RenderingServer::get_singleton();
if (layers[p_layer].canvas_item.is_valid()) {
rs->free(layers[p_layer].canvas_item);
layers[p_layer].canvas_item = RID();
}
}
void TileMap::_rendering_update_dirty_quadrants(SelfList<TileMapQuadrant>::List &r_dirty_quadrant_list) {
ERR_FAIL_COND(!is_inside_tree());
ERR_FAIL_COND(!tile_set.is_valid());
bool visible = is_visible_in_tree();
SelfList<TileMapQuadrant> *q_list_element = r_dirty_quadrant_list.first();
while (q_list_element) {
TileMapQuadrant &q = *q_list_element->self();
RenderingServer *rs = RenderingServer::get_singleton();
// Free the canvas items.
for (const RID &ci : q.canvas_items) {
rs->free(ci);
}
q.canvas_items.clear();
// Free the occluders.
for (const KeyValue<Vector2i, RID> &kv : q.occluders) {
rs->free(kv.value);
}
q.occluders.clear();
// Those allow to group cell per material or z-index.
Ref<Material> prev_material;
int prev_z_index = 0;
RID prev_canvas_item;
Color modulate = get_self_modulate();
modulate *= get_layer_modulate(q.layer);
if (selected_layer >= 0) {
int z1 = get_layer_z_index(q.layer);
int z2 = get_layer_z_index(selected_layer);
if (z1 < z2 || (z1 == z2 && q.layer < selected_layer)) {
modulate = modulate.darkened(0.5);
} else if (z1 > z2 || (z1 == z2 && q.layer > selected_layer)) {
modulate = modulate.darkened(0.5);
modulate.a *= 0.3;
}
}
// Iterate over the cells of the quadrant.
for (const KeyValue<Vector2i, Vector2i> &E_cell : q.local_to_map) {
TileMapCell c = get_cell(q.layer, E_cell.value, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Get the tile data.
const TileData *tile_data;
if (q.runtime_tile_data_cache.has(E_cell.value)) {
tile_data = q.runtime_tile_data_cache[E_cell.value];
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
Ref<Material> mat = tile_data->get_material();
int z_index = tile_data->get_z_index();
// Quandrant pos.
Vector2 position = map_to_local(q.coords * get_effective_quadrant_size(q.layer));
if (is_y_sort_enabled() && layers[q.layer].y_sort_enabled) {
// When Y-sorting, the quandrant size is sure to be 1, we can thus offset the CanvasItem.
position.y += layers[q.layer].y_sort_origin + tile_data->get_y_sort_origin();
}
// --- CanvasItems ---
// Create two canvas items, for rendering and debug.
RID canvas_item;
// Check if the material or the z_index changed.
if (prev_canvas_item == RID() || prev_material != mat || prev_z_index != z_index) {
// If so, create a new CanvasItem.
canvas_item = rs->canvas_item_create();
if (mat.is_valid()) {
rs->canvas_item_set_material(canvas_item, mat->get_rid());
}
rs->canvas_item_set_parent(canvas_item, layers[q.layer].canvas_item);
rs->canvas_item_set_use_parent_material(canvas_item, get_use_parent_material() || get_material().is_valid());
Transform2D xform;
xform.set_origin(position);
rs->canvas_item_set_transform(canvas_item, xform);
rs->canvas_item_set_light_mask(canvas_item, get_light_mask());
rs->canvas_item_set_z_as_relative_to_parent(canvas_item, true);
rs->canvas_item_set_z_index(canvas_item, z_index);
rs->canvas_item_set_default_texture_filter(canvas_item, RS::CanvasItemTextureFilter(get_texture_filter()));
rs->canvas_item_set_default_texture_repeat(canvas_item, RS::CanvasItemTextureRepeat(get_texture_repeat()));
q.canvas_items.push_back(canvas_item);
prev_canvas_item = canvas_item;
prev_material = mat;
prev_z_index = z_index;
} else {
// Keep the same canvas_item to draw on.
canvas_item = prev_canvas_item;
}
// Drawing the tile in the canvas item.
draw_tile(canvas_item, E_cell.key - position, tile_set, c.source_id, c.get_atlas_coords(), c.alternative_tile, -1, modulate, tile_data);
// --- Occluders ---
for (int i = 0; i < tile_set->get_occlusion_layers_count(); i++) {
Transform2D xform;
xform.set_origin(E_cell.key);
if (tile_data->get_occluder(i).is_valid()) {
RID occluder_id = rs->canvas_light_occluder_create();
rs->canvas_light_occluder_set_enabled(occluder_id, visible);
rs->canvas_light_occluder_set_transform(occluder_id, get_global_transform() * xform);
rs->canvas_light_occluder_set_polygon(occluder_id, tile_data->get_occluder(i)->get_rid());
rs->canvas_light_occluder_attach_to_canvas(occluder_id, get_canvas());
rs->canvas_light_occluder_set_light_mask(occluder_id, tile_set->get_occlusion_layer_light_mask(i));
q.occluders[E_cell.value] = occluder_id;
}
}
}
}
}
_rendering_quadrant_order_dirty = true;
q_list_element = q_list_element->next();
}
// Reset the drawing indices
if (_rendering_quadrant_order_dirty) {
int index = -(int64_t)0x80000000; //always must be drawn below children.
for (int layer = 0; layer < (int)layers.size(); layer++) {
// Sort the quadrants coords per local coordinates.
RBMap<Vector2i, Vector2i, TileMapQuadrant::CoordsWorldComparator> local_to_map;
for (const KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
local_to_map[map_to_local(E.key)] = E.key;
}
// Sort the quadrants.
for (const KeyValue<Vector2i, Vector2i> &E : local_to_map) {
TileMapQuadrant &q = layers[layer].quadrant_map[E.value];
for (const RID &ci : q.canvas_items) {
RS::get_singleton()->canvas_item_set_draw_index(ci, index++);
}
}
}
_rendering_quadrant_order_dirty = false;
}
}
void TileMap::_rendering_create_quadrant(TileMapQuadrant *p_quadrant) {
ERR_FAIL_COND(!tile_set.is_valid());
_rendering_quadrant_order_dirty = true;
}
void TileMap::_rendering_cleanup_quadrant(TileMapQuadrant *p_quadrant) {
// Free the canvas items.
for (const RID &ci : p_quadrant->canvas_items) {
RenderingServer::get_singleton()->free(ci);
}
p_quadrant->canvas_items.clear();
// Free the occluders.
for (const KeyValue<Vector2i, RID> &kv : p_quadrant->occluders) {
RenderingServer::get_singleton()->free(kv.value);
}
p_quadrant->occluders.clear();
}
void TileMap::_rendering_draw_quadrant_debug(TileMapQuadrant *p_quadrant) {
ERR_FAIL_COND(!tile_set.is_valid());
if (!Engine::get_singleton()->is_editor_hint()) {
return;
}
// Draw a placeholder for scenes needing one.
RenderingServer *rs = RenderingServer::get_singleton();
Vector2 quadrant_pos = map_to_local(p_quadrant->coords * get_effective_quadrant_size(p_quadrant->layer));
for (const Vector2i &E_cell : p_quadrant->cells) {
const TileMapCell &c = get_cell(p_quadrant->layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
Vector2i grid_size = atlas_source->get_atlas_grid_size();
if (!atlas_source->get_runtime_texture().is_valid() || c.get_atlas_coords().x >= grid_size.x || c.get_atlas_coords().y >= grid_size.y) {
// Generate a random color from the hashed values of the tiles.
Array to_hash;
to_hash.push_back(c.source_id);
to_hash.push_back(c.get_atlas_coords());
to_hash.push_back(c.alternative_tile);
uint32_t hash = RandomPCG(to_hash.hash()).rand();
Color color;
color = color.from_hsv(
(float)((hash >> 24) & 0xFF) / 256.0,
Math::lerp(0.5, 1.0, (float)((hash >> 16) & 0xFF) / 256.0),
Math::lerp(0.5, 1.0, (float)((hash >> 8) & 0xFF) / 256.0),
0.8);
// Draw a placeholder tile.
Transform2D xform;
xform.set_origin(map_to_local(E_cell) - quadrant_pos);
rs->canvas_item_add_set_transform(p_quadrant->debug_canvas_item, xform);
rs->canvas_item_add_circle(p_quadrant->debug_canvas_item, Vector2(), MIN(tile_set->get_tile_size().x, tile_set->get_tile_size().y) / 4.0, color);
}
}
}
}
}
void TileMap::draw_tile(RID p_canvas_item, Vector2i p_position, const Ref<TileSet> p_tile_set, int p_atlas_source_id, Vector2i p_atlas_coords, int p_alternative_tile, int p_frame, Color p_modulation, const TileData *p_tile_data_override) {
ERR_FAIL_COND(!p_tile_set.is_valid());
ERR_FAIL_COND(!p_tile_set->has_source(p_atlas_source_id));
ERR_FAIL_COND(!p_tile_set->get_source(p_atlas_source_id)->has_tile(p_atlas_coords));
ERR_FAIL_COND(!p_tile_set->get_source(p_atlas_source_id)->has_alternative_tile(p_atlas_coords, p_alternative_tile));
TileSetSource *source = *p_tile_set->get_source(p_atlas_source_id);
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Check for the frame.
if (p_frame >= 0) {
ERR_FAIL_INDEX(p_frame, atlas_source->get_tile_animation_frames_count(p_atlas_coords));
}
// Get the texture.
Ref<Texture2D> tex = atlas_source->get_runtime_texture();
if (!tex.is_valid()) {
return;
}
// Check if we are in the texture, return otherwise.
Vector2i grid_size = atlas_source->get_atlas_grid_size();
if (p_atlas_coords.x >= grid_size.x || p_atlas_coords.y >= grid_size.y) {
return;
}
// Get tile data.
const TileData *tile_data = p_tile_data_override ? p_tile_data_override : atlas_source->get_tile_data(p_atlas_coords, p_alternative_tile);
// Get the tile modulation.
Color modulate = tile_data->get_modulate() * p_modulation;
// Compute the offset.
Vector2i tile_offset = atlas_source->get_tile_effective_texture_offset(p_atlas_coords, p_alternative_tile);
// Get destination rect.
Rect2 dest_rect;
dest_rect.size = atlas_source->get_runtime_tile_texture_region(p_atlas_coords).size;
dest_rect.size.x += FP_ADJUST;
dest_rect.size.y += FP_ADJUST;
bool transpose = tile_data->get_transpose();
if (transpose) {
dest_rect.position = (p_position - Vector2(dest_rect.size.y, dest_rect.size.x) / 2 - tile_offset);
} else {
dest_rect.position = (p_position - dest_rect.size / 2 - tile_offset);
}
if (tile_data->get_flip_h()) {
dest_rect.size.x = -dest_rect.size.x;
}
if (tile_data->get_flip_v()) {
dest_rect.size.y = -dest_rect.size.y;
}
// Draw the tile.
if (p_frame >= 0) {
Rect2i source_rect = atlas_source->get_runtime_tile_texture_region(p_atlas_coords, p_frame);
tex->draw_rect_region(p_canvas_item, dest_rect, source_rect, modulate, transpose, p_tile_set->is_uv_clipping());
} else if (atlas_source->get_tile_animation_frames_count(p_atlas_coords) == 1) {
Rect2i source_rect = atlas_source->get_runtime_tile_texture_region(p_atlas_coords, 0);
tex->draw_rect_region(p_canvas_item, dest_rect, source_rect, modulate, transpose, p_tile_set->is_uv_clipping());
} else {
real_t speed = atlas_source->get_tile_animation_speed(p_atlas_coords);
real_t animation_duration = atlas_source->get_tile_animation_total_duration(p_atlas_coords) / speed;
real_t time = 0.0;
for (int frame = 0; frame < atlas_source->get_tile_animation_frames_count(p_atlas_coords); frame++) {
real_t frame_duration = atlas_source->get_tile_animation_frame_duration(p_atlas_coords, frame) / speed;
RenderingServer::get_singleton()->canvas_item_add_animation_slice(p_canvas_item, animation_duration, time, time + frame_duration, 0.0);
Rect2i source_rect = atlas_source->get_runtime_tile_texture_region(p_atlas_coords, frame);
tex->draw_rect_region(p_canvas_item, dest_rect, source_rect, modulate, transpose, p_tile_set->is_uv_clipping());
time += frame_duration;
}
RenderingServer::get_singleton()->canvas_item_add_animation_slice(p_canvas_item, 1.0, 0.0, 1.0, 0.0);
}
}
}
/////////////////////////////// Physics //////////////////////////////////////
void TileMap::_physics_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
bool in_editor = false;
#ifdef TOOLS_ENABLED
in_editor = Engine::get_singleton()->is_editor_hint();
#endif
if (is_inside_tree() && collision_animatable && !in_editor) {
// Update transform on the physics tick when in animatable mode.
last_valid_transform = new_transform;
set_notify_local_transform(false);
set_global_transform(new_transform);
set_notify_local_transform(true);
}
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
bool in_editor = false;
#ifdef TOOLS_ENABLED
in_editor = Engine::get_singleton()->is_editor_hint();
#endif
if (is_inside_tree() && (!collision_animatable || in_editor)) {
// Update the new transform directly if we are not in animatable mode.
Transform2D global_transform = get_global_transform();
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
TileMapQuadrant &q = E.value;
for (RID body : q.bodies) {
Transform2D xform;
xform.set_origin(map_to_local(bodies_coords[body]));
xform = global_transform * xform;
PhysicsServer2D::get_singleton()->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
}
}
}
}
} break;
case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: {
bool in_editor = false;
#ifdef TOOLS_ENABLED
in_editor = Engine::get_singleton()->is_editor_hint();
#endif
if (is_inside_tree() && !in_editor && collision_animatable) {
// Only active when animatable. Send the new transform to the physics...
new_transform = get_global_transform();
for (int layer = 0; layer < (int)layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
TileMapQuadrant &q = E.value;
for (RID body : q.bodies) {
Transform2D xform;
xform.set_origin(map_to_local(bodies_coords[body]));
xform = new_transform * xform;
PhysicsServer2D::get_singleton()->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
}
}
}
// ... but then revert changes.
set_notify_local_transform(false);
set_global_transform(last_valid_transform);
set_notify_local_transform(true);
}
} break;
}
}
void TileMap::_physics_update_dirty_quadrants(SelfList<TileMapQuadrant>::List &r_dirty_quadrant_list) {
ERR_FAIL_COND(!is_inside_tree());
ERR_FAIL_COND(!tile_set.is_valid());
Transform2D global_transform = get_global_transform();
last_valid_transform = global_transform;
new_transform = global_transform;
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
RID space = get_world_2d()->get_space();
SelfList<TileMapQuadrant> *q_list_element = r_dirty_quadrant_list.first();
while (q_list_element) {
TileMapQuadrant &q = *q_list_element->self();
// Clear bodies.
for (RID body : q.bodies) {
bodies_coords.erase(body);
ps->free(body);
}
q.bodies.clear();
// Recreate bodies and shapes.
for (const Vector2i &E_cell : q.cells) {
TileMapCell c = get_cell(q.layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (q.runtime_tile_data_cache.has(E_cell)) {
tile_data = q.runtime_tile_data_cache[E_cell];
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
for (int tile_set_physics_layer = 0; tile_set_physics_layer < tile_set->get_physics_layers_count(); tile_set_physics_layer++) {
Ref<PhysicsMaterial> physics_material = tile_set->get_physics_layer_physics_material(tile_set_physics_layer);
uint32_t physics_layer = tile_set->get_physics_layer_collision_layer(tile_set_physics_layer);
uint32_t physics_mask = tile_set->get_physics_layer_collision_mask(tile_set_physics_layer);
// Create the body.
RID body = ps->body_create();
bodies_coords[body] = E_cell;
ps->body_set_mode(body, collision_animatable ? PhysicsServer2D::BODY_MODE_KINEMATIC : PhysicsServer2D::BODY_MODE_STATIC);
ps->body_set_space(body, space);
Transform2D xform;
xform.set_origin(map_to_local(E_cell));
xform = global_transform * xform;
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
ps->body_attach_object_instance_id(body, get_instance_id());
ps->body_set_collision_layer(body, physics_layer);
ps->body_set_collision_mask(body, physics_mask);
ps->body_set_pickable(body, false);
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY, tile_data->get_constant_linear_velocity(tile_set_physics_layer));
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY, tile_data->get_constant_angular_velocity(tile_set_physics_layer));
if (!physics_material.is_valid()) {
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_BOUNCE, 0);
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_FRICTION, 1);
} else {
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_BOUNCE, physics_material->computed_bounce());
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_FRICTION, physics_material->computed_friction());
}
q.bodies.push_back(body);
// Add the shapes to the body.
int body_shape_index = 0;
for (int polygon_index = 0; polygon_index < tile_data->get_collision_polygons_count(tile_set_physics_layer); polygon_index++) {
// Iterate over the polygons.
bool one_way_collision = tile_data->is_collision_polygon_one_way(tile_set_physics_layer, polygon_index);
float one_way_collision_margin = tile_data->get_collision_polygon_one_way_margin(tile_set_physics_layer, polygon_index);
int shapes_count = tile_data->get_collision_polygon_shapes_count(tile_set_physics_layer, polygon_index);
for (int shape_index = 0; shape_index < shapes_count; shape_index++) {
// Add decomposed convex shapes.
Ref<ConvexPolygonShape2D> shape = tile_data->get_collision_polygon_shape(tile_set_physics_layer, polygon_index, shape_index);
ps->body_add_shape(body, shape->get_rid());
ps->body_set_shape_as_one_way_collision(body, body_shape_index, one_way_collision, one_way_collision_margin);
body_shape_index++;
}
}
}
}
}
}
q_list_element = q_list_element->next();
}
}
void TileMap::_physics_cleanup_quadrant(TileMapQuadrant *p_quadrant) {
// Remove a quadrant.
for (RID body : p_quadrant->bodies) {
bodies_coords.erase(body);
PhysicsServer2D::get_singleton()->free(body);
}
p_quadrant->bodies.clear();
}
void TileMap::_physics_draw_quadrant_debug(TileMapQuadrant *p_quadrant) {
// Draw the debug collision shapes.
ERR_FAIL_COND(!tile_set.is_valid());
if (!get_tree()) {
return;
}
bool show_collision = false;
switch (collision_visibility_mode) {
case TileMap::VISIBILITY_MODE_DEFAULT:
show_collision = !Engine::get_singleton()->is_editor_hint() && (get_tree() && get_tree()->is_debugging_collisions_hint());
break;
case TileMap::VISIBILITY_MODE_FORCE_HIDE:
show_collision = false;
break;
case TileMap::VISIBILITY_MODE_FORCE_SHOW:
show_collision = true;
break;
}
if (!show_collision) {
return;
}
RenderingServer *rs = RenderingServer::get_singleton();
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
Color debug_collision_color = get_tree()->get_debug_collisions_color();
Vector<Color> color;
color.push_back(debug_collision_color);
Vector2 quadrant_pos = map_to_local(p_quadrant->coords * get_effective_quadrant_size(p_quadrant->layer));
Transform2D qudrant_xform;
qudrant_xform.set_origin(quadrant_pos);
Transform2D global_transform_inv = (get_global_transform() * qudrant_xform).affine_inverse();
for (RID body : p_quadrant->bodies) {
Transform2D xform = Transform2D(ps->body_get_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM)) * global_transform_inv;
rs->canvas_item_add_set_transform(p_quadrant->debug_canvas_item, xform);
for (int shape_index = 0; shape_index < ps->body_get_shape_count(body); shape_index++) {
const RID &shape = ps->body_get_shape(body, shape_index);
PhysicsServer2D::ShapeType type = ps->shape_get_type(shape);
if (type == PhysicsServer2D::SHAPE_CONVEX_POLYGON) {
Vector<Vector2> polygon = ps->shape_get_data(shape);
rs->canvas_item_add_polygon(p_quadrant->debug_canvas_item, polygon, color);
} else {
WARN_PRINT("Wrong shape type for a tile, should be SHAPE_CONVEX_POLYGON.");
}
}
rs->canvas_item_add_set_transform(p_quadrant->debug_canvas_item, Transform2D());
}
};
/////////////////////////////// Navigation //////////////////////////////////////
void TileMap::_navigation_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_TRANSFORM_CHANGED: {
if (is_inside_tree()) {
for (int layer = 0; layer < (int)layers.size(); layer++) {
Transform2D tilemap_xform = get_global_transform();
for (KeyValue<Vector2i, TileMapQuadrant> &E_quadrant : layers[layer].quadrant_map) {
TileMapQuadrant &q = E_quadrant.value;
for (const KeyValue<Vector2i, Vector<RID>> &E_region : q.navigation_regions) {
for (int layer_index = 0; layer_index < E_region.value.size(); layer_index++) {
RID region = E_region.value[layer_index];
if (!region.is_valid()) {
continue;
}
Transform2D tile_transform;
tile_transform.set_origin(map_to_local(E_region.key));
NavigationServer2D::get_singleton()->region_set_transform(region, tilemap_xform * tile_transform);
}
}
}
}
}
} break;
}
}
void TileMap::_navigation_update_dirty_quadrants(SelfList<TileMapQuadrant>::List &r_dirty_quadrant_list) {
ERR_FAIL_COND(!is_inside_tree());
ERR_FAIL_COND(!tile_set.is_valid());
Transform2D tilemap_xform = get_global_transform();
SelfList<TileMapQuadrant> *q_list_element = r_dirty_quadrant_list.first();
while (q_list_element) {
TileMapQuadrant &q = *q_list_element->self();
// Clear navigation shapes in the quadrant.
for (const KeyValue<Vector2i, Vector<RID>> &E : q.navigation_regions) {
for (int i = 0; i < E.value.size(); i++) {
RID region = E.value[i];
if (!region.is_valid()) {
continue;
}
NavigationServer2D::get_singleton()->region_set_map(region, RID());
}
}
q.navigation_regions.clear();
// Get the navigation polygons and create regions.
for (const Vector2i &E_cell : q.cells) {
TileMapCell c = get_cell(q.layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (q.runtime_tile_data_cache.has(E_cell)) {
tile_data = q.runtime_tile_data_cache[E_cell];
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
q.navigation_regions[E_cell].resize(tile_set->get_navigation_layers_count());
for (int layer_index = 0; layer_index < tile_set->get_navigation_layers_count(); layer_index++) {
Ref<NavigationPolygon> navpoly;
navpoly = tile_data->get_navigation_polygon(layer_index);
if (navpoly.is_valid()) {
Transform2D tile_transform;
tile_transform.set_origin(map_to_local(E_cell));
RID region = NavigationServer2D::get_singleton()->region_create();
NavigationServer2D::get_singleton()->region_set_map(region, get_world_2d()->get_navigation_map());
NavigationServer2D::get_singleton()->region_set_transform(region, tilemap_xform * tile_transform);
NavigationServer2D::get_singleton()->region_set_navpoly(region, navpoly);
q.navigation_regions[E_cell].write[layer_index] = region;
}
}
}
}
}
q_list_element = q_list_element->next();
}
}
void TileMap::_navigation_cleanup_quadrant(TileMapQuadrant *p_quadrant) {
// Clear navigation shapes in the quadrant.
for (const KeyValue<Vector2i, Vector<RID>> &E : p_quadrant->navigation_regions) {
for (int i = 0; i < E.value.size(); i++) {
RID region = E.value[i];
if (!region.is_valid()) {
continue;
}
NavigationServer2D::get_singleton()->free(region);
}
}
p_quadrant->navigation_regions.clear();
}
void TileMap::_navigation_draw_quadrant_debug(TileMapQuadrant *p_quadrant) {
// Draw the debug collision shapes.
ERR_FAIL_COND(!tile_set.is_valid());
if (!get_tree()) {
return;
}
bool show_navigation = false;
switch (navigation_visibility_mode) {
case TileMap::VISIBILITY_MODE_DEFAULT:
show_navigation = !Engine::get_singleton()->is_editor_hint() && (get_tree() && get_tree()->is_debugging_navigation_hint());
break;
case TileMap::VISIBILITY_MODE_FORCE_HIDE:
show_navigation = false;
break;
case TileMap::VISIBILITY_MODE_FORCE_SHOW:
show_navigation = true;
break;
}
if (!show_navigation) {
return;
}
RenderingServer *rs = RenderingServer::get_singleton();
Color color = Color(0.5, 1.0, 1.0, 1.0);
#ifdef DEBUG_ENABLED
color = NavigationServer3D::get_singleton()->get_debug_navigation_geometry_face_color();
#endif // DEBUG_ENABLED
RandomPCG rand;
Vector2 quadrant_pos = map_to_local(p_quadrant->coords * get_effective_quadrant_size(p_quadrant->layer));
for (const Vector2i &E_cell : p_quadrant->cells) {
TileMapCell c = get_cell(p_quadrant->layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (p_quadrant->runtime_tile_data_cache.has(E_cell)) {
tile_data = p_quadrant->runtime_tile_data_cache[E_cell];
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
Transform2D xform;
xform.set_origin(map_to_local(E_cell) - quadrant_pos);
rs->canvas_item_add_set_transform(p_quadrant->debug_canvas_item, xform);
for (int layer_index = 0; layer_index < tile_set->get_navigation_layers_count(); layer_index++) {
Ref<NavigationPolygon> navpoly = tile_data->get_navigation_polygon(layer_index);
if (navpoly.is_valid()) {
PackedVector2Array navigation_polygon_vertices = navpoly->get_vertices();
for (int i = 0; i < navpoly->get_polygon_count(); i++) {
// An array of vertices for this polygon.
Vector<int> polygon = navpoly->get_polygon(i);
Vector<Vector2> vertices;
vertices.resize(polygon.size());
for (int j = 0; j < polygon.size(); j++) {
ERR_FAIL_INDEX(polygon[j], navigation_polygon_vertices.size());
vertices.write[j] = navigation_polygon_vertices[polygon[j]];
}
// Generate the polygon color, slightly randomly modified from the settings one.
Color random_variation_color;
random_variation_color.set_hsv(color.get_h() + rand.random(-1.0, 1.0) * 0.05, color.get_s(), color.get_v() + rand.random(-1.0, 1.0) * 0.1);
random_variation_color.a = color.a;
Vector<Color> colors;
colors.push_back(random_variation_color);
rs->canvas_item_add_polygon(p_quadrant->debug_canvas_item, vertices, colors);
}
}
}
}
}
}
}
/////////////////////////////// Scenes //////////////////////////////////////
void TileMap::_scenes_update_dirty_quadrants(SelfList<TileMapQuadrant>::List &r_dirty_quadrant_list) {
ERR_FAIL_COND(!tile_set.is_valid());
SelfList<TileMapQuadrant> *q_list_element = r_dirty_quadrant_list.first();
while (q_list_element) {
TileMapQuadrant &q = *q_list_element->self();
// Clear the scenes.
for (const KeyValue<Vector2i, String> &E : q.scenes) {
Node *node = get_node_or_null(E.value);
if (node) {
node->queue_delete();
}
}
q.scenes.clear();
// Recreate the scenes.
for (const Vector2i &E_cell : q.cells) {
const TileMapCell &c = get_cell(q.layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetScenesCollectionSource *scenes_collection_source = Object::cast_to<TileSetScenesCollectionSource>(source);
if (scenes_collection_source) {
Ref<PackedScene> packed_scene = scenes_collection_source->get_scene_tile_scene(c.alternative_tile);
if (packed_scene.is_valid()) {
Node *scene = packed_scene->instantiate();
Control *scene_as_control = Object::cast_to<Control>(scene);
Node2D *scene_as_node2d = Object::cast_to<Node2D>(scene);
if (scene_as_control) {
scene_as_control->set_position(map_to_local(E_cell) + scene_as_control->get_position());
} else if (scene_as_node2d) {
Transform2D xform;
xform.set_origin(map_to_local(E_cell));
scene_as_node2d->set_transform(xform * scene_as_node2d->get_transform());
}
add_child(scene);
q.scenes[E_cell] = scene->get_name();
}
}
}
}
q_list_element = q_list_element->next();
}
}
void TileMap::_scenes_cleanup_quadrant(TileMapQuadrant *p_quadrant) {
// Clear the scenes.
for (const KeyValue<Vector2i, String> &E : p_quadrant->scenes) {
Node *node = get_node_or_null(E.value);
if (node) {
node->queue_delete();
}
}
p_quadrant->scenes.clear();
}
void TileMap::_scenes_draw_quadrant_debug(TileMapQuadrant *p_quadrant) {
ERR_FAIL_COND(!tile_set.is_valid());
if (!Engine::get_singleton()->is_editor_hint()) {
return;
}
// Draw a placeholder for scenes needing one.
RenderingServer *rs = RenderingServer::get_singleton();
Vector2 quadrant_pos = map_to_local(p_quadrant->coords * get_effective_quadrant_size(p_quadrant->layer));
for (const Vector2i &E_cell : p_quadrant->cells) {
const TileMapCell &c = get_cell(p_quadrant->layer, E_cell, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetScenesCollectionSource *scenes_collection_source = Object::cast_to<TileSetScenesCollectionSource>(source);
if (scenes_collection_source) {
if (!scenes_collection_source->get_scene_tile_scene(c.alternative_tile).is_valid() || scenes_collection_source->get_scene_tile_display_placeholder(c.alternative_tile)) {
// Generate a random color from the hashed values of the tiles.
Array to_hash;
to_hash.push_back(c.source_id);
to_hash.push_back(c.alternative_tile);
uint32_t hash = RandomPCG(to_hash.hash()).rand();
Color color;
color = color.from_hsv(
(float)((hash >> 24) & 0xFF) / 256.0,
Math::lerp(0.5, 1.0, (float)((hash >> 16) & 0xFF) / 256.0),
Math::lerp(0.5, 1.0, (float)((hash >> 8) & 0xFF) / 256.0),
0.8);
// Draw a placeholder tile.
Transform2D xform;
xform.set_origin(map_to_local(E_cell) - quadrant_pos);
rs->canvas_item_add_set_transform(p_quadrant->debug_canvas_item, xform);
rs->canvas_item_add_circle(p_quadrant->debug_canvas_item, Vector2(), MIN(tile_set->get_tile_size().x, tile_set->get_tile_size().y) / 4.0, color);
}
}
}
}
}
void TileMap::set_cell(int p_layer, const Vector2i &p_coords, int p_source_id, const Vector2i p_atlas_coords, int p_alternative_tile) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
// Set the current cell tile (using integer position).
HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
Vector2i pk(p_coords);
HashMap<Vector2i, TileMapCell>::Iterator E = tile_map.find(pk);
int source_id = p_source_id;
Vector2i atlas_coords = p_atlas_coords;
int alternative_tile = p_alternative_tile;
if ((source_id == TileSet::INVALID_SOURCE || atlas_coords == TileSetSource::INVALID_ATLAS_COORDS || alternative_tile == TileSetSource::INVALID_TILE_ALTERNATIVE) &&
(source_id != TileSet::INVALID_SOURCE || atlas_coords != TileSetSource::INVALID_ATLAS_COORDS || alternative_tile != TileSetSource::INVALID_TILE_ALTERNATIVE)) {
WARN_PRINT("Setting a cell as empty requires both source_id, atlas_coord and alternative_tile to be set to their respective \"invalid\" values. Values were thus changes accordingly.");
source_id = TileSet::INVALID_SOURCE;
atlas_coords = TileSetSource::INVALID_ATLAS_COORDS;
alternative_tile = TileSetSource::INVALID_TILE_ALTERNATIVE;
}
if (!E && source_id == TileSet::INVALID_SOURCE) {
return; // Nothing to do, the tile is already empty.
}
// Get the quadrant
Vector2i qk = _coords_to_quadrant_coords(p_layer, pk);
HashMap<Vector2i, TileMapQuadrant>::Iterator Q = layers[p_layer].quadrant_map.find(qk);
if (source_id == TileSet::INVALID_SOURCE) {
// Erase existing cell in the tile map.
tile_map.erase(pk);
// Erase existing cell in the quadrant.
ERR_FAIL_COND(!Q);
TileMapQuadrant &q = Q->value;
q.cells.erase(pk);
// Remove or make the quadrant dirty.
if (q.cells.size() == 0) {
_erase_quadrant(Q);
} else {
_make_quadrant_dirty(Q);
}
used_rect_cache_dirty = true;
} else {
if (!E) {
// Insert a new cell in the tile map.
E = tile_map.insert(pk, TileMapCell());
// Create a new quadrant if needed, then insert the cell if needed.
if (!Q) {
Q = _create_quadrant(p_layer, qk);
}
TileMapQuadrant &q = Q->value;
q.cells.insert(pk);
} else {
ERR_FAIL_COND(!Q); // TileMapQuadrant should exist...
if (E->value.source_id == source_id && E->value.get_atlas_coords() == atlas_coords && E->value.alternative_tile == alternative_tile) {
return; // Nothing changed.
}
}
TileMapCell &c = E->value;
c.source_id = source_id;
c.set_atlas_coords(atlas_coords);
c.alternative_tile = alternative_tile;
_make_quadrant_dirty(Q);
used_rect_cache_dirty = true;
}
}
void TileMap::erase_cell(int p_layer, const Vector2i &p_coords) {
set_cell(p_layer, p_coords, TileSet::INVALID_SOURCE, TileSetSource::INVALID_ATLAS_COORDS, TileSetSource::INVALID_TILE_ALTERNATIVE);
}
int TileMap::get_cell_source_id(int p_layer, const Vector2i &p_coords, bool p_use_proxies) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), TileSet::INVALID_SOURCE);
// Get a cell source id from position
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
HashMap<Vector2i, TileMapCell>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSet::INVALID_SOURCE;
}
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.source_id, E->value.get_atlas_coords(), E->value.alternative_tile);
return proxyed[0];
}
return E->value.source_id;
}
Vector2i TileMap::get_cell_atlas_coords(int p_layer, const Vector2i &p_coords, bool p_use_proxies) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), TileSetSource::INVALID_ATLAS_COORDS);
// Get a cell source id from position
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
HashMap<Vector2i, TileMapCell>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSetSource::INVALID_ATLAS_COORDS;
}
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.source_id, E->value.get_atlas_coords(), E->value.alternative_tile);
return proxyed[1];
}
return E->value.get_atlas_coords();
}
int TileMap::get_cell_alternative_tile(int p_layer, const Vector2i &p_coords, bool p_use_proxies) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), TileSetSource::INVALID_TILE_ALTERNATIVE);
// Get a cell source id from position
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
HashMap<Vector2i, TileMapCell>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSetSource::INVALID_TILE_ALTERNATIVE;
}
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.source_id, E->value.get_atlas_coords(), E->value.alternative_tile);
return proxyed[2];
}
return E->value.alternative_tile;
}
TileData *TileMap::get_cell_tile_data(int p_layer, const Vector2i &p_coords, bool p_use_proxies) const {
int source_id = get_cell_source_id(p_layer, p_coords, p_use_proxies);
ERR_FAIL_COND_V_MSG(source_id == TileSet::INVALID_SOURCE, nullptr, vformat("Invalid TileSetSource at cell %s. Make sure a tile exists at this cell.", p_coords));
Ref<TileSetAtlasSource> source = tile_set->get_source(source_id);
if (source.is_valid()) {
return source->get_tile_data(get_cell_atlas_coords(p_layer, p_coords, p_use_proxies), get_cell_alternative_tile(p_layer, p_coords, p_use_proxies));
}
return nullptr;
}
Ref<TileMapPattern> TileMap::get_pattern(int p_layer, TypedArray<Vector2i> p_coords_array) {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), nullptr);
ERR_FAIL_COND_V(!tile_set.is_valid(), nullptr);
Ref<TileMapPattern> output;
output.instantiate();
if (p_coords_array.is_empty()) {
return output;
}
Vector2i min = Vector2i(p_coords_array[0]);
for (int i = 1; i < p_coords_array.size(); i++) {
min = min.min(p_coords_array[i]);
}
Vector<Vector2i> coords_in_pattern_array;
coords_in_pattern_array.resize(p_coords_array.size());
Vector2i ensure_positive_offset;
for (int i = 0; i < p_coords_array.size(); i++) {
Vector2i coords = p_coords_array[i];
Vector2i coords_in_pattern = coords - min;
if (tile_set->get_tile_shape() != TileSet::TILE_SHAPE_SQUARE) {
if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(min.y % 2) && bool(coords_in_pattern.y % 2)) {
coords_in_pattern.x -= 1;
if (coords_in_pattern.x < 0) {
ensure_positive_offset.x = 1;
}
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(min.x % 2) && bool(coords_in_pattern.x % 2)) {
coords_in_pattern.y -= 1;
if (coords_in_pattern.y < 0) {
ensure_positive_offset.y = 1;
}
}
} else if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED_OFFSET) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(min.y % 2) && bool(coords_in_pattern.y % 2)) {
coords_in_pattern.x += 1;
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(min.x % 2) && bool(coords_in_pattern.x % 2)) {
coords_in_pattern.y += 1;
}
}
}
coords_in_pattern_array.write[i] = coords_in_pattern;
}
for (int i = 0; i < coords_in_pattern_array.size(); i++) {
Vector2i coords = p_coords_array[i];
Vector2i coords_in_pattern = coords_in_pattern_array[i];
output->set_cell(coords_in_pattern + ensure_positive_offset, get_cell_source_id(p_layer, coords), get_cell_atlas_coords(p_layer, coords), get_cell_alternative_tile(p_layer, coords));
}
return output;
}
Vector2i TileMap::map_pattern(Vector2i p_position_in_tilemap, Vector2i p_coords_in_pattern, Ref<TileMapPattern> p_pattern) {
ERR_FAIL_COND_V(p_pattern.is_null(), Vector2i());
ERR_FAIL_COND_V(!p_pattern->has_cell(p_coords_in_pattern), Vector2i());
Vector2i output = p_position_in_tilemap + p_coords_in_pattern;
if (tile_set->get_tile_shape() != TileSet::TILE_SHAPE_SQUARE) {
if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(p_position_in_tilemap.y % 2) && bool(p_coords_in_pattern.y % 2)) {
output.x += 1;
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(p_position_in_tilemap.x % 2) && bool(p_coords_in_pattern.x % 2)) {
output.y += 1;
}
} else if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED_OFFSET) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(p_position_in_tilemap.y % 2) && bool(p_coords_in_pattern.y % 2)) {
output.x -= 1;
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(p_position_in_tilemap.x % 2) && bool(p_coords_in_pattern.x % 2)) {
output.y -= 1;
}
}
}
return output;
}
void TileMap::set_pattern(int p_layer, Vector2i p_position, const Ref<TileMapPattern> p_pattern) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
ERR_FAIL_COND(!tile_set.is_valid());
TypedArray<Vector2i> used_cells = p_pattern->get_used_cells();
for (int i = 0; i < used_cells.size(); i++) {
Vector2i coords = map_pattern(p_position, used_cells[i], p_pattern);
set_cell(p_layer, coords, p_pattern->get_cell_source_id(used_cells[i]), p_pattern->get_cell_atlas_coords(used_cells[i]), p_pattern->get_cell_alternative_tile(used_cells[i]));
}
}
TileSet::TerrainsPattern TileMap::_get_best_terrain_pattern_for_constraints(int p_terrain_set, const Vector2i &p_position, RBSet<TerrainConstraint> p_constraints) {
if (!tile_set.is_valid()) {
return TileSet::TerrainsPattern();
}
// Returns all tiles compatible with the given constraints.
RBMap<TileSet::TerrainsPattern, int> terrain_pattern_score;
RBSet<TileSet::TerrainsPattern> pattern_set = tile_set->get_terrains_pattern_set(p_terrain_set);
ERR_FAIL_COND_V(pattern_set.is_empty(), TileSet::TerrainsPattern());
for (TileSet::TerrainsPattern &terrain_pattern : pattern_set) {
int score = 0;
// Check the center bit constraint
TerrainConstraint terrain_constraint = TerrainConstraint(this, p_position, terrain_pattern.get_terrain());
RBSet<TerrainConstraint>::Element *in_set_constraint_element = p_constraints.find(terrain_constraint);
if (in_set_constraint_element && in_set_constraint_element->get().get_terrain() != terrain_constraint.get_terrain()) {
score += in_set_constraint_element->get().get_priority();
}
// Check the surrounding bits
for (int i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
// Check if the bit is compatible with the constraints.
TerrainConstraint terrain_bit_constraint = TerrainConstraint(this, p_position, bit, terrain_pattern.get_terrain_peering_bit(bit));
in_set_constraint_element = p_constraints.find(terrain_bit_constraint);
if (in_set_constraint_element && in_set_constraint_element->get().get_terrain() != terrain_bit_constraint.get_terrain()) {
score += in_set_constraint_element->get().get_priority();
}
}
}
terrain_pattern_score[terrain_pattern] = score;
}
// Compute the minimum score
TileSet::TerrainsPattern min_score_pattern;
int min_score = INT32_MAX;
for (KeyValue<TileSet::TerrainsPattern, int> E : terrain_pattern_score) {
if (E.value < min_score) {
min_score_pattern = E.key;
min_score = E.value;
}
}
return min_score_pattern;
}
RBSet<TileMap::TerrainConstraint> TileMap::_get_terrain_constraints_from_added_pattern(Vector2i p_position, int p_terrain_set, TileSet::TerrainsPattern p_terrains_pattern) const {
if (!tile_set.is_valid()) {
return RBSet<TerrainConstraint>();
}
// Compute the constraints needed from the surrounding tiles.
RBSet<TerrainConstraint> output;
output.insert(TerrainConstraint(this, p_position, p_terrains_pattern.get_terrain()));
for (uint32_t i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) {
TileSet::CellNeighbor side = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, side)) {
TerrainConstraint c = TerrainConstraint(this, p_position, side, p_terrains_pattern.get_terrain_peering_bit(side));
output.insert(c);
}
}
return output;
}
RBSet<TileMap::TerrainConstraint> TileMap::_get_terrain_constraints_from_cells_list(int p_layer, const RBSet<Vector2i> &p_cell_list, int p_terrain_set, bool p_ignore_empty_terrains) const {
if (!tile_set.is_valid()) {
return RBSet<TerrainConstraint>();
}
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), RBSet<TerrainConstraint>());
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), RBSet<TerrainConstraint>());
// Build a set of dummy constraints to get the constrained points.
RBSet<TerrainConstraint> dummy_constraints;
for (const Vector2i &E : p_cell_list) {
for (int i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) { // Iterates over sides.
TileSet::CellNeighbor bit = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
dummy_constraints.insert(TerrainConstraint(this, E, bit, -1));
}
}
}
// For each constrained point, we get all overlapping tiles, and select the most adequate terrain for it.
RBSet<TerrainConstraint> constraints;
for (const TerrainConstraint &E_constraint : dummy_constraints) {
HashMap<int, int> terrain_count;
// Count the number of occurrences per terrain.
HashMap<Vector2i, TileSet::CellNeighbor> overlapping_terrain_bits = E_constraint.get_overlapping_coords_and_peering_bits();
for (const KeyValue<Vector2i, TileSet::CellNeighbor> &E_overlapping : overlapping_terrain_bits) {
TileData *neighbor_tile_data = nullptr;
TileMapCell neighbor_cell = get_cell(p_layer, E_overlapping.key);
if (neighbor_cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(neighbor_cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
TileData *tile_data = atlas_source->get_tile_data(neighbor_cell.get_atlas_coords(), neighbor_cell.alternative_tile);
if (tile_data && tile_data->get_terrain_set() == p_terrain_set) {
neighbor_tile_data = tile_data;
}
}
}
int terrain = neighbor_tile_data ? neighbor_tile_data->get_terrain_peering_bit(TileSet::CellNeighbor(E_overlapping.value)) : -1;
if (!p_ignore_empty_terrains || terrain >= 0) {
if (!terrain_count.has(terrain)) {
terrain_count[terrain] = 0;
}
terrain_count[terrain] += 1;
}
}
// Get the terrain with the max number of occurrences.
int max = 0;
int max_terrain = -1;
for (const KeyValue<int, int> &E_terrain_count : terrain_count) {
if (E_terrain_count.value > max) {
max = E_terrain_count.value;
max_terrain = E_terrain_count.key;
}
}
// Set the adequate terrain.
if (max > 0) {
TerrainConstraint c = E_constraint;
c.set_terrain(max_terrain);
constraints.insert(c);
}
}
// Add the centers as constraints
for (Vector2i E_coords : p_cell_list) {
TileData *tile_data = nullptr;
TileMapCell cell = get_cell(p_layer, E_coords);
if (cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
}
}
int terrain = (tile_data && tile_data->get_terrain_set() == p_terrain_set) ? tile_data->get_terrain() : -1;
if (!p_ignore_empty_terrains || terrain >= 0) {
constraints.insert(TerrainConstraint(this, E_coords, terrain));
}
}
return constraints;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMap::terrain_fill_constraints(const Vector<Vector2i> &p_to_replace, int p_terrain_set, const RBSet<TerrainConstraint> p_constraints) {
if (!tile_set.is_valid()) {
return HashMap<Vector2i, TileSet::TerrainsPattern>();
}
// Copy the constraints set.
RBSet<TerrainConstraint> constraints = p_constraints;
// Output map.
HashMap<Vector2i, TileSet::TerrainsPattern> output;
// Add all positions to a set.
for (int i = 0; i < p_to_replace.size(); i++) {
const Vector2i &coords = p_to_replace[i];
// Select the best pattern for the given constraints
TileSet::TerrainsPattern pattern = _get_best_terrain_pattern_for_constraints(p_terrain_set, coords, constraints);
// Update the constraint set with the new ones
RBSet<TerrainConstraint> new_constraints = _get_terrain_constraints_from_added_pattern(coords, p_terrain_set, pattern);
for (const TerrainConstraint &E_constraint : new_constraints) {
if (constraints.has(E_constraint)) {
constraints.erase(E_constraint);
}
TerrainConstraint c = E_constraint;
c.set_priority(5);
constraints.insert(c);
}
output[coords] = pattern;
}
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMap::terrain_fill_connect(int p_layer, const Vector<Vector2i> &p_coords_array, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Build list and set of tiles that can be modified (painted and their surroundings)
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
RBSet<Vector2i> painted_set;
for (int i = p_coords_array.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_coords_array[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
painted_set.insert(coords);
}
for (Vector2i coords : p_coords_array) {
// Find the adequate neighbor
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
Vector2i neighbor = get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
// Build a set, out of the possibly modified tiles, of the one with a center bit that is set (or will be) to the painted terrain
RBSet<Vector2i> cells_with_terrain_center_bit;
for (Vector2i coords : can_modify_set) {
bool connect = false;
if (painted_set.has(coords)) {
connect = true;
} else {
// Get the center bit of the cell
TileData *tile_data = nullptr;
TileMapCell cell = get_cell(p_layer, coords);
if (cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
}
}
if (tile_data && tile_data->get_terrain_set() == p_terrain_set && tile_data->get_terrain() == p_terrain) {
connect = true;
}
}
if (connect) {
cells_with_terrain_center_bit.insert(coords);
}
}
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_coords_array) {
// Constraints on the center bit.
TerrainConstraint c = TerrainConstraint(this, coords, p_terrain);
c.set_priority(10);
constraints.insert(c);
// Constraints on the connecting bits.
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
c = TerrainConstraint(this, coords, bit, p_terrain);
c.set_priority(10);
if ((int(bit) % 2) == 0) {
// Side peering bits: add the constraint if the center is of the same terrain
Vector2i neighbor = get_neighbor_cell(coords, bit);
if (cells_with_terrain_center_bit.has(neighbor)) {
constraints.insert(c);
}
} else {
// Corner peering bits: add the constraint if all tiles on the constraint has the same center bit
HashMap<Vector2i, TileSet::CellNeighbor> overlapping_terrain_bits = c.get_overlapping_coords_and_peering_bits();
bool valid = true;
for (KeyValue<Vector2i, TileSet::CellNeighbor> kv : overlapping_terrain_bits) {
if (!cells_with_terrain_center_bit.has(kv.key)) {
valid = false;
break;
}
}
if (valid) {
constraints.insert(c);
}
}
}
}
}
// Fills in the constraint list from existing tiles.
for (TerrainConstraint c : _get_terrain_constraints_from_cells_list(p_layer, can_modify_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMap::terrain_fill_path(int p_layer, const Vector<Vector2i> &p_path, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Make sure the path is correct and build the peering bit list while doing it.
Vector<TileSet::CellNeighbor> neighbor_list;
for (int i = 0; i < p_path.size() - 1; i++) {
// Find the adequate neighbor
TileSet::CellNeighbor found_bit = TileSet::CELL_NEIGHBOR_MAX;
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
if (get_neighbor_cell(p_path[i], bit) == p_path[i + 1]) {
found_bit = bit;
break;
}
}
}
ERR_FAIL_COND_V_MSG(found_bit == TileSet::CELL_NEIGHBOR_MAX, output, vformat("Invalid terrain path, %s is not a neighbouring tile of %s", p_path[i + 1], p_path[i]));
neighbor_list.push_back(found_bit);
}
// Build list and set of tiles that can be modified (painted and their surroundings)
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
for (int i = p_path.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_path[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
}
for (Vector2i coords : p_path) {
// Find the adequate neighbor
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
Vector2i neighbor = get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_path) {
// Constraints on the center bit
TerrainConstraint c = TerrainConstraint(this, coords, p_terrain);
c.set_priority(10);
constraints.insert(c);
}
for (int i = 0; i < p_path.size() - 1; i++) {
// Constraints on the peering bits.
TerrainConstraint c = TerrainConstraint(this, p_path[i], neighbor_list[i], p_terrain);
c.set_priority(10);
constraints.insert(c);
}
// Fills in the constraint list from existing tiles.
for (TerrainConstraint c : _get_terrain_constraints_from_cells_list(p_layer, can_modify_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMap::terrain_fill_pattern(int p_layer, const Vector<Vector2i> &p_coords_array, int p_terrain_set, TileSet::TerrainsPattern p_terrains_pattern, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Build list and set of tiles that can be modified (painted and their surroundings).
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
for (int i = p_coords_array.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_coords_array[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
}
for (Vector2i coords : p_coords_array) {
// Find the adequate neighbor
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
Vector2i neighbor = get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
// Add constraint by the new ones.
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_coords_array) {
// Constraints on the center bit
RBSet<TerrainConstraint> added_constraints = _get_terrain_constraints_from_added_pattern(coords, p_terrain_set, p_terrains_pattern);
for (TerrainConstraint c : added_constraints) {
c.set_priority(10);
constraints.insert(c);
}
}
// Fills in the constraint list from modified tiles border.
for (TerrainConstraint c : _get_terrain_constraints_from_cells_list(p_layer, can_modify_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
void TileMap::set_cells_terrain_connect(int p_layer, TypedArray<Vector2i> p_cells, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
ERR_FAIL_COND(!tile_set.is_valid());
ERR_FAIL_INDEX(p_layer, (int)layers.size());
ERR_FAIL_INDEX(p_terrain_set, tile_set->get_terrain_sets_count());
Vector<Vector2i> vector_cells;
for (int i = 0; i < p_cells.size(); i++) {
vector_cells.push_back(p_cells[i]);
}
HashMap<Vector2i, TileSet::TerrainsPattern> terrain_fill_output = terrain_fill_connect(p_layer, vector_cells, p_terrain_set, p_terrain, p_ignore_empty_terrains);
for (const KeyValue<Vector2i, TileSet::TerrainsPattern> &E : terrain_fill_output) {
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, E.value);
set_cell(p_layer, E.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
}
}
void TileMap::set_cells_terrain_path(int p_layer, TypedArray<Vector2i> p_path, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
ERR_FAIL_COND(!tile_set.is_valid());
ERR_FAIL_INDEX(p_layer, (int)layers.size());
ERR_FAIL_INDEX(p_terrain_set, tile_set->get_terrain_sets_count());
Vector<Vector2i> vector_path;
for (int i = 0; i < p_path.size(); i++) {
vector_path.push_back(p_path[i]);
}
HashMap<Vector2i, TileSet::TerrainsPattern> terrain_fill_output = terrain_fill_path(p_layer, vector_path, p_terrain_set, p_terrain, p_ignore_empty_terrains);
for (const KeyValue<Vector2i, TileSet::TerrainsPattern> &E : terrain_fill_output) {
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, E.value);
set_cell(p_layer, E.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
}
}
TileMapCell TileMap::get_cell(int p_layer, const Vector2i &p_coords, bool p_use_proxies) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), TileMapCell());
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
if (!tile_map.has(p_coords)) {
return TileMapCell();
} else {
TileMapCell c = tile_map.find(p_coords)->value;
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(c.source_id, c.get_atlas_coords(), c.alternative_tile);
c.source_id = proxyed[0];
c.set_atlas_coords(proxyed[1]);
c.alternative_tile = proxyed[2];
}
return c;
}
}
HashMap<Vector2i, TileMapQuadrant> *TileMap::get_quadrant_map(int p_layer) {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), nullptr);
return &layers[p_layer].quadrant_map;
}
Vector2i TileMap::get_coords_for_body_rid(RID p_physics_body) {
ERR_FAIL_COND_V_MSG(!bodies_coords.has(p_physics_body), Vector2i(), vformat("No tiles for the given body RID %d.", p_physics_body));
return bodies_coords[p_physics_body];
}
void TileMap::fix_invalid_tiles() {
ERR_FAIL_COND_MSG(tile_set.is_null(), "Cannot fix invalid tiles if Tileset is not open.");
for (unsigned int i = 0; i < layers.size(); i++) {
const HashMap<Vector2i, TileMapCell> &tile_map = layers[i].tile_map;
RBSet<Vector2i> coords;
for (const KeyValue<Vector2i, TileMapCell> &E : tile_map) {
TileSetSource *source = *tile_set->get_source(E.value.source_id);
if (!source || !source->has_tile(E.value.get_atlas_coords()) || !source->has_alternative_tile(E.value.get_atlas_coords(), E.value.alternative_tile)) {
coords.insert(E.key);
}
}
for (const Vector2i &E : coords) {
set_cell(i, E, TileSet::INVALID_SOURCE, TileSetSource::INVALID_ATLAS_COORDS, TileSetSource::INVALID_TILE_ALTERNATIVE);
}
}
}
void TileMap::clear_layer(int p_layer) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
// Remove all tiles.
_clear_layer_internals(p_layer);
layers[p_layer].tile_map.clear();
_recreate_layer_internals(p_layer);
used_rect_cache_dirty = true;
}
void TileMap::clear() {
// Remove all tiles.
_clear_internals();
for (unsigned int i = 0; i < layers.size(); i++) {
layers[i].tile_map.clear();
}
_recreate_internals();
used_rect_cache_dirty = true;
}
void TileMap::force_update(int p_layer) {
if (p_layer >= 0) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
_clear_layer_internals(p_layer);
_recreate_layer_internals(p_layer);
} else {
_clear_internals();
_recreate_internals();
}
}
void TileMap::_set_tile_data(int p_layer, const Vector<int> &p_data) {
ERR_FAIL_INDEX(p_layer, (int)layers.size());
ERR_FAIL_COND(format > FORMAT_3);
// Set data for a given tile from raw data.
int c = p_data.size();
const int *r = p_data.ptr();
int offset = (format >= FORMAT_2) ? 3 : 2;
ERR_FAIL_COND_MSG(c % offset != 0, "Corrupted tile data.");
clear_layer(p_layer);
#ifdef DISABLE_DEPRECATED
ERR_FAIL_COND_MSG(format != FORMAT_3, vformat("Cannot handle deprecated TileMap data format version %d. This Godot version was compiled with no support for deprecated data.", format));
#endif
for (int i = 0; i < c; i += offset) {
const uint8_t *ptr = (const uint8_t *)&r[i];
uint8_t local[12];
for (int j = 0; j < ((format >= FORMAT_2) ? 12 : 8); j++) {
local[j] = ptr[j];
}
#ifdef BIG_ENDIAN_ENABLED
SWAP(local[0], local[3]);
SWAP(local[1], local[2]);
SWAP(local[4], local[7]);
SWAP(local[5], local[6]);
//TODO: ask someone to check this...
if (FORMAT >= FORMAT_2) {
SWAP(local[8], local[11]);
SWAP(local[9], local[10]);
}
#endif
// Extracts position in TileMap.
int16_t x = decode_uint16(&local[0]);
int16_t y = decode_uint16(&local[2]);
if (format == FORMAT_3) {
uint16_t source_id = decode_uint16(&local[4]);
uint16_t atlas_coords_x = decode_uint16(&local[6]);
uint16_t atlas_coords_y = decode_uint16(&local[8]);
uint16_t alternative_tile = decode_uint16(&local[10]);
set_cell(p_layer, Vector2i(x, y), source_id, Vector2i(atlas_coords_x, atlas_coords_y), alternative_tile);
} else {
#ifndef DISABLE_DEPRECATED
// Previous decated format.
uint32_t v = decode_uint32(&local[4]);
// Extract the transform flags that used to be in the tilemap.
bool flip_h = v & (1UL << 29);
bool flip_v = v & (1UL << 30);
bool transpose = v & (1UL << 31);
v &= (1UL << 29) - 1;
// Extract autotile/atlas coords.
int16_t coord_x = 0;
int16_t coord_y = 0;
if (format == FORMAT_2) {
coord_x = decode_uint16(&local[8]);
coord_y = decode_uint16(&local[10]);
}
if (tile_set.is_valid()) {
Array a = tile_set->compatibility_tilemap_map(v, Vector2i(coord_x, coord_y), flip_h, flip_v, transpose);
if (a.size() == 3) {
set_cell(p_layer, Vector2i(x, y), a[0], a[1], a[2]);
} else {
ERR_PRINT(vformat("No valid tile in Tileset for: tile:%s coords:%s flip_h:%s flip_v:%s transpose:%s", v, Vector2i(coord_x, coord_y), flip_h, flip_v, transpose));
}
} else {
int compatibility_alternative_tile = ((int)flip_h) + ((int)flip_v << 1) + ((int)transpose << 2);
set_cell(p_layer, Vector2i(x, y), v, Vector2i(coord_x, coord_y), compatibility_alternative_tile);
}
#endif
}
}
emit_signal(SNAME("changed"));
}
Vector<int> TileMap::_get_tile_data(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), Vector<int>());
// Export tile data to raw format
const HashMap<Vector2i, TileMapCell> &tile_map = layers[p_layer].tile_map;
Vector<int> data;
data.resize(tile_map.size() * 3);
int *w = data.ptrw();
// Save in highest format
int idx = 0;
for (const KeyValue<Vector2i, TileMapCell> &E : tile_map) {
uint8_t *ptr = (uint8_t *)&w[idx];
encode_uint16((int16_t)(E.key.x), &ptr[0]);
encode_uint16((int16_t)(E.key.y), &ptr[2]);
encode_uint16(E.value.source_id, &ptr[4]);
encode_uint16(E.value.coord_x, &ptr[6]);
encode_uint16(E.value.coord_y, &ptr[8]);
encode_uint16(E.value.alternative_tile, &ptr[10]);
idx += 3;
}
return data;
}
void TileMap::_build_runtime_update_tile_data(SelfList<TileMapQuadrant>::List &r_dirty_quadrant_list) {
if (GDVIRTUAL_IS_OVERRIDDEN(_use_tile_data_runtime_update) && GDVIRTUAL_IS_OVERRIDDEN(_tile_data_runtime_update)) {
SelfList<TileMapQuadrant> *q_list_element = r_dirty_quadrant_list.first();
while (q_list_element) {
TileMapQuadrant &q = *q_list_element->self();
// Iterate over the cells of the quadrant.
for (const KeyValue<Vector2i, Vector2i> &E_cell : q.local_to_map) {
TileMapCell c = get_cell(q.layer, E_cell.value, true);
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
continue;
}
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
bool ret = false;
if (GDVIRTUAL_CALL(_use_tile_data_runtime_update, q.layer, E_cell.value, ret) && ret) {
TileData *tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
// Create the runtime TileData.
TileData *tile_data_runtime_use = tile_data->duplicate();
tile_data->set_allow_transform(true);
q.runtime_tile_data_cache[E_cell.value] = tile_data_runtime_use;
GDVIRTUAL_CALL(_tile_data_runtime_update, q.layer, E_cell.value, tile_data_runtime_use);
}
}
}
}
q_list_element = q_list_element->next();
}
}
}
#ifdef TOOLS_ENABLED
Rect2 TileMap::_edit_get_rect() const {
// Return the visible rect of the tilemap
if (pending_update) {
const_cast<TileMap *>(this)->_update_dirty_quadrants();
} else {
const_cast<TileMap *>(this)->_recompute_rect_cache();
}
return rect_cache;
}
#endif
bool TileMap::_set(const StringName &p_name, const Variant &p_value) {
Vector<String> components = String(p_name).split("/", true, 2);
if (p_name == "format") {
if (p_value.get_type() == Variant::INT) {
format = (DataFormat)(p_value.operator int64_t()); // Set format used for loading
return true;
}
} else if (p_name == "tile_data") { // Kept for compatibility reasons.
if (p_value.is_array()) {
if (layers.size() < 1) {
layers.resize(1);
}
_set_tile_data(0, p_value);
return true;
}
return false;
} else if (components.size() == 2 && components[0].begins_with("layer_") && components[0].trim_prefix("layer_").is_valid_int()) {
int index = components[0].trim_prefix("layer_").to_int();
if (index < 0) {
return false;
}
if (index >= (int)layers.size()) {
_clear_internals();
while (index >= (int)layers.size()) {
layers.push_back(TileMapLayer());
}
_recreate_internals();
notify_property_list_changed();
emit_signal(SNAME("changed"));
update_configuration_warnings();
}
if (components[1] == "name") {
set_layer_name(index, p_value);
return true;
} else if (components[1] == "enabled") {
set_layer_enabled(index, p_value);
return true;
} else if (components[1] == "modulate") {
set_layer_modulate(index, p_value);
return true;
} else if (components[1] == "y_sort_enabled") {
set_layer_y_sort_enabled(index, p_value);
return true;
} else if (components[1] == "y_sort_origin") {
set_layer_y_sort_origin(index, p_value);
return true;
} else if (components[1] == "z_index") {
set_layer_z_index(index, p_value);
return true;
} else if (components[1] == "tile_data") {
_set_tile_data(index, p_value);
return true;
} else {
return false;
}
}
return false;
}
bool TileMap::_get(const StringName &p_name, Variant &r_ret) const {
Vector<String> components = String(p_name).split("/", true, 2);
if (p_name == "format") {
r_ret = FORMAT_3; // When saving, always save highest format
return true;
} else if (components.size() == 2 && components[0].begins_with("layer_") && components[0].trim_prefix("layer_").is_valid_int()) {
int index = components[0].trim_prefix("layer_").to_int();
if (index < 0 || index >= (int)layers.size()) {
return false;
}
if (components[1] == "name") {
r_ret = get_layer_name(index);
return true;
} else if (components[1] == "enabled") {
r_ret = is_layer_enabled(index);
return true;
} else if (components[1] == "modulate") {
r_ret = get_layer_modulate(index);
return true;
} else if (components[1] == "y_sort_enabled") {
r_ret = is_layer_y_sort_enabled(index);
return true;
} else if (components[1] == "y_sort_origin") {
r_ret = get_layer_y_sort_origin(index);
return true;
} else if (components[1] == "z_index") {
r_ret = get_layer_z_index(index);
return true;
} else if (components[1] == "tile_data") {
r_ret = _get_tile_data(index);
return true;
} else {
return false;
}
}
return false;
}
void TileMap::_get_property_list(List<PropertyInfo> *p_list) const {
p_list->push_back(PropertyInfo(Variant::INT, "format", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::NIL, "Layers", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_GROUP));
for (unsigned int i = 0; i < layers.size(); i++) {
p_list->push_back(PropertyInfo(Variant::STRING, vformat("layer_%d/name", i), PROPERTY_HINT_NONE));
p_list->push_back(PropertyInfo(Variant::BOOL, vformat("layer_%d/enabled", i), PROPERTY_HINT_NONE));
p_list->push_back(PropertyInfo(Variant::COLOR, vformat("layer_%d/modulate", i), PROPERTY_HINT_NONE));
p_list->push_back(PropertyInfo(Variant::BOOL, vformat("layer_%d/y_sort_enabled", i), PROPERTY_HINT_NONE));
p_list->push_back(PropertyInfo(Variant::INT, vformat("layer_%d/y_sort_origin", i), PROPERTY_HINT_NONE, "suffix:px"));
p_list->push_back(PropertyInfo(Variant::INT, vformat("layer_%d/z_index", i), PROPERTY_HINT_NONE));
p_list->push_back(PropertyInfo(Variant::OBJECT, vformat("layer_%d/tile_data", i), PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR));
}
}
Vector2 TileMap::map_to_local(const Vector2i &p_pos) const {
// SHOULD RETURN THE CENTER OF THE CELL
ERR_FAIL_COND_V(!tile_set.is_valid(), Vector2());
Vector2 ret = p_pos;
TileSet::TileShape tile_shape = tile_set->get_tile_shape();
TileSet::TileOffsetAxis tile_offset_axis = tile_set->get_tile_offset_axis();
if (tile_shape == TileSet::TILE_SHAPE_HALF_OFFSET_SQUARE || tile_shape == TileSet::TILE_SHAPE_HEXAGON || tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
// Technically, those 3 shapes are equivalent, as they are basically half-offset, but with different levels or overlap.
// square = no overlap, hexagon = 0.25 overlap, isometric = 0.5 overlap
if (tile_offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
switch (tile_set->get_tile_layout()) {
case TileSet::TILE_LAYOUT_STACKED:
ret = Vector2(ret.x + (Math::posmod(ret.y, 2) == 0 ? 0.0 : 0.5), ret.y);
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
ret = Vector2(ret.x + (Math::posmod(ret.y, 2) == 1 ? 0.0 : 0.5), ret.y);
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
ret = Vector2(ret.x + ret.y / 2, ret.y);
break;
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
ret = Vector2(ret.x / 2, ret.y * 2 + ret.x);
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
ret = Vector2((ret.x + ret.y) / 2, ret.y - ret.x);
break;
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
ret = Vector2((ret.x - ret.y) / 2, ret.y + ret.x);
break;
}
} else { // TILE_OFFSET_AXIS_VERTICAL
switch (tile_set->get_tile_layout()) {
case TileSet::TILE_LAYOUT_STACKED:
ret = Vector2(ret.x, ret.y + (Math::posmod(ret.x, 2) == 0 ? 0.0 : 0.5));
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
ret = Vector2(ret.x, ret.y + (Math::posmod(ret.x, 2) == 1 ? 0.0 : 0.5));
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
ret = Vector2(ret.x * 2 + ret.y, ret.y / 2);
break;
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
ret = Vector2(ret.x, ret.y + ret.x / 2);
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
ret = Vector2(ret.x + ret.y, (ret.y - ret.x) / 2);
break;
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
ret = Vector2(ret.x - ret.y, (ret.y + ret.x) / 2);
break;
}
}
}
// Multiply by the overlapping ratio
double overlapping_ratio = 1.0;
if (tile_offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if (tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
overlapping_ratio = 0.5;
} else if (tile_shape == TileSet::TILE_SHAPE_HEXAGON) {
overlapping_ratio = 0.75;
}
ret.y *= overlapping_ratio;
} else { // TILE_OFFSET_AXIS_VERTICAL
if (tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
overlapping_ratio = 0.5;
} else if (tile_shape == TileSet::TILE_SHAPE_HEXAGON) {
overlapping_ratio = 0.75;
}
ret.x *= overlapping_ratio;
}
return (ret + Vector2(0.5, 0.5)) * tile_set->get_tile_size();
}
Vector2i TileMap::local_to_map(const Vector2 &p_local_position) const {
ERR_FAIL_COND_V(!tile_set.is_valid(), Vector2i());
Vector2 ret = p_local_position;
ret /= tile_set->get_tile_size();
TileSet::TileShape tile_shape = tile_set->get_tile_shape();
TileSet::TileOffsetAxis tile_offset_axis = tile_set->get_tile_offset_axis();
TileSet::TileLayout tile_layout = tile_set->get_tile_layout();
// Divide by the overlapping ratio
double overlapping_ratio = 1.0;
if (tile_offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if (tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
overlapping_ratio = 0.5;
} else if (tile_shape == TileSet::TILE_SHAPE_HEXAGON) {
overlapping_ratio = 0.75;
}
ret.y /= overlapping_ratio;
} else { // TILE_OFFSET_AXIS_VERTICAL
if (tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
overlapping_ratio = 0.5;
} else if (tile_shape == TileSet::TILE_SHAPE_HEXAGON) {
overlapping_ratio = 0.75;
}
ret.x /= overlapping_ratio;
}
// For each half-offset shape, we check if we are in the corner of the tile, and thus should correct the local position accordingly.
if (tile_shape == TileSet::TILE_SHAPE_HALF_OFFSET_SQUARE || tile_shape == TileSet::TILE_SHAPE_HEXAGON || tile_shape == TileSet::TILE_SHAPE_ISOMETRIC) {
// Technically, those 3 shapes are equivalent, as they are basically half-offset, but with different levels or overlap.
// square = no overlap, hexagon = 0.25 overlap, isometric = 0.5 overlap
if (tile_offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
// Smart floor of the position
Vector2 raw_pos = ret;
if (Math::posmod(Math::floor(ret.y), 2) ^ (tile_layout == TileSet::TILE_LAYOUT_STACKED_OFFSET)) {
ret = Vector2(Math::floor(ret.x + 0.5) - 0.5, Math::floor(ret.y));
} else {
ret = ret.floor();
}
// Compute the tile offset, and if we might the output for a neighbour top tile
Vector2 in_tile_pos = raw_pos - ret;
bool in_top_left_triangle = (in_tile_pos - Vector2(0.5, 0.0)).cross(Vector2(-0.5, 1.0 / overlapping_ratio - 1)) <= 0;
bool in_top_right_triangle = (in_tile_pos - Vector2(0.5, 0.0)).cross(Vector2(0.5, 1.0 / overlapping_ratio - 1)) > 0;
switch (tile_layout) {
case TileSet::TILE_LAYOUT_STACKED:
ret = ret.floor();
if (in_top_left_triangle) {
ret += Vector2i(Math::posmod(Math::floor(ret.y), 2) ? 0 : -1, -1);
} else if (in_top_right_triangle) {
ret += Vector2i(Math::posmod(Math::floor(ret.y), 2) ? 1 : 0, -1);
}
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
ret = ret.floor();
if (in_top_left_triangle) {
ret += Vector2i(Math::posmod(Math::floor(ret.y), 2) ? -1 : 0, -1);
} else if (in_top_right_triangle) {
ret += Vector2i(Math::posmod(Math::floor(ret.y), 2) ? 0 : 1, -1);
}
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
ret = Vector2(ret.x - ret.y / 2, ret.y).floor();
if (in_top_left_triangle) {
ret += Vector2i(0, -1);
} else if (in_top_right_triangle) {
ret += Vector2i(1, -1);
}
break;
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
ret = Vector2(ret.x * 2, ret.y / 2 - ret.x).floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, 0);
} else if (in_top_right_triangle) {
ret += Vector2i(1, -1);
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
ret = Vector2(ret.x - ret.y / 2, ret.y / 2 + ret.x).floor();
if (in_top_left_triangle) {
ret += Vector2i(0, -1);
} else if (in_top_right_triangle) {
ret += Vector2i(1, 0);
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
ret = Vector2(ret.x + ret.y / 2, ret.y / 2 - ret.x).floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, 0);
} else if (in_top_right_triangle) {
ret += Vector2i(0, -1);
}
break;
}
} else { // TILE_OFFSET_AXIS_VERTICAL
// Smart floor of the position
Vector2 raw_pos = ret;
if (Math::posmod(Math::floor(ret.x), 2) ^ (tile_layout == TileSet::TILE_LAYOUT_STACKED_OFFSET)) {
ret = Vector2(Math::floor(ret.x), Math::floor(ret.y + 0.5) - 0.5);
} else {
ret = ret.floor();
}
// Compute the tile offset, and if we might the output for a neighbour top tile
Vector2 in_tile_pos = raw_pos - ret;
bool in_top_left_triangle = (in_tile_pos - Vector2(0.0, 0.5)).cross(Vector2(1.0 / overlapping_ratio - 1, -0.5)) > 0;
bool in_bottom_left_triangle = (in_tile_pos - Vector2(0.0, 0.5)).cross(Vector2(1.0 / overlapping_ratio - 1, 0.5)) <= 0;
switch (tile_layout) {
case TileSet::TILE_LAYOUT_STACKED:
ret = ret.floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, Math::posmod(Math::floor(ret.x), 2) ? 0 : -1);
} else if (in_bottom_left_triangle) {
ret += Vector2i(-1, Math::posmod(Math::floor(ret.x), 2) ? 1 : 0);
}
break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET:
ret = ret.floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, Math::posmod(Math::floor(ret.x), 2) ? -1 : 0);
} else if (in_bottom_left_triangle) {
ret += Vector2i(-1, Math::posmod(Math::floor(ret.x), 2) ? 0 : 1);
}
break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
ret = Vector2(ret.x / 2 - ret.y, ret.y * 2).floor();
if (in_top_left_triangle) {
ret += Vector2i(0, -1);
} else if (in_bottom_left_triangle) {
ret += Vector2i(-1, 1);
}
break;
case TileSet::TILE_LAYOUT_STAIRS_DOWN:
ret = Vector2(ret.x, ret.y - ret.x / 2).floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, 0);
} else if (in_bottom_left_triangle) {
ret += Vector2i(-1, 1);
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
ret = Vector2(ret.x / 2 - ret.y, ret.y + ret.x / 2).floor();
if (in_top_left_triangle) {
ret += Vector2i(0, -1);
} else if (in_bottom_left_triangle) {
ret += Vector2i(-1, 0);
}
break;
case TileSet::TILE_LAYOUT_DIAMOND_DOWN:
ret = Vector2(ret.x / 2 + ret.y, ret.y - ret.x / 2).floor();
if (in_top_left_triangle) {
ret += Vector2i(-1, 0);
} else if (in_bottom_left_triangle) {
ret += Vector2i(0, 1);
}
break;
}
}
} else {
ret = (ret + Vector2(0.00005, 0.00005)).floor();
}
return Vector2i(ret);
}
bool TileMap::is_existing_neighbor(TileSet::CellNeighbor p_cell_neighbor) const {
ERR_FAIL_COND_V(!tile_set.is_valid(), false);
TileSet::TileShape shape = tile_set->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
return p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER;
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
return p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
} else {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
return p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
} else {
return p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE ||
p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
}
}
}
Vector2i TileMap::get_neighbor_cell(const Vector2i &p_coords, TileSet::CellNeighbor p_cell_neighbor) const {
ERR_FAIL_COND_V(!tile_set.is_valid(), p_coords);
TileSet::TileShape shape = tile_set->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
switch (p_cell_neighbor) {
case TileSet::CELL_NEIGHBOR_RIGHT_SIDE:
return p_coords + Vector2i(1, 0);
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
return p_coords + Vector2i(1, 1);
case TileSet::CELL_NEIGHBOR_BOTTOM_SIDE:
return p_coords + Vector2i(0, 1);
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
return p_coords + Vector2i(-1, 1);
case TileSet::CELL_NEIGHBOR_LEFT_SIDE:
return p_coords + Vector2i(-1, 0);
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
return p_coords + Vector2i(-1, -1);
case TileSet::CELL_NEIGHBOR_TOP_SIDE:
return p_coords + Vector2i(0, -1);
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
return p_coords + Vector2i(1, -1);
default:
ERR_FAIL_V(p_coords);
}
} else { // Half-offset shapes (square and hexagon)
switch (tile_set->get_tile_layout()) {
case TileSet::TILE_LAYOUT_STACKED: {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
bool is_offset = p_coords.y % 2;
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(is_offset ? 1 : 0, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(0, 2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(is_offset ? 0 : -1, 1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(is_offset ? 0 : -1, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(0, -2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(is_offset ? 1 : 0, -1);
} else {
ERR_FAIL_V(p_coords);
}
} else {
bool is_offset = p_coords.x % 2;
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(0, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, is_offset ? 1 : 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(2, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, is_offset ? 0 : -1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(0, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, is_offset ? 0 : -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-2, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, is_offset ? 1 : 0);
} else {
ERR_FAIL_V(p_coords);
}
}
} break;
case TileSet::TILE_LAYOUT_STACKED_OFFSET: {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
bool is_offset = p_coords.y % 2;
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(is_offset ? 0 : 1, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(0, 2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(is_offset ? -1 : 0, 1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(is_offset ? -1 : 0, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(0, -2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(is_offset ? 0 : 1, -1);
} else {
ERR_FAIL_V(p_coords);
}
} else {
bool is_offset = p_coords.x % 2;
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(0, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, is_offset ? 0 : 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(2, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, is_offset ? -1 : 0);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(0, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, is_offset ? -1 : 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-2, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, is_offset ? 0 : 1);
} else {
ERR_FAIL_V(p_coords);
}
}
} break;
case TileSet::TILE_LAYOUT_STAIRS_RIGHT:
case TileSet::TILE_LAYOUT_STAIRS_DOWN: {
if ((tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STAIRS_RIGHT) ^ (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(0, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(-1, 2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(0, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(1, -2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, -1);
} else {
ERR_FAIL_V(p_coords);
}
} else {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(0, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(2, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, -1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(0, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-2, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 1);
} else {
ERR_FAIL_V(p_coords);
}
}
} else {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(2, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(0, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-2, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(0, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, -1);
} else {
ERR_FAIL_V(p_coords);
}
} else {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(-1, 2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(0, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, -1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(1, -2);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(0, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-1, 0);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 1);
} else {
ERR_FAIL_V(p_coords);
}
}
}
} break;
case TileSet::TILE_LAYOUT_DIAMOND_RIGHT:
case TileSet::TILE_LAYOUT_DIAMOND_DOWN: {
if ((tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_DIAMOND_RIGHT) ^ (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL)) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(0, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(-1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(0, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else {
ERR_FAIL_V(p_coords);
}
} else {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(0, -1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(-1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(0, 1);
} else {
ERR_FAIL_V(p_coords);
}
}
} else {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_SIDE)) {
return p_coords + Vector2i(1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) {
return p_coords + Vector2i(1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(0, 1);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_SIDE)) {
return p_coords + Vector2i(-1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) {
return p_coords + Vector2i(-1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(0, -1);
} else {
ERR_FAIL_V(p_coords);
}
} else {
if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)) {
return p_coords + Vector2i(-1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE) {
return p_coords + Vector2i(0, 1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_RIGHT_CORNER) {
return p_coords + Vector2i(1, 1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE) {
return p_coords + Vector2i(1, 0);
} else if ((shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_CORNER) ||
(shape != TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_SIDE)) {
return p_coords + Vector2i(1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE) {
return p_coords + Vector2i(0, -1);
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC && p_cell_neighbor == TileSet::CELL_NEIGHBOR_LEFT_CORNER) {
return p_coords + Vector2i(-1, -1);
} else if (p_cell_neighbor == TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE) {
return p_coords + Vector2i(-1, 0);
} else {
ERR_FAIL_V(p_coords);
}
}
}
} break;
default:
ERR_FAIL_V(p_coords);
}
}
}
TypedArray<Vector2i> TileMap::get_used_cells(int p_layer) const {
ERR_FAIL_INDEX_V(p_layer, (int)layers.size(), TypedArray<Vector2i>());
// Returns the cells used in the tilemap.
TypedArray<Vector2i> a;
a.resize(layers[p_layer].tile_map.size());
int i = 0;
for (const KeyValue<Vector2i, TileMapCell> &E : layers[p_layer].tile_map) {
Vector2i p(E.key.x, E.key.y);
a[i++] = p;
}
return a;
}
Rect2i TileMap::get_used_rect() { // Not const because of cache
// Return the rect of the currently used area
if (used_rect_cache_dirty) {
bool first = true;
used_rect_cache = Rect2i();
for (unsigned int i = 0; i < layers.size(); i++) {
const HashMap<Vector2i, TileMapCell> &tile_map = layers[i].tile_map;
if (tile_map.size() > 0) {
if (first) {
used_rect_cache = Rect2i(tile_map.begin()->key.x, tile_map.begin()->key.y, 0, 0);
first = false;
}
for (const KeyValue<Vector2i, TileMapCell> &E : tile_map) {
used_rect_cache.expand_to(Vector2i(E.key.x, E.key.y));
}
}
}
if (!first) { // first is true if every layer is empty.
used_rect_cache.size += Vector2i(1, 1); // The cache expands to top-left coordinate, so we add one full tile.
}
used_rect_cache_dirty = false;
}
return used_rect_cache;
}
// --- Override some methods of the CanvasItem class to pass the changes to the quadrants CanvasItems ---
void TileMap::set_light_mask(int p_light_mask) {
// Occlusion: set light mask.
CanvasItem::set_light_mask(p_light_mask);
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (const KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
for (const RID &ci : E.value.canvas_items) {
RenderingServer::get_singleton()->canvas_item_set_light_mask(ci, get_light_mask());
}
}
_rendering_update_layer(layer);
}
}
void TileMap::set_material(const Ref<Material> &p_material) {
// Set material for the whole tilemap.
CanvasItem::set_material(p_material);
// Update material for the whole tilemap.
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
TileMapQuadrant &q = E.value;
for (const RID &ci : q.canvas_items) {
RS::get_singleton()->canvas_item_set_use_parent_material(ci, get_use_parent_material() || get_material().is_valid());
}
}
_rendering_update_layer(layer);
}
}
void TileMap::set_use_parent_material(bool p_use_parent_material) {
// Set use_parent_material for the whole tilemap.
CanvasItem::set_use_parent_material(p_use_parent_material);
// Update use_parent_material for the whole tilemap.
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (KeyValue<Vector2i, TileMapQuadrant> &E : layers[layer].quadrant_map) {
TileMapQuadrant &q = E.value;
for (const RID &ci : q.canvas_items) {
RS::get_singleton()->canvas_item_set_use_parent_material(ci, get_use_parent_material() || get_material().is_valid());
}
}
_rendering_update_layer(layer);
}
}
void TileMap::set_texture_filter(TextureFilter p_texture_filter) {
// Set a default texture filter for the whole tilemap
CanvasItem::set_texture_filter(p_texture_filter);
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (HashMap<Vector2i, TileMapQuadrant>::Iterator F = layers[layer].quadrant_map.begin(); F; ++F) {
TileMapQuadrant &q = F->value;
for (const RID &ci : q.canvas_items) {
RenderingServer::get_singleton()->canvas_item_set_default_texture_filter(ci, RS::CanvasItemTextureFilter(p_texture_filter));
_make_quadrant_dirty(F);
}
}
_rendering_update_layer(layer);
}
}
void TileMap::set_texture_repeat(CanvasItem::TextureRepeat p_texture_repeat) {
// Set a default texture repeat for the whole tilemap
CanvasItem::set_texture_repeat(p_texture_repeat);
for (unsigned int layer = 0; layer < layers.size(); layer++) {
for (HashMap<Vector2i, TileMapQuadrant>::Iterator F = layers[layer].quadrant_map.begin(); F; ++F) {
TileMapQuadrant &q = F->value;
for (const RID &ci : q.canvas_items) {
RenderingServer::get_singleton()->canvas_item_set_default_texture_repeat(ci, RS::CanvasItemTextureRepeat(p_texture_repeat));
_make_quadrant_dirty(F);
}
}
_rendering_update_layer(layer);
}
}
TypedArray<Vector2i> TileMap::get_surrounding_tiles(Vector2i coords) {
if (!tile_set.is_valid()) {
return TypedArray<Vector2i>();
}
TypedArray<Vector2i> around;
TileSet::TileShape shape = tile_set->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_SIDE));
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE));
} else {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE));
} else {
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_SIDE));
around.push_back(get_neighbor_cell(coords, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE));
}
}
return around;
}
void TileMap::draw_cells_outline(Control *p_control, RBSet<Vector2i> p_cells, Color p_color, Transform2D p_transform) {
if (!tile_set.is_valid()) {
return;
}
// Create a set.
Vector2i tile_size = tile_set->get_tile_size();
Vector<Vector2> polygon = tile_set->get_tile_shape_polygon();
TileSet::TileShape shape = tile_set->get_tile_shape();
for (const Vector2i &E : p_cells) {
Vector2 center = map_to_local(E);
#define DRAW_SIDE_IF_NEEDED(side, polygon_index_from, polygon_index_to) \
if (!p_cells.has(get_neighbor_cell(E, side))) { \
Vector2 from = p_transform.xform(center + polygon[polygon_index_from] * tile_size); \
Vector2 to = p_transform.xform(center + polygon[polygon_index_to] * tile_size); \
p_control->draw_line(from, to, p_color); \
}
if (shape == TileSet::TILE_SHAPE_SQUARE) {
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_RIGHT_SIDE, 1, 2);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_SIDE, 2, 3);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_LEFT_SIDE, 3, 0);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_SIDE, 0, 1);
} else {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE, 3, 4);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE, 2, 3);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE, 0, 1);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE, 5, 0);
} else {
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE, 3, 4);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE, 2, 3);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_LEFT_SIDE, 1, 2);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE, 0, 1);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE, 5, 0);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_RIGHT_SIDE, 4, 5);
}
} else {
if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE, 3, 4);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE, 5, 0);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE, 0, 1);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE, 2, 3);
} else {
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE, 3, 4);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_SIDE, 4, 5);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE, 5, 0);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE, 0, 1);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_SIDE, 1, 2);
DRAW_SIDE_IF_NEEDED(TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE, 2, 3);
}
}
}
}
#undef DRAW_SIDE_IF_NEEDED
}
PackedStringArray TileMap::get_configuration_warnings() const {
PackedStringArray warnings = Node::get_configuration_warnings();
// Retrieve the set of Z index values with a Y-sorted layer.
RBSet<int> y_sorted_z_index;
for (int layer = 0; layer < (int)layers.size(); layer++) {
if (layers[layer].y_sort_enabled) {
y_sorted_z_index.insert(layers[layer].z_index);
}
}
// Check if we have a non-sorted layer in a Z-index with a Y-sorted layer.
for (int layer = 0; layer < (int)layers.size(); layer++) {
if (!layers[layer].y_sort_enabled && y_sorted_z_index.has(layers[layer].z_index)) {
warnings.push_back(RTR("A Y-sorted layer has the same Z-index value as a not Y-sorted layer.\nThis may lead to unwanted behaviors, as a layer that is not Y-sorted will be Y-sorted as a whole with tiles from Y-sorted layers."));
break;
}
}
return warnings;
}
void TileMap::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_tileset", "tileset"), &TileMap::set_tileset);
ClassDB::bind_method(D_METHOD("get_tileset"), &TileMap::get_tileset);
ClassDB::bind_method(D_METHOD("set_quadrant_size", "size"), &TileMap::set_quadrant_size);
ClassDB::bind_method(D_METHOD("get_quadrant_size"), &TileMap::get_quadrant_size);
ClassDB::bind_method(D_METHOD("get_layers_count"), &TileMap::get_layers_count);
ClassDB::bind_method(D_METHOD("add_layer", "to_position"), &TileMap::add_layer);
ClassDB::bind_method(D_METHOD("move_layer", "layer", "to_position"), &TileMap::move_layer);
ClassDB::bind_method(D_METHOD("remove_layer", "layer"), &TileMap::remove_layer);
ClassDB::bind_method(D_METHOD("set_layer_name", "layer", "name"), &TileMap::set_layer_name);
ClassDB::bind_method(D_METHOD("get_layer_name", "layer"), &TileMap::get_layer_name);
ClassDB::bind_method(D_METHOD("set_layer_enabled", "layer", "enabled"), &TileMap::set_layer_enabled);
ClassDB::bind_method(D_METHOD("is_layer_enabled", "layer"), &TileMap::is_layer_enabled);
ClassDB::bind_method(D_METHOD("set_layer_modulate", "layer", "modulate"), &TileMap::set_layer_modulate);
ClassDB::bind_method(D_METHOD("get_layer_modulate", "layer"), &TileMap::get_layer_modulate);
ClassDB::bind_method(D_METHOD("set_layer_y_sort_enabled", "layer", "y_sort_enabled"), &TileMap::set_layer_y_sort_enabled);
ClassDB::bind_method(D_METHOD("is_layer_y_sort_enabled", "layer"), &TileMap::is_layer_y_sort_enabled);
ClassDB::bind_method(D_METHOD("set_layer_y_sort_origin", "layer", "y_sort_origin"), &TileMap::set_layer_y_sort_origin);
ClassDB::bind_method(D_METHOD("get_layer_y_sort_origin", "layer"), &TileMap::get_layer_y_sort_origin);
ClassDB::bind_method(D_METHOD("set_layer_z_index", "layer", "z_index"), &TileMap::set_layer_z_index);
ClassDB::bind_method(D_METHOD("get_layer_z_index", "layer"), &TileMap::get_layer_z_index);
ClassDB::bind_method(D_METHOD("set_collision_animatable", "enabled"), &TileMap::set_collision_animatable);
ClassDB::bind_method(D_METHOD("is_collision_animatable"), &TileMap::is_collision_animatable);
ClassDB::bind_method(D_METHOD("set_collision_visibility_mode", "collision_visibility_mode"), &TileMap::set_collision_visibility_mode);
ClassDB::bind_method(D_METHOD("get_collision_visibility_mode"), &TileMap::get_collision_visibility_mode);
ClassDB::bind_method(D_METHOD("set_navigation_visibility_mode", "navigation_visibility_mode"), &TileMap::set_navigation_visibility_mode);
ClassDB::bind_method(D_METHOD("get_navigation_visibility_mode"), &TileMap::get_navigation_visibility_mode);
ClassDB::bind_method(D_METHOD("set_cell", "layer", "coords", "source_id", "atlas_coords", "alternative_tile"), &TileMap::set_cell, DEFVAL(TileSet::INVALID_SOURCE), DEFVAL(TileSetSource::INVALID_ATLAS_COORDS), DEFVAL(0));
ClassDB::bind_method(D_METHOD("erase_cell", "layer", "coords"), &TileMap::erase_cell);
ClassDB::bind_method(D_METHOD("get_cell_source_id", "layer", "coords", "use_proxies"), &TileMap::get_cell_source_id, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_cell_atlas_coords", "layer", "coords", "use_proxies"), &TileMap::get_cell_atlas_coords, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_cell_alternative_tile", "layer", "coords", "use_proxies"), &TileMap::get_cell_alternative_tile, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_cell_tile_data", "layer", "coords", "use_proxies"), &TileMap::get_cell_tile_data, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_coords_for_body_rid", "body"), &TileMap::get_coords_for_body_rid);
ClassDB::bind_method(D_METHOD("get_pattern", "layer", "coords_array"), &TileMap::get_pattern);
ClassDB::bind_method(D_METHOD("map_pattern", "position_in_tilemap", "coords_in_pattern", "pattern"), &TileMap::map_pattern);
ClassDB::bind_method(D_METHOD("set_pattern", "layer", "position", "pattern"), &TileMap::set_pattern);
ClassDB::bind_method(D_METHOD("set_cells_terrain_connect", "layer", "cells", "terrain_set", "terrain", "ignore_empty_terrains"), &TileMap::set_cells_terrain_connect, DEFVAL(true));
ClassDB::bind_method(D_METHOD("set_cells_terrain_path", "layer", "path", "terrain_set", "terrain", "ignore_empty_terrains"), &TileMap::set_cells_terrain_path, DEFVAL(true));
ClassDB::bind_method(D_METHOD("fix_invalid_tiles"), &TileMap::fix_invalid_tiles);
ClassDB::bind_method(D_METHOD("clear_layer", "layer"), &TileMap::clear_layer);
ClassDB::bind_method(D_METHOD("clear"), &TileMap::clear);
ClassDB::bind_method(D_METHOD("force_update", "layer"), &TileMap::force_update, DEFVAL(-1));
ClassDB::bind_method(D_METHOD("get_surrounding_tiles", "coords"), &TileMap::get_surrounding_tiles);
ClassDB::bind_method(D_METHOD("get_used_cells", "layer"), &TileMap::get_used_cells);
ClassDB::bind_method(D_METHOD("get_used_rect"), &TileMap::get_used_rect);
ClassDB::bind_method(D_METHOD("map_to_local", "map_position"), &TileMap::map_to_local);
ClassDB::bind_method(D_METHOD("local_to_map", "local_position"), &TileMap::local_to_map);
ClassDB::bind_method(D_METHOD("get_neighbor_cell", "coords", "neighbor"), &TileMap::get_neighbor_cell);
ClassDB::bind_method(D_METHOD("_update_dirty_quadrants"), &TileMap::_update_dirty_quadrants);
ClassDB::bind_method(D_METHOD("_tile_set_changed_deferred_update"), &TileMap::_tile_set_changed_deferred_update);
GDVIRTUAL_BIND(_use_tile_data_runtime_update, "layer", "coords");
GDVIRTUAL_BIND(_tile_data_runtime_update, "layer", "coords", "tile_data");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "tile_set", PROPERTY_HINT_RESOURCE_TYPE, "TileSet"), "set_tileset", "get_tileset");
ADD_PROPERTY(PropertyInfo(Variant::INT, "cell_quadrant_size", PROPERTY_HINT_RANGE, "1,128,1"), "set_quadrant_size", "get_quadrant_size");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collision_animatable"), "set_collision_animatable", "is_collision_animatable");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_visibility_mode", PROPERTY_HINT_ENUM, "Default,Force Show,Force Hide"), "set_collision_visibility_mode", "get_collision_visibility_mode");
ADD_PROPERTY(PropertyInfo(Variant::INT, "navigation_visibility_mode", PROPERTY_HINT_ENUM, "Default,Force Show,Force Hide"), "set_navigation_visibility_mode", "get_navigation_visibility_mode");
ADD_ARRAY("layers", "layer_");
ADD_PROPERTY_DEFAULT("format", FORMAT_1);
ADD_SIGNAL(MethodInfo("changed"));
BIND_ENUM_CONSTANT(VISIBILITY_MODE_DEFAULT);
BIND_ENUM_CONSTANT(VISIBILITY_MODE_FORCE_HIDE);
BIND_ENUM_CONSTANT(VISIBILITY_MODE_FORCE_SHOW);
}
void TileMap::_tile_set_changed() {
emit_signal(SNAME("changed"));
_tile_set_changed_deferred_update_needed = true;
call_deferred(SNAME("_tile_set_changed_deferred_update"));
}
void TileMap::_tile_set_changed_deferred_update() {
if (_tile_set_changed_deferred_update_needed) {
_clear_internals();
_recreate_internals();
_tile_set_changed_deferred_update_needed = false;
}
}
TileMap::TileMap() {
set_notify_transform(true);
set_notify_local_transform(false);
layers.resize(1);
}
TileMap::~TileMap() {
if (tile_set.is_valid()) {
tile_set->disconnect("changed", callable_mp(this, &TileMap::_tile_set_changed));
}
_clear_internals();
}