godot/core/math/matrix3.h
Juan Linietsky bc26f90581 Type renames:
Matrix32 -> Transform2D
	Matrix3 -> Basis
	AABB -> Rect3
	RawArray -> PoolByteArray
	IntArray -> PoolIntArray
	FloatArray -> PoolFloatArray
	Vector2Array -> PoolVector2Array
	Vector3Array -> PoolVector3Array
	ColorArray -> PoolColorArray
2017-01-11 00:52:51 -03:00

305 lines
9.6 KiB
C++

/*************************************************************************/
/* matrix3.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector3.h"
#ifndef MATRIX3_H
#define MATRIX3_H
#include "quat.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
class Basis {
public:
Vector3 elements[3];
_FORCE_INLINE_ const Vector3& operator[](int axis) const {
return elements[axis];
}
_FORCE_INLINE_ Vector3& operator[](int axis) {
return elements[axis];
}
void invert();
void transpose();
Basis inverse() const;
Basis transposed() const;
_FORCE_INLINE_ real_t determinant() const;
void from_z(const Vector3& p_z);
_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
// get actual basis axis (elements is transposed for performance)
return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
}
_FORCE_INLINE_ void set_axis(int p_axis, const Vector3& p_value) {
// get actual basis axis (elements is transposed for performance)
elements[0][p_axis]=p_value.x;
elements[1][p_axis]=p_value.y;
elements[2][p_axis]=p_value.z;
}
void rotate(const Vector3& p_axis, real_t p_phi);
Basis rotated(const Vector3& p_axis, real_t p_phi) const;
void rotate(const Vector3& p_euler);
Basis rotated(const Vector3& p_euler) const;
Vector3 get_rotation() const;
void scale( const Vector3& p_scale );
Basis scaled( const Vector3& p_scale ) const;
Vector3 get_scale() const;
Vector3 get_euler() const;
void set_euler(const Vector3& p_euler);
// transposed dot products
_FORCE_INLINE_ real_t tdotx(const Vector3& v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
}
_FORCE_INLINE_ real_t tdoty(const Vector3& v) const {
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
}
_FORCE_INLINE_ real_t tdotz(const Vector3& v) const {
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
}
bool isequal_approx(const Basis& a, const Basis& b) const;
bool operator==(const Basis& p_matrix) const;
bool operator!=(const Basis& p_matrix) const;
_FORCE_INLINE_ Vector3 xform(const Vector3& p_vector) const;
_FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vector) const;
_FORCE_INLINE_ void operator*=(const Basis& p_matrix);
_FORCE_INLINE_ Basis operator*(const Basis& p_matrix) const;
_FORCE_INLINE_ void operator+=(const Basis& p_matrix);
_FORCE_INLINE_ Basis operator+(const Basis& p_matrix) const;
_FORCE_INLINE_ void operator-=(const Basis& p_matrix);
_FORCE_INLINE_ Basis operator-(const Basis& p_matrix) const;
_FORCE_INLINE_ void operator*=(real_t p_val);
_FORCE_INLINE_ Basis operator*(real_t p_val) const;
int get_orthogonal_index() const;
void set_orthogonal_index(int p_index);
bool is_orthogonal() const;
bool is_rotation() const;
operator String() const;
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;
/* create / set */
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
elements[0][0]=xx;
elements[0][1]=xy;
elements[0][2]=xz;
elements[1][0]=yx;
elements[1][1]=yy;
elements[1][2]=yz;
elements[2][0]=zx;
elements[2][1]=zy;
elements[2][2]=zz;
}
_FORCE_INLINE_ Vector3 get_column(int i) const {
return Vector3(elements[0][i],elements[1][i],elements[2][i]);
}
_FORCE_INLINE_ Vector3 get_row(int i) const {
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
}
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
return Vector3(elements[0][0],elements[1][1],elements[2][2]);
}
_FORCE_INLINE_ void set_row(int i, const Vector3& p_row) {
elements[i][0]=p_row.x;
elements[i][1]=p_row.y;
elements[i][2]=p_row.z;
}
_FORCE_INLINE_ void set_zero() {
elements[0].zero();
elements[1].zero();
elements[2].zero();
}
_FORCE_INLINE_ Basis transpose_xform(const Basis& m) const
{
return Basis(
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
}
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
void orthonormalize();
Basis orthonormalized() const;
bool is_symmetric() const;
Basis diagonalize();
operator Quat() const;
Basis(const Quat& p_quat); // euler
Basis(const Vector3& p_euler); // euler
Basis(const Vector3& p_axis, real_t p_phi);
_FORCE_INLINE_ Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
{
elements[0]=row0;
elements[1]=row1;
elements[2]=row2;
}
_FORCE_INLINE_ Basis() {
elements[0][0]=1;
elements[0][1]=0;
elements[0][2]=0;
elements[1][0]=0;
elements[1][1]=1;
elements[1][2]=0;
elements[2][0]=0;
elements[2][1]=0;
elements[2][2]=1;
}
};
_FORCE_INLINE_ void Basis::operator*=(const Basis& p_matrix) {
set(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
}
_FORCE_INLINE_ Basis Basis::operator*(const Basis& p_matrix) const {
return Basis(
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
}
_FORCE_INLINE_ void Basis::operator+=(const Basis& p_matrix) {
elements[0] += p_matrix.elements[0];
elements[1] += p_matrix.elements[1];
elements[2] += p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator+(const Basis& p_matrix) const {
Basis ret(*this);
ret += p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator-=(const Basis& p_matrix) {
elements[0] -= p_matrix.elements[0];
elements[1] -= p_matrix.elements[1];
elements[2] -= p_matrix.elements[2];
}
_FORCE_INLINE_ Basis Basis::operator-(const Basis& p_matrix) const {
Basis ret(*this);
ret -= p_matrix;
return ret;
}
_FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
elements[0]*=p_val;
elements[1]*=p_val;
elements[2]*=p_val;
}
_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
Basis ret(*this);
ret *= p_val;
return ret;
}
Vector3 Basis::xform(const Vector3& p_vector) const {
return Vector3(
elements[0].dot(p_vector),
elements[1].dot(p_vector),
elements[2].dot(p_vector)
);
}
Vector3 Basis::xform_inv(const Vector3& p_vector) const {
return Vector3(
(elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
(elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
(elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
);
}
real_t Basis::determinant() const {
return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
}
#endif