godot/core/variant.cpp
Rémi Verschelde c8994b56f9 Style: Apply new changes from clang-format 8.0
It seems to stay compatible with formatting done by clang-format 6.0 and 7.0,
so contributors can keep using those versions for now (they will not undo those
changes).
2019-04-09 17:09:48 +02:00

3307 lines
68 KiB
C++

/*************************************************************************/
/* variant.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "variant.h"
#include "core/core_string_names.h"
#include "core/io/marshalls.h"
#include "core/math/math_funcs.h"
#include "core/print_string.h"
#include "core/resource.h"
#include "core/variant_parser.h"
#include "scene/gui/control.h"
#include "scene/main/node.h"
String Variant::get_type_name(Variant::Type p_type) {
switch (p_type) {
case NIL: {
return "Nil";
} break;
// atomic types
case BOOL: {
return "bool";
} break;
case INT: {
return "int";
} break;
case REAL: {
return "float";
} break;
case STRING: {
return "String";
} break;
// math types
case VECTOR2: {
return "Vector2";
} break;
case RECT2: {
return "Rect2";
} break;
case TRANSFORM2D: {
return "Transform2D";
} break;
case VECTOR3: {
return "Vector3";
} break;
case PLANE: {
return "Plane";
} break;
/*
case QUAT: {
} break;*/
case AABB: {
return "AABB";
} break;
case QUAT: {
return "Quat";
} break;
case BASIS: {
return "Basis";
} break;
case TRANSFORM: {
return "Transform";
} break;
// misc types
case COLOR: {
return "Color";
} break;
case _RID: {
return "RID";
} break;
case OBJECT: {
return "Object";
} break;
case NODE_PATH: {
return "NodePath";
} break;
case DICTIONARY: {
return "Dictionary";
} break;
case ARRAY: {
return "Array";
} break;
// arrays
case POOL_BYTE_ARRAY: {
return "PoolByteArray";
} break;
case POOL_INT_ARRAY: {
return "PoolIntArray";
} break;
case POOL_REAL_ARRAY: {
return "PoolRealArray";
} break;
case POOL_STRING_ARRAY: {
return "PoolStringArray";
} break;
case POOL_VECTOR2_ARRAY: {
return "PoolVector2Array";
} break;
case POOL_VECTOR3_ARRAY: {
return "PoolVector3Array";
} break;
case POOL_COLOR_ARRAY: {
return "PoolColorArray";
} break;
default: {
}
}
return "";
}
bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) {
if (p_type_from == p_type_to)
return true;
if (p_type_to == NIL && p_type_from != NIL) //nil can convert to anything
return true;
if (p_type_from == NIL) {
return (p_type_to == OBJECT);
};
const Type *valid_types = NULL;
const Type *invalid_types = NULL;
switch (p_type_to) {
case BOOL: {
static const Type valid[] = {
INT,
REAL,
STRING,
NIL,
};
valid_types = valid;
} break;
case INT: {
static const Type valid[] = {
BOOL,
REAL,
STRING,
NIL,
};
valid_types = valid;
} break;
case REAL: {
static const Type valid[] = {
BOOL,
INT,
STRING,
NIL,
};
valid_types = valid;
} break;
case STRING: {
static const Type invalid[] = {
OBJECT,
NIL
};
invalid_types = invalid;
} break;
case TRANSFORM2D: {
static const Type valid[] = {
TRANSFORM,
NIL
};
valid_types = valid;
} break;
case QUAT: {
static const Type valid[] = {
BASIS,
NIL
};
valid_types = valid;
} break;
case BASIS: {
static const Type valid[] = {
QUAT,
VECTOR3,
NIL
};
valid_types = valid;
} break;
case TRANSFORM: {
static const Type valid[] = {
TRANSFORM2D,
QUAT,
BASIS,
NIL
};
valid_types = valid;
} break;
case COLOR: {
static const Type valid[] = {
STRING,
INT,
NIL,
};
valid_types = valid;
} break;
case _RID: {
static const Type valid[] = {
OBJECT,
NIL
};
valid_types = valid;
} break;
case OBJECT: {
static const Type valid[] = {
NIL
};
valid_types = valid;
} break;
case NODE_PATH: {
static const Type valid[] = {
STRING,
NIL
};
valid_types = valid;
} break;
case ARRAY: {
static const Type valid[] = {
POOL_BYTE_ARRAY,
POOL_INT_ARRAY,
POOL_STRING_ARRAY,
POOL_REAL_ARRAY,
POOL_COLOR_ARRAY,
POOL_VECTOR2_ARRAY,
POOL_VECTOR3_ARRAY,
NIL
};
valid_types = valid;
} break;
// arrays
case POOL_BYTE_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_INT_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_REAL_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_STRING_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_VECTOR2_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_VECTOR3_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_COLOR_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
default: {
}
}
if (valid_types) {
int i = 0;
while (valid_types[i] != NIL) {
if (p_type_from == valid_types[i])
return true;
i++;
}
} else if (invalid_types) {
int i = 0;
while (invalid_types[i] != NIL) {
if (p_type_from == invalid_types[i])
return false;
i++;
}
return true;
}
return false;
}
bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) {
if (p_type_from == p_type_to)
return true;
if (p_type_to == NIL && p_type_from != NIL) //nil can convert to anything
return true;
if (p_type_from == NIL) {
return (p_type_to == OBJECT);
};
const Type *valid_types = NULL;
switch (p_type_to) {
case BOOL: {
static const Type valid[] = {
INT,
REAL,
//STRING,
NIL,
};
valid_types = valid;
} break;
case INT: {
static const Type valid[] = {
BOOL,
REAL,
//STRING,
NIL,
};
valid_types = valid;
} break;
case REAL: {
static const Type valid[] = {
BOOL,
INT,
//STRING,
NIL,
};
valid_types = valid;
} break;
case STRING: {
static const Type valid[] = {
NODE_PATH,
NIL
};
valid_types = valid;
} break;
case TRANSFORM2D: {
static const Type valid[] = {
TRANSFORM,
NIL
};
valid_types = valid;
} break;
case QUAT: {
static const Type valid[] = {
BASIS,
NIL
};
valid_types = valid;
} break;
case BASIS: {
static const Type valid[] = {
QUAT,
VECTOR3,
NIL
};
valid_types = valid;
} break;
case TRANSFORM: {
static const Type valid[] = {
TRANSFORM2D,
QUAT,
BASIS,
NIL
};
valid_types = valid;
} break;
case COLOR: {
static const Type valid[] = {
STRING,
INT,
NIL,
};
valid_types = valid;
} break;
case _RID: {
static const Type valid[] = {
OBJECT,
NIL
};
valid_types = valid;
} break;
case OBJECT: {
static const Type valid[] = {
NIL
};
valid_types = valid;
} break;
case NODE_PATH: {
static const Type valid[] = {
STRING,
NIL
};
valid_types = valid;
} break;
case ARRAY: {
static const Type valid[] = {
POOL_BYTE_ARRAY,
POOL_INT_ARRAY,
POOL_STRING_ARRAY,
POOL_REAL_ARRAY,
POOL_COLOR_ARRAY,
POOL_VECTOR2_ARRAY,
POOL_VECTOR3_ARRAY,
NIL
};
valid_types = valid;
} break;
// arrays
case POOL_BYTE_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_INT_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_REAL_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_STRING_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_VECTOR2_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_VECTOR3_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
case POOL_COLOR_ARRAY: {
static const Type valid[] = {
ARRAY,
NIL
};
valid_types = valid;
} break;
default: {
}
}
if (valid_types) {
int i = 0;
while (valid_types[i] != NIL) {
if (p_type_from == valid_types[i])
return true;
i++;
}
}
return false;
}
bool Variant::operator==(const Variant &p_variant) const {
if (type != p_variant.type) //evaluation of operator== needs to be more strict
return false;
bool v;
Variant r;
evaluate(OP_EQUAL, *this, p_variant, r, v);
return r;
}
bool Variant::operator!=(const Variant &p_variant) const {
if (type != p_variant.type) //evaluation of operator== needs to be more strict
return true;
bool v;
Variant r;
evaluate(OP_NOT_EQUAL, *this, p_variant, r, v);
return r;
}
bool Variant::operator<(const Variant &p_variant) const {
if (type != p_variant.type) //if types differ, then order by type first
return type < p_variant.type;
bool v;
Variant r;
evaluate(OP_LESS, *this, p_variant, r, v);
return r;
}
bool Variant::is_zero() const {
switch (type) {
case NIL: {
return true;
} break;
// atomic types
case BOOL: {
return _data._bool == false;
} break;
case INT: {
return _data._int == 0;
} break;
case REAL: {
return _data._real == 0;
} break;
case STRING: {
return *reinterpret_cast<const String *>(_data._mem) == String();
} break;
// math types
case VECTOR2: {
return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2();
} break;
case RECT2: {
return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2();
} break;
case TRANSFORM2D: {
return *_data._transform2d == Transform2D();
} break;
case VECTOR3: {
return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3();
} break;
case PLANE: {
return *reinterpret_cast<const Plane *>(_data._mem) == Plane();
} break;
/*
case QUAT: {
} break;*/
case AABB: {
return *_data._aabb == ::AABB();
} break;
case QUAT: {
return *reinterpret_cast<const Quat *>(_data._mem) == Quat();
} break;
case BASIS: {
return *_data._basis == Basis();
} break;
case TRANSFORM: {
return *_data._transform == Transform();
} break;
// misc types
case COLOR: {
return *reinterpret_cast<const Color *>(_data._mem) == Color();
} break;
case _RID: {
return *reinterpret_cast<const RID *>(_data._mem) == RID();
} break;
case OBJECT: {
return _get_obj().obj == NULL;
} break;
case NODE_PATH: {
return reinterpret_cast<const NodePath *>(_data._mem)->is_empty();
} break;
case DICTIONARY: {
return reinterpret_cast<const Dictionary *>(_data._mem)->empty();
} break;
case ARRAY: {
return reinterpret_cast<const Array *>(_data._mem)->empty();
} break;
// arrays
case POOL_BYTE_ARRAY: {
return reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem)->size() == 0;
} break;
case POOL_INT_ARRAY: {
return reinterpret_cast<const PoolVector<int> *>(_data._mem)->size() == 0;
} break;
case POOL_REAL_ARRAY: {
return reinterpret_cast<const PoolVector<real_t> *>(_data._mem)->size() == 0;
} break;
case POOL_STRING_ARRAY: {
return reinterpret_cast<const PoolVector<String> *>(_data._mem)->size() == 0;
} break;
case POOL_VECTOR2_ARRAY: {
return reinterpret_cast<const PoolVector<Vector2> *>(_data._mem)->size() == 0;
} break;
case POOL_VECTOR3_ARRAY: {
return reinterpret_cast<const PoolVector<Vector3> *>(_data._mem)->size() == 0;
} break;
case POOL_COLOR_ARRAY: {
return reinterpret_cast<const PoolVector<Color> *>(_data._mem)->size() == 0;
} break;
default: {
}
}
return false;
}
bool Variant::is_one() const {
switch (type) {
case NIL: {
return true;
} break;
// atomic types
case BOOL: {
return _data._bool;
} break;
case INT: {
return _data._int == 1;
} break;
case REAL: {
return _data._real == 1;
} break;
case VECTOR2: {
return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1);
} break;
case RECT2: {
return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1);
} break;
case VECTOR3: {
return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1);
} break;
case PLANE: {
return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1);
} break;
case COLOR: {
return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1);
} break;
default: {
return !is_zero();
}
}
return false;
}
void Variant::reference(const Variant &p_variant) {
clear();
type = p_variant.type;
switch (p_variant.type) {
case NIL: {
// none
} break;
// atomic types
case BOOL: {
_data._bool = p_variant._data._bool;
} break;
case INT: {
_data._int = p_variant._data._int;
} break;
case REAL: {
_data._real = p_variant._data._real;
} break;
case STRING: {
memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem)));
} break;
// math types
case VECTOR2: {
memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem)));
} break;
case RECT2: {
memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem)));
} break;
case TRANSFORM2D: {
_data._transform2d = memnew(Transform2D(*p_variant._data._transform2d));
} break;
case VECTOR3: {
memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem)));
} break;
case PLANE: {
memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem)));
} break;
case AABB: {
_data._aabb = memnew(::AABB(*p_variant._data._aabb));
} break;
case QUAT: {
memnew_placement(_data._mem, Quat(*reinterpret_cast<const Quat *>(p_variant._data._mem)));
} break;
case BASIS: {
_data._basis = memnew(Basis(*p_variant._data._basis));
} break;
case TRANSFORM: {
_data._transform = memnew(Transform(*p_variant._data._transform));
} break;
// misc types
case COLOR: {
memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem)));
} break;
case _RID: {
memnew_placement(_data._mem, RID(*reinterpret_cast<const RID *>(p_variant._data._mem)));
} break;
case OBJECT: {
memnew_placement(_data._mem, ObjData(p_variant._get_obj()));
} break;
case NODE_PATH: {
memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem)));
} break;
case DICTIONARY: {
memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem)));
} break;
case ARRAY: {
memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem)));
} break;
// arrays
case POOL_BYTE_ARRAY: {
memnew_placement(_data._mem, PoolVector<uint8_t>(*reinterpret_cast<const PoolVector<uint8_t> *>(p_variant._data._mem)));
} break;
case POOL_INT_ARRAY: {
memnew_placement(_data._mem, PoolVector<int>(*reinterpret_cast<const PoolVector<int> *>(p_variant._data._mem)));
} break;
case POOL_REAL_ARRAY: {
memnew_placement(_data._mem, PoolVector<real_t>(*reinterpret_cast<const PoolVector<real_t> *>(p_variant._data._mem)));
} break;
case POOL_STRING_ARRAY: {
memnew_placement(_data._mem, PoolVector<String>(*reinterpret_cast<const PoolVector<String> *>(p_variant._data._mem)));
} break;
case POOL_VECTOR2_ARRAY: {
memnew_placement(_data._mem, PoolVector<Vector2>(*reinterpret_cast<const PoolVector<Vector2> *>(p_variant._data._mem)));
} break;
case POOL_VECTOR3_ARRAY: {
memnew_placement(_data._mem, PoolVector<Vector3>(*reinterpret_cast<const PoolVector<Vector3> *>(p_variant._data._mem)));
} break;
case POOL_COLOR_ARRAY: {
memnew_placement(_data._mem, PoolVector<Color>(*reinterpret_cast<const PoolVector<Color> *>(p_variant._data._mem)));
} break;
default: {
}
}
}
void Variant::zero() {
switch (type) {
case NIL: break;
case BOOL: this->_data._bool = false; break;
case INT: this->_data._int = 0; break;
case REAL: this->_data._real = 0; break;
case VECTOR2: *reinterpret_cast<Vector2 *>(this->_data._mem) = Vector2(); break;
case RECT2: *reinterpret_cast<Rect2 *>(this->_data._mem) = Rect2(); break;
case VECTOR3: *reinterpret_cast<Vector3 *>(this->_data._mem) = Vector3(); break;
case PLANE: *reinterpret_cast<Plane *>(this->_data._mem) = Plane(); break;
case QUAT: *reinterpret_cast<Quat *>(this->_data._mem) = Quat(); break;
case COLOR: *reinterpret_cast<Color *>(this->_data._mem) = Color(); break;
default: this->clear(); break;
}
}
void Variant::clear() {
switch (type) {
case STRING: {
reinterpret_cast<String *>(_data._mem)->~String();
} break;
/*
// no point, they don't allocate memory
VECTOR3,
PLANE,
QUAT,
COLOR,
VECTOR2,
RECT2
*/
case TRANSFORM2D: {
memdelete(_data._transform2d);
} break;
case AABB: {
memdelete(_data._aabb);
} break;
case BASIS: {
memdelete(_data._basis);
} break;
case TRANSFORM: {
memdelete(_data._transform);
} break;
// misc types
case NODE_PATH: {
reinterpret_cast<NodePath *>(_data._mem)->~NodePath();
} break;
case OBJECT: {
_get_obj().obj = NULL;
_get_obj().ref.unref();
} break;
case _RID: {
// not much need probably
reinterpret_cast<RID *>(_data._mem)->~RID();
} break;
case DICTIONARY: {
reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary();
} break;
case ARRAY: {
reinterpret_cast<Array *>(_data._mem)->~Array();
} break;
// arrays
case POOL_BYTE_ARRAY: {
reinterpret_cast<PoolVector<uint8_t> *>(_data._mem)->~PoolVector<uint8_t>();
} break;
case POOL_INT_ARRAY: {
reinterpret_cast<PoolVector<int> *>(_data._mem)->~PoolVector<int>();
} break;
case POOL_REAL_ARRAY: {
reinterpret_cast<PoolVector<real_t> *>(_data._mem)->~PoolVector<real_t>();
} break;
case POOL_STRING_ARRAY: {
reinterpret_cast<PoolVector<String> *>(_data._mem)->~PoolVector<String>();
} break;
case POOL_VECTOR2_ARRAY: {
reinterpret_cast<PoolVector<Vector2> *>(_data._mem)->~PoolVector<Vector2>();
} break;
case POOL_VECTOR3_ARRAY: {
reinterpret_cast<PoolVector<Vector3> *>(_data._mem)->~PoolVector<Vector3>();
} break;
case POOL_COLOR_ARRAY: {
reinterpret_cast<PoolVector<Color> *>(_data._mem)->~PoolVector<Color>();
} break;
default: {
} /* not needed */
}
type = NIL;
}
Variant::operator signed int() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator unsigned int() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator int64_t() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int64();
default: {
return 0;
}
}
return 0;
}
/*
Variant::operator long unsigned int() const {
switch( type ) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
};
*/
Variant::operator uint64_t() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
#ifdef NEED_LONG_INT
Variant::operator signed long() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
};
Variant::operator unsigned long() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
};
#endif
Variant::operator signed short() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator unsigned short() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator signed char() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator unsigned char() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1 : 0;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return operator String().to_int();
default: {
return 0;
}
}
return 0;
}
Variant::operator CharType() const {
return operator unsigned int();
}
Variant::operator float() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1.0 : 0.0;
case INT: return (float)_data._int;
case REAL: return _data._real;
case STRING: return operator String().to_double();
default: {
return 0;
}
}
return 0;
}
Variant::operator double() const {
switch (type) {
case NIL: return 0;
case BOOL: return _data._bool ? 1.0 : 0.0;
case INT: return (double)_data._int;
case REAL: return _data._real;
case STRING: return operator String().to_double();
default: {
return 0;
}
}
return true;
}
Variant::operator StringName() const {
if (type == NODE_PATH) {
return reinterpret_cast<const NodePath *>(_data._mem)->get_sname();
}
return StringName(operator String());
}
struct _VariantStrPair {
String key;
String value;
bool operator<(const _VariantStrPair &p) const {
return key < p.key;
}
};
Variant::operator String() const {
switch (type) {
case NIL: return "Null";
case BOOL: return _data._bool ? "True" : "False";
case INT: return itos(_data._int);
case REAL: return rtos(_data._real);
case STRING: return *reinterpret_cast<const String *>(_data._mem);
case VECTOR2: return "(" + operator Vector2() + ")";
case RECT2: return "(" + operator Rect2() + ")";
case TRANSFORM2D: {
Transform2D mat32 = operator Transform2D();
return "(" + Variant(mat32.elements[0]).operator String() + ", " + Variant(mat32.elements[1]).operator String() + ", " + Variant(mat32.elements[2]).operator String() + ")";
} break;
case VECTOR3: return "(" + operator Vector3() + ")";
case PLANE:
return operator Plane();
//case QUAT:
case AABB: return operator ::AABB();
case QUAT: return "(" + operator Quat() + ")";
case BASIS: {
Basis mat3 = operator Basis();
String mtx("(");
for (int i = 0; i < 3; i++) {
if (i != 0)
mtx += ", ";
mtx += "(";
for (int j = 0; j < 3; j++) {
if (j != 0)
mtx += ", ";
mtx += Variant(mat3.elements[i][j]).operator String();
}
mtx += ")";
}
return mtx + ")";
} break;
case TRANSFORM: return operator Transform();
case NODE_PATH: return operator NodePath();
case COLOR: return String::num(operator Color().r) + "," + String::num(operator Color().g) + "," + String::num(operator Color().b) + "," + String::num(operator Color().a);
case DICTIONARY: {
const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem);
//const String *K=NULL;
String str("{");
List<Variant> keys;
d.get_key_list(&keys);
Vector<_VariantStrPair> pairs;
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
_VariantStrPair sp;
sp.key = String(E->get());
sp.value = d[E->get()];
pairs.push_back(sp);
}
pairs.sort();
for (int i = 0; i < pairs.size(); i++) {
if (i > 0)
str += ", ";
str += pairs[i].key + ":" + pairs[i].value;
}
str += "}";
return str;
} break;
case POOL_VECTOR2_ARRAY: {
PoolVector<Vector2> vec = operator PoolVector<Vector2>();
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0)
str += ", ";
str = str + Variant(vec[i]);
}
str += "]";
return str;
} break;
case POOL_VECTOR3_ARRAY: {
PoolVector<Vector3> vec = operator PoolVector<Vector3>();
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0)
str += ", ";
str = str + Variant(vec[i]);
}
str += "]";
return str;
} break;
case POOL_STRING_ARRAY: {
PoolVector<String> vec = operator PoolVector<String>();
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0)
str += ", ";
str = str + vec[i];
}
str += "]";
return str;
} break;
case POOL_INT_ARRAY: {
PoolVector<int> vec = operator PoolVector<int>();
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0)
str += ", ";
str = str + itos(vec[i]);
}
str += "]";
return str;
} break;
case POOL_REAL_ARRAY: {
PoolVector<real_t> vec = operator PoolVector<real_t>();
String str("[");
for (int i = 0; i < vec.size(); i++) {
if (i > 0)
str += ", ";
str = str + rtos(vec[i]);
}
str += "]";
return str;
} break;
case ARRAY: {
Array arr = operator Array();
String str("[");
for (int i = 0; i < arr.size(); i++) {
if (i)
str += ", ";
str += String(arr[i]);
};
str += "]";
return str;
} break;
case OBJECT: {
if (_get_obj().obj) {
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) {
//only if debugging!
if (!ObjectDB::instance_validate(_get_obj().obj)) {
return "[Deleted Object]";
};
};
#endif
return "[" + _get_obj().obj->get_class() + ":" + itos(_get_obj().obj->get_instance_id()) + "]";
} else
return "[Object:null]";
} break;
default: {
return "[" + get_type_name(type) + "]";
}
}
return "";
}
Variant::operator Vector2() const {
if (type == VECTOR2)
return *reinterpret_cast<const Vector2 *>(_data._mem);
else if (type == VECTOR3)
return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
else
return Vector2();
}
Variant::operator Rect2() const {
if (type == RECT2)
return *reinterpret_cast<const Rect2 *>(_data._mem);
else
return Rect2();
}
Variant::operator Vector3() const {
if (type == VECTOR3)
return *reinterpret_cast<const Vector3 *>(_data._mem);
else if (type == VECTOR2)
return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
else
return Vector3();
}
Variant::operator Plane() const {
if (type == PLANE)
return *reinterpret_cast<const Plane *>(_data._mem);
else
return Plane();
}
Variant::operator ::AABB() const {
if (type == AABB)
return *_data._aabb;
else
return ::AABB();
}
Variant::operator Basis() const {
if (type == BASIS)
return *_data._basis;
else if (type == QUAT)
return *reinterpret_cast<const Quat *>(_data._mem);
else if (type == VECTOR3) {
return Basis(*reinterpret_cast<const Vector3 *>(_data._mem));
} else if (type == TRANSFORM) // unexposed in Variant::can_convert?
return _data._transform->basis;
else
return Basis();
}
Variant::operator Quat() const {
if (type == QUAT)
return *reinterpret_cast<const Quat *>(_data._mem);
else if (type == BASIS)
return *_data._basis;
else if (type == TRANSFORM)
return _data._transform->basis;
else
return Quat();
}
Variant::operator Transform() const {
if (type == TRANSFORM)
return *_data._transform;
else if (type == BASIS)
return Transform(*_data._basis, Vector3());
else if (type == QUAT)
return Transform(Basis(*reinterpret_cast<const Quat *>(_data._mem)), Vector3());
else if (type == TRANSFORM2D) {
const Transform2D &t = *_data._transform2d;
Transform m;
m.basis.elements[0][0] = t.elements[0][0];
m.basis.elements[1][0] = t.elements[0][1];
m.basis.elements[0][1] = t.elements[1][0];
m.basis.elements[1][1] = t.elements[1][1];
m.origin[0] = t.elements[2][0];
m.origin[1] = t.elements[2][1];
return m;
} else
return Transform();
}
Variant::operator Transform2D() const {
if (type == TRANSFORM2D) {
return *_data._transform2d;
} else if (type == TRANSFORM) {
const Transform &t = *_data._transform;
Transform2D m;
m.elements[0][0] = t.basis.elements[0][0];
m.elements[0][1] = t.basis.elements[1][0];
m.elements[1][0] = t.basis.elements[0][1];
m.elements[1][1] = t.basis.elements[1][1];
m.elements[2][0] = t.origin[0];
m.elements[2][1] = t.origin[1];
return m;
} else
return Transform2D();
}
Variant::operator Color() const {
if (type == COLOR)
return *reinterpret_cast<const Color *>(_data._mem);
else if (type == STRING)
return Color::html(operator String());
else if (type == INT)
return Color::hex(operator int());
else
return Color();
}
Variant::operator NodePath() const {
if (type == NODE_PATH)
return *reinterpret_cast<const NodePath *>(_data._mem);
else if (type == STRING)
return NodePath(operator String());
else
return NodePath();
}
Variant::operator RefPtr() const {
if (type == OBJECT)
return _get_obj().ref;
else
return RefPtr();
}
Variant::operator RID() const {
if (type == _RID)
return *reinterpret_cast<const RID *>(_data._mem);
else if (type == OBJECT && !_get_obj().ref.is_null()) {
return _get_obj().ref.get_rid();
} else if (type == OBJECT && _get_obj().obj) {
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton()) {
if (!ObjectDB::instance_validate(_get_obj().obj)) {
ERR_EXPLAIN("Invalid pointer (object was deleted)");
ERR_FAIL_V(RID());
};
};
#endif
Variant::CallError ce;
Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->get_rid, NULL, 0, ce);
if (ce.error == Variant::CallError::CALL_OK && ret.get_type() == Variant::_RID) {
return ret;
}
return RID();
} else {
return RID();
}
}
Variant::operator Object *() const {
if (type == OBJECT)
return _get_obj().obj;
else
return NULL;
}
Variant::operator Node *() const {
if (type == OBJECT)
return Object::cast_to<Node>(_get_obj().obj);
else
return NULL;
}
Variant::operator Control *() const {
if (type == OBJECT)
return Object::cast_to<Control>(_get_obj().obj);
else
return NULL;
}
Variant::operator Dictionary() const {
if (type == DICTIONARY)
return *reinterpret_cast<const Dictionary *>(_data._mem);
else
return Dictionary();
}
template <class DA, class SA>
inline DA _convert_array(const SA &p_array) {
DA da;
da.resize(p_array.size());
for (int i = 0; i < p_array.size(); i++) {
da.set(i, Variant(p_array.get(i)));
}
return da;
}
template <class DA>
inline DA _convert_array_from_variant(const Variant &p_variant) {
switch (p_variant.get_type()) {
case Variant::ARRAY: {
return _convert_array<DA, Array>(p_variant.operator Array());
}
case Variant::POOL_BYTE_ARRAY: {
return _convert_array<DA, PoolVector<uint8_t> >(p_variant.operator PoolVector<uint8_t>());
}
case Variant::POOL_INT_ARRAY: {
return _convert_array<DA, PoolVector<int> >(p_variant.operator PoolVector<int>());
}
case Variant::POOL_REAL_ARRAY: {
return _convert_array<DA, PoolVector<real_t> >(p_variant.operator PoolVector<real_t>());
}
case Variant::POOL_STRING_ARRAY: {
return _convert_array<DA, PoolVector<String> >(p_variant.operator PoolVector<String>());
}
case Variant::POOL_VECTOR2_ARRAY: {
return _convert_array<DA, PoolVector<Vector2> >(p_variant.operator PoolVector<Vector2>());
}
case Variant::POOL_VECTOR3_ARRAY: {
return _convert_array<DA, PoolVector<Vector3> >(p_variant.operator PoolVector<Vector3>());
}
case Variant::POOL_COLOR_ARRAY: {
return _convert_array<DA, PoolVector<Color> >(p_variant.operator PoolVector<Color>());
}
default: {
return DA();
}
}
return DA();
}
Variant::operator Array() const {
if (type == ARRAY)
return *reinterpret_cast<const Array *>(_data._mem);
else
return _convert_array_from_variant<Array>(*this);
}
Variant::operator PoolVector<uint8_t>() const {
if (type == POOL_BYTE_ARRAY)
return *reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<uint8_t> >(*this);
}
Variant::operator PoolVector<int>() const {
if (type == POOL_INT_ARRAY)
return *reinterpret_cast<const PoolVector<int> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<int> >(*this);
}
Variant::operator PoolVector<real_t>() const {
if (type == POOL_REAL_ARRAY)
return *reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<real_t> >(*this);
}
Variant::operator PoolVector<String>() const {
if (type == POOL_STRING_ARRAY)
return *reinterpret_cast<const PoolVector<String> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<String> >(*this);
}
Variant::operator PoolVector<Vector3>() const {
if (type == POOL_VECTOR3_ARRAY)
return *reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<Vector3> >(*this);
}
Variant::operator PoolVector<Vector2>() const {
if (type == POOL_VECTOR2_ARRAY)
return *reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<Vector2> >(*this);
}
Variant::operator PoolVector<Color>() const {
if (type == POOL_COLOR_ARRAY)
return *reinterpret_cast<const PoolVector<Color> *>(_data._mem);
else
return _convert_array_from_variant<PoolVector<Color> >(*this);
}
/* helpers */
Variant::operator Vector<RID>() const {
Array va = operator Array();
Vector<RID> rids;
rids.resize(va.size());
for (int i = 0; i < rids.size(); i++)
rids.write[i] = va[i];
return rids;
}
Variant::operator Vector<Vector2>() const {
PoolVector<Vector2> from = operator PoolVector<Vector2>();
Vector<Vector2> to;
int len = from.size();
if (len == 0)
return Vector<Vector2>();
to.resize(len);
PoolVector<Vector2>::Read r = from.read();
Vector2 *w = to.ptrw();
for (int i = 0; i < len; i++) {
w[i] = r[i];
}
return to;
}
Variant::operator PoolVector<Plane>() const {
Array va = operator Array();
PoolVector<Plane> planes;
int va_size = va.size();
if (va_size == 0)
return planes;
planes.resize(va_size);
PoolVector<Plane>::Write w = planes.write();
for (int i = 0; i < va_size; i++)
w[i] = va[i];
return planes;
}
Variant::operator PoolVector<Face3>() const {
PoolVector<Vector3> va = operator PoolVector<Vector3>();
PoolVector<Face3> faces;
int va_size = va.size();
if (va_size == 0)
return faces;
faces.resize(va_size / 3);
PoolVector<Face3>::Write w = faces.write();
PoolVector<Vector3>::Read r = va.read();
for (int i = 0; i < va_size; i++)
w[i / 3].vertex[i % 3] = r[i];
return faces;
}
Variant::operator Vector<Plane>() const {
Array va = operator Array();
Vector<Plane> planes;
int va_size = va.size();
if (va_size == 0)
return planes;
planes.resize(va_size);
for (int i = 0; i < va_size; i++)
planes.write[i] = va[i];
return planes;
}
Variant::operator Vector<Variant>() const {
Array from = operator Array();
Vector<Variant> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<uint8_t>() const {
PoolVector<uint8_t> from = operator PoolVector<uint8_t>();
Vector<uint8_t> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<int>() const {
PoolVector<int> from = operator PoolVector<int>();
Vector<int> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<real_t>() const {
PoolVector<real_t> from = operator PoolVector<real_t>();
Vector<real_t> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<String>() const {
PoolVector<String> from = operator PoolVector<String>();
Vector<String> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<StringName>() const {
PoolVector<String> from = operator PoolVector<String>();
Vector<StringName> to;
int len = from.size();
to.resize(len);
for (int i = 0; i < len; i++) {
to.write[i] = from[i];
}
return to;
}
Variant::operator Vector<Vector3>() const {
PoolVector<Vector3> from = operator PoolVector<Vector3>();
Vector<Vector3> to;
int len = from.size();
if (len == 0)
return Vector<Vector3>();
to.resize(len);
PoolVector<Vector3>::Read r = from.read();
Vector3 *w = to.ptrw();
for (int i = 0; i < len; i++) {
w[i] = r[i];
}
return to;
}
Variant::operator Vector<Color>() const {
PoolVector<Color> from = operator PoolVector<Color>();
Vector<Color> to;
int len = from.size();
if (len == 0)
return Vector<Color>();
to.resize(len);
PoolVector<Color>::Read r = from.read();
Color *w = to.ptrw();
for (int i = 0; i < len; i++) {
w[i] = r[i];
}
return to;
}
Variant::operator Margin() const {
return (Margin) operator int();
}
Variant::operator Orientation() const {
return (Orientation) operator int();
}
Variant::operator IP_Address() const {
if (type == POOL_REAL_ARRAY || type == POOL_INT_ARRAY || type == POOL_BYTE_ARRAY) {
PoolVector<int> addr = operator PoolVector<int>();
if (addr.size() == 4) {
return IP_Address(addr.get(0), addr.get(1), addr.get(2), addr.get(3));
}
}
return IP_Address(operator String());
}
Variant::Variant(bool p_bool) {
type = BOOL;
_data._bool = p_bool;
}
/*
Variant::Variant(long unsigned int p_long) {
type=INT;
_data._int=p_long;
};
*/
Variant::Variant(signed int p_int) {
type = INT;
_data._int = p_int;
}
Variant::Variant(unsigned int p_int) {
type = INT;
_data._int = p_int;
}
#ifdef NEED_LONG_INT
Variant::Variant(signed long p_int) {
type = INT;
_data._int = p_int;
}
Variant::Variant(unsigned long p_int) {
type = INT;
_data._int = p_int;
}
#endif
Variant::Variant(int64_t p_int) {
type = INT;
_data._int = p_int;
}
Variant::Variant(uint64_t p_int) {
type = INT;
_data._int = p_int;
}
Variant::Variant(signed short p_short) {
type = INT;
_data._int = p_short;
}
Variant::Variant(unsigned short p_short) {
type = INT;
_data._int = p_short;
}
Variant::Variant(signed char p_char) {
type = INT;
_data._int = p_char;
}
Variant::Variant(unsigned char p_char) {
type = INT;
_data._int = p_char;
}
Variant::Variant(float p_float) {
type = REAL;
_data._real = p_float;
}
Variant::Variant(double p_double) {
type = REAL;
_data._real = p_double;
}
Variant::Variant(const StringName &p_string) {
type = STRING;
memnew_placement(_data._mem, String(p_string.operator String()));
}
Variant::Variant(const String &p_string) {
type = STRING;
memnew_placement(_data._mem, String(p_string));
}
Variant::Variant(const char *const p_cstring) {
type = STRING;
memnew_placement(_data._mem, String((const char *)p_cstring));
}
Variant::Variant(const CharType *p_wstring) {
type = STRING;
memnew_placement(_data._mem, String(p_wstring));
}
Variant::Variant(const Vector3 &p_vector3) {
type = VECTOR3;
memnew_placement(_data._mem, Vector3(p_vector3));
}
Variant::Variant(const Vector2 &p_vector2) {
type = VECTOR2;
memnew_placement(_data._mem, Vector2(p_vector2));
}
Variant::Variant(const Rect2 &p_rect2) {
type = RECT2;
memnew_placement(_data._mem, Rect2(p_rect2));
}
Variant::Variant(const Plane &p_plane) {
type = PLANE;
memnew_placement(_data._mem, Plane(p_plane));
}
Variant::Variant(const ::AABB &p_aabb) {
type = AABB;
_data._aabb = memnew(::AABB(p_aabb));
}
Variant::Variant(const Basis &p_matrix) {
type = BASIS;
_data._basis = memnew(Basis(p_matrix));
}
Variant::Variant(const Quat &p_quat) {
type = QUAT;
memnew_placement(_data._mem, Quat(p_quat));
}
Variant::Variant(const Transform &p_transform) {
type = TRANSFORM;
_data._transform = memnew(Transform(p_transform));
}
Variant::Variant(const Transform2D &p_transform) {
type = TRANSFORM2D;
_data._transform2d = memnew(Transform2D(p_transform));
}
Variant::Variant(const Color &p_color) {
type = COLOR;
memnew_placement(_data._mem, Color(p_color));
}
Variant::Variant(const NodePath &p_node_path) {
type = NODE_PATH;
memnew_placement(_data._mem, NodePath(p_node_path));
}
Variant::Variant(const RefPtr &p_resource) {
type = OBJECT;
memnew_placement(_data._mem, ObjData);
REF *ref = reinterpret_cast<REF *>(p_resource.get_data());
_get_obj().obj = ref->ptr();
_get_obj().ref = p_resource;
}
Variant::Variant(const RID &p_rid) {
type = _RID;
memnew_placement(_data._mem, RID(p_rid));
}
Variant::Variant(const Object *p_object) {
type = OBJECT;
memnew_placement(_data._mem, ObjData);
_get_obj().obj = const_cast<Object *>(p_object);
}
Variant::Variant(const Dictionary &p_dictionary) {
type = DICTIONARY;
memnew_placement(_data._mem, (Dictionary)(p_dictionary));
}
Variant::Variant(const Array &p_array) {
type = ARRAY;
memnew_placement(_data._mem, Array(p_array));
}
Variant::Variant(const PoolVector<Plane> &p_array) {
type = ARRAY;
Array *plane_array = memnew_placement(_data._mem, Array);
plane_array->resize(p_array.size());
for (int i = 0; i < p_array.size(); i++) {
plane_array->operator[](i) = Variant(p_array[i]);
}
}
Variant::Variant(const Vector<Plane> &p_array) {
type = ARRAY;
Array *plane_array = memnew_placement(_data._mem, Array);
plane_array->resize(p_array.size());
for (int i = 0; i < p_array.size(); i++) {
plane_array->operator[](i) = Variant(p_array[i]);
}
}
Variant::Variant(const Vector<RID> &p_array) {
type = ARRAY;
Array *rid_array = memnew_placement(_data._mem, Array);
rid_array->resize(p_array.size());
for (int i = 0; i < p_array.size(); i++) {
rid_array->set(i, Variant(p_array[i]));
}
}
Variant::Variant(const Vector<Vector2> &p_array) {
type = NIL;
PoolVector<Vector2> v;
int len = p_array.size();
if (len > 0) {
v.resize(len);
PoolVector<Vector2>::Write w = v.write();
const Vector2 *r = p_array.ptr();
for (int i = 0; i < len; i++)
w[i] = r[i];
}
*this = v;
}
Variant::Variant(const PoolVector<uint8_t> &p_raw_array) {
type = POOL_BYTE_ARRAY;
memnew_placement(_data._mem, PoolVector<uint8_t>(p_raw_array));
}
Variant::Variant(const PoolVector<int> &p_int_array) {
type = POOL_INT_ARRAY;
memnew_placement(_data._mem, PoolVector<int>(p_int_array));
}
Variant::Variant(const PoolVector<real_t> &p_real_array) {
type = POOL_REAL_ARRAY;
memnew_placement(_data._mem, PoolVector<real_t>(p_real_array));
}
Variant::Variant(const PoolVector<String> &p_string_array) {
type = POOL_STRING_ARRAY;
memnew_placement(_data._mem, PoolVector<String>(p_string_array));
}
Variant::Variant(const PoolVector<Vector3> &p_vector3_array) {
type = POOL_VECTOR3_ARRAY;
memnew_placement(_data._mem, PoolVector<Vector3>(p_vector3_array));
}
Variant::Variant(const PoolVector<Vector2> &p_vector2_array) {
type = POOL_VECTOR2_ARRAY;
memnew_placement(_data._mem, PoolVector<Vector2>(p_vector2_array));
}
Variant::Variant(const PoolVector<Color> &p_color_array) {
type = POOL_COLOR_ARRAY;
memnew_placement(_data._mem, PoolVector<Color>(p_color_array));
}
Variant::Variant(const PoolVector<Face3> &p_face_array) {
PoolVector<Vector3> vertices;
int face_count = p_face_array.size();
vertices.resize(face_count * 3);
if (face_count) {
PoolVector<Face3>::Read r = p_face_array.read();
PoolVector<Vector3>::Write w = vertices.write();
for (int i = 0; i < face_count; i++) {
for (int j = 0; j < 3; j++)
w[i * 3 + j] = r[i].vertex[j];
}
r = PoolVector<Face3>::Read();
w = PoolVector<Vector3>::Write();
}
type = NIL;
*this = vertices;
}
/* helpers */
Variant::Variant(const Vector<Variant> &p_array) {
type = NIL;
Array v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<uint8_t> &p_array) {
type = NIL;
PoolVector<uint8_t> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<int> &p_array) {
type = NIL;
PoolVector<int> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<real_t> &p_array) {
type = NIL;
PoolVector<real_t> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<String> &p_array) {
type = NIL;
PoolVector<String> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<StringName> &p_array) {
type = NIL;
PoolVector<String> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
Variant::Variant(const Vector<Vector3> &p_array) {
type = NIL;
PoolVector<Vector3> v;
int len = p_array.size();
if (len > 0) {
v.resize(len);
PoolVector<Vector3>::Write w = v.write();
const Vector3 *r = p_array.ptr();
for (int i = 0; i < len; i++)
w[i] = r[i];
}
*this = v;
}
Variant::Variant(const Vector<Color> &p_array) {
type = NIL;
PoolVector<Color> v;
int len = p_array.size();
v.resize(len);
for (int i = 0; i < len; i++)
v.set(i, p_array[i]);
*this = v;
}
void Variant::operator=(const Variant &p_variant) {
if (unlikely(this == &p_variant))
return;
if (unlikely(type != p_variant.type)) {
reference(p_variant);
return;
}
switch (p_variant.type) {
case NIL: {
// none
} break;
// atomic types
case BOOL: {
_data._bool = p_variant._data._bool;
} break;
case INT: {
_data._int = p_variant._data._int;
} break;
case REAL: {
_data._real = p_variant._data._real;
} break;
case STRING: {
*reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem);
} break;
// math types
case VECTOR2: {
*reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem);
} break;
case RECT2: {
*reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem);
} break;
case TRANSFORM2D: {
*_data._transform2d = *(p_variant._data._transform2d);
} break;
case VECTOR3: {
*reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem);
} break;
case PLANE: {
*reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem);
} break;
case AABB: {
*_data._aabb = *(p_variant._data._aabb);
} break;
case QUAT: {
*reinterpret_cast<Quat *>(_data._mem) = *reinterpret_cast<const Quat *>(p_variant._data._mem);
} break;
case BASIS: {
*_data._basis = *(p_variant._data._basis);
} break;
case TRANSFORM: {
*_data._transform = *(p_variant._data._transform);
} break;
// misc types
case COLOR: {
*reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem);
} break;
case _RID: {
*reinterpret_cast<RID *>(_data._mem) = *reinterpret_cast<const RID *>(p_variant._data._mem);
} break;
case OBJECT: {
*reinterpret_cast<ObjData *>(_data._mem) = p_variant._get_obj();
} break;
case NODE_PATH: {
*reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem);
} break;
case DICTIONARY: {
*reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem);
} break;
case ARRAY: {
*reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem);
} break;
// arrays
case POOL_BYTE_ARRAY: {
*reinterpret_cast<PoolVector<uint8_t> *>(_data._mem) = *reinterpret_cast<const PoolVector<uint8_t> *>(p_variant._data._mem);
} break;
case POOL_INT_ARRAY: {
*reinterpret_cast<PoolVector<int> *>(_data._mem) = *reinterpret_cast<const PoolVector<int> *>(p_variant._data._mem);
} break;
case POOL_REAL_ARRAY: {
*reinterpret_cast<PoolVector<real_t> *>(_data._mem) = *reinterpret_cast<const PoolVector<real_t> *>(p_variant._data._mem);
} break;
case POOL_STRING_ARRAY: {
*reinterpret_cast<PoolVector<String> *>(_data._mem) = *reinterpret_cast<const PoolVector<String> *>(p_variant._data._mem);
} break;
case POOL_VECTOR2_ARRAY: {
*reinterpret_cast<PoolVector<Vector2> *>(_data._mem) = *reinterpret_cast<const PoolVector<Vector2> *>(p_variant._data._mem);
} break;
case POOL_VECTOR3_ARRAY: {
*reinterpret_cast<PoolVector<Vector3> *>(_data._mem) = *reinterpret_cast<const PoolVector<Vector3> *>(p_variant._data._mem);
} break;
case POOL_COLOR_ARRAY: {
*reinterpret_cast<PoolVector<Color> *>(_data._mem) = *reinterpret_cast<const PoolVector<Color> *>(p_variant._data._mem);
} break;
default: {
}
}
}
Variant::Variant(const IP_Address &p_address) {
type = STRING;
memnew_placement(_data._mem, String(p_address));
}
Variant::Variant(const Variant &p_variant) {
type = NIL;
reference(p_variant);
}
/*
Variant::~Variant() {
clear();
}*/
uint32_t Variant::hash() const {
switch (type) {
case NIL: {
return 0;
} break;
case BOOL: {
return _data._bool ? 1 : 0;
} break;
case INT: {
return _data._int;
} break;
case REAL: {
return hash_djb2_one_float(_data._real);
} break;
case STRING: {
return reinterpret_cast<const String *>(_data._mem)->hash();
} break;
// math types
case VECTOR2: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->x);
return hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->y, hash);
} break;
case RECT2: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.x);
hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.y, hash);
hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.x, hash);
return hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.y, hash);
} break;
case TRANSFORM2D: {
uint32_t hash = 5831;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
hash = hash_djb2_one_float(_data._transform2d->elements[i][j], hash);
}
}
return hash;
} break;
case VECTOR3: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->x);
hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->y, hash);
return hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->z, hash);
} break;
case PLANE: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.x);
hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.y, hash);
hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.z, hash);
return hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->d, hash);
} break;
/*
case QUAT: {
} break;*/
case AABB: {
uint32_t hash = 5831;
for (int i = 0; i < 3; i++) {
hash = hash_djb2_one_float(_data._aabb->position[i], hash);
hash = hash_djb2_one_float(_data._aabb->size[i], hash);
}
return hash;
} break;
case QUAT: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->x);
hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->y, hash);
hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->z, hash);
return hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->w, hash);
} break;
case BASIS: {
uint32_t hash = 5831;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
hash = hash_djb2_one_float(_data._basis->elements[i][j], hash);
}
}
return hash;
} break;
case TRANSFORM: {
uint32_t hash = 5831;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
hash = hash_djb2_one_float(_data._transform->basis.elements[i][j], hash);
}
hash = hash_djb2_one_float(_data._transform->origin[i], hash);
}
return hash;
} break;
// misc types
case COLOR: {
uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->r);
hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->g, hash);
hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->b, hash);
return hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->a, hash);
} break;
case _RID: {
return hash_djb2_one_64(reinterpret_cast<const RID *>(_data._mem)->get_id());
} break;
case OBJECT: {
return hash_djb2_one_64(make_uint64_t(_get_obj().obj));
} break;
case NODE_PATH: {
return reinterpret_cast<const NodePath *>(_data._mem)->hash();
} break;
case DICTIONARY: {
return reinterpret_cast<const Dictionary *>(_data._mem)->hash();
} break;
case ARRAY: {
const Array &arr = *reinterpret_cast<const Array *>(_data._mem);
return arr.hash();
} break;
case POOL_BYTE_ARRAY: {
const PoolVector<uint8_t> &arr = *reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<uint8_t>::Read r = arr.read();
return hash_djb2_buffer((uint8_t *)&r[0], len);
} else {
return hash_djb2_one_64(0);
}
} break;
case POOL_INT_ARRAY: {
const PoolVector<int> &arr = *reinterpret_cast<const PoolVector<int> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<int>::Read r = arr.read();
return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int));
} else {
return hash_djb2_one_64(0);
}
} break;
case POOL_REAL_ARRAY: {
const PoolVector<real_t> &arr = *reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<real_t>::Read r = arr.read();
return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(real_t));
} else {
return hash_djb2_one_float(0.0);
}
} break;
case POOL_STRING_ARRAY: {
uint32_t hash = 5831;
const PoolVector<String> &arr = *reinterpret_cast<const PoolVector<String> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<String>::Read r = arr.read();
for (int i = 0; i < len; i++) {
hash = hash_djb2_one_32(r[i].hash(), hash);
}
}
return hash;
} break;
case POOL_VECTOR2_ARRAY: {
uint32_t hash = 5831;
const PoolVector<Vector2> &arr = *reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<Vector2>::Read r = arr.read();
for (int i = 0; i < len; i++) {
hash = hash_djb2_one_float(r[i].x, hash);
hash = hash_djb2_one_float(r[i].y, hash);
}
}
return hash;
} break;
case POOL_VECTOR3_ARRAY: {
uint32_t hash = 5831;
const PoolVector<Vector3> &arr = *reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<Vector3>::Read r = arr.read();
for (int i = 0; i < len; i++) {
hash = hash_djb2_one_float(r[i].x, hash);
hash = hash_djb2_one_float(r[i].y, hash);
hash = hash_djb2_one_float(r[i].z, hash);
}
}
return hash;
} break;
case POOL_COLOR_ARRAY: {
uint32_t hash = 5831;
const PoolVector<Color> &arr = *reinterpret_cast<const PoolVector<Color> *>(_data._mem);
int len = arr.size();
if (likely(len)) {
PoolVector<Color>::Read r = arr.read();
for (int i = 0; i < len; i++) {
hash = hash_djb2_one_float(r[i].r, hash);
hash = hash_djb2_one_float(r[i].g, hash);
hash = hash_djb2_one_float(r[i].b, hash);
hash = hash_djb2_one_float(r[i].a, hash);
}
}
return hash;
} break;
default: {
}
}
return 0;
}
#define hash_compare_scalar(p_lhs, p_rhs) \
((p_lhs) == (p_rhs)) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs))
#define hash_compare_vector2(p_lhs, p_rhs) \
(hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
(hash_compare_scalar((p_lhs).y, (p_rhs).y))
#define hash_compare_vector3(p_lhs, p_rhs) \
(hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
(hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
(hash_compare_scalar((p_lhs).z, (p_rhs).z))
#define hash_compare_quat(p_lhs, p_rhs) \
(hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
(hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
(hash_compare_scalar((p_lhs).z, (p_rhs).z)) && \
(hash_compare_scalar((p_lhs).w, (p_rhs).w))
#define hash_compare_color(p_lhs, p_rhs) \
(hash_compare_scalar((p_lhs).r, (p_rhs).r)) && \
(hash_compare_scalar((p_lhs).g, (p_rhs).g)) && \
(hash_compare_scalar((p_lhs).b, (p_rhs).b)) && \
(hash_compare_scalar((p_lhs).a, (p_rhs).a))
#define hash_compare_pool_array(p_lhs, p_rhs, p_type, p_compare_func) \
const PoolVector<p_type> &l = *reinterpret_cast<const PoolVector<p_type> *>(p_lhs); \
const PoolVector<p_type> &r = *reinterpret_cast<const PoolVector<p_type> *>(p_rhs); \
\
if (l.size() != r.size()) \
return false; \
\
PoolVector<p_type>::Read lr = l.read(); \
PoolVector<p_type>::Read rr = r.read(); \
\
for (int i = 0; i < l.size(); ++i) { \
if (!p_compare_func((lr[i]), (rr[i]))) \
return false; \
} \
\
return true
bool Variant::hash_compare(const Variant &p_variant) const {
if (type != p_variant.type)
return false;
switch (type) {
case REAL: {
return hash_compare_scalar(_data._real, p_variant._data._real);
} break;
case VECTOR2: {
const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem);
const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem);
return hash_compare_vector2(*l, *r);
} break;
case RECT2: {
const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem);
const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem);
return (hash_compare_vector2(l->position, r->position)) &&
(hash_compare_vector2(l->size, r->size));
} break;
case TRANSFORM2D: {
Transform2D *l = _data._transform2d;
Transform2D *r = p_variant._data._transform2d;
for (int i = 0; i < 3; i++) {
if (!(hash_compare_vector2(l->elements[i], r->elements[i])))
return false;
}
return true;
} break;
case VECTOR3: {
const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem);
const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem);
return hash_compare_vector3(*l, *r);
} break;
case PLANE: {
const Plane *l = reinterpret_cast<const Plane *>(_data._mem);
const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem);
return (hash_compare_vector3(l->normal, r->normal)) &&
(hash_compare_scalar(l->d, r->d));
} break;
case AABB: {
const ::AABB *l = _data._aabb;
const ::AABB *r = p_variant._data._aabb;
return (hash_compare_vector3(l->position, r->position) &&
(hash_compare_vector3(l->size, r->size)));
} break;
case QUAT: {
const Quat *l = reinterpret_cast<const Quat *>(_data._mem);
const Quat *r = reinterpret_cast<const Quat *>(p_variant._data._mem);
return hash_compare_quat(*l, *r);
} break;
case BASIS: {
const Basis *l = _data._basis;
const Basis *r = p_variant._data._basis;
for (int i = 0; i < 3; i++) {
if (!(hash_compare_vector3(l->elements[i], r->elements[i])))
return false;
}
return true;
} break;
case TRANSFORM: {
const Transform *l = _data._transform;
const Transform *r = p_variant._data._transform;
for (int i = 0; i < 3; i++) {
if (!(hash_compare_vector3(l->basis.elements[i], r->basis.elements[i])))
return false;
}
return hash_compare_vector3(l->origin, r->origin);
} break;
case COLOR: {
const Color *l = reinterpret_cast<const Color *>(_data._mem);
const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem);
return hash_compare_color(*l, *r);
} break;
case ARRAY: {
const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
if (l.size() != r.size())
return false;
for (int i = 0; i < l.size(); ++i) {
if (!l[i].hash_compare(r[i]))
return false;
}
return true;
} break;
case POOL_REAL_ARRAY: {
hash_compare_pool_array(_data._mem, p_variant._data._mem, real_t, hash_compare_scalar);
} break;
case POOL_VECTOR2_ARRAY: {
hash_compare_pool_array(_data._mem, p_variant._data._mem, Vector2, hash_compare_vector2);
} break;
case POOL_VECTOR3_ARRAY: {
hash_compare_pool_array(_data._mem, p_variant._data._mem, Vector3, hash_compare_vector3);
} break;
case POOL_COLOR_ARRAY: {
hash_compare_pool_array(_data._mem, p_variant._data._mem, Color, hash_compare_color);
} break;
default:
bool v;
Variant r;
evaluate(OP_EQUAL, *this, p_variant, r, v);
return r;
}
return false;
}
bool Variant::is_ref() const {
return type == OBJECT && !_get_obj().ref.is_null();
}
Vector<Variant> varray() {
return Vector<Variant>();
}
Vector<Variant> varray(const Variant &p_arg1) {
Vector<Variant> v;
v.push_back(p_arg1);
return v;
}
Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) {
Vector<Variant> v;
v.push_back(p_arg1);
v.push_back(p_arg2);
return v;
}
Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) {
Vector<Variant> v;
v.push_back(p_arg1);
v.push_back(p_arg2);
v.push_back(p_arg3);
return v;
}
Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) {
Vector<Variant> v;
v.push_back(p_arg1);
v.push_back(p_arg2);
v.push_back(p_arg3);
v.push_back(p_arg4);
return v;
}
Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) {
Vector<Variant> v;
v.push_back(p_arg1);
v.push_back(p_arg2);
v.push_back(p_arg3);
v.push_back(p_arg4);
v.push_back(p_arg5);
return v;
}
void Variant::static_assign(const Variant &p_variant) {
}
bool Variant::is_shared() const {
switch (type) {
case OBJECT: return true;
case ARRAY: return true;
case DICTIONARY: return true;
default: {
}
}
return false;
}
Variant Variant::call(const StringName &p_method, VARIANT_ARG_DECLARE) {
VARIANT_ARGPTRS;
int argc = 0;
for (int i = 0; i < VARIANT_ARG_MAX; i++) {
if (argptr[i]->get_type() == Variant::NIL)
break;
argc++;
}
CallError error;
Variant ret = call(p_method, argptr, argc, error);
switch (error.error) {
case CallError::CALL_ERROR_INVALID_ARGUMENT: {
String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(error.expected) + "'.";
ERR_PRINT(err.utf8().get_data());
} break;
case CallError::CALL_ERROR_INVALID_METHOD: {
String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'.";
ERR_PRINT(err.utf8().get_data());
} break;
case CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: {
String err = "Too many arguments for method '" + p_method + "'";
ERR_PRINT(err.utf8().get_data());
} break;
default: {
}
}
return ret;
}
void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) {
r_value = Variant();
}
String Variant::get_construct_string() const {
String vars;
VariantWriter::write_to_string(*this, vars);
return vars;
}
String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Variant::CallError &ce) {
String err_text;
if (ce.error == Variant::CallError::CALL_ERROR_INVALID_ARGUMENT) {
int errorarg = ce.argument;
if (p_argptrs) {
err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(ce.expected) + ".";
} else {
err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(ce.expected) + ".";
}
} else if (ce.error == Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
} else if (ce.error == Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
} else if (ce.error == Variant::CallError::CALL_ERROR_INVALID_METHOD) {
err_text = "Method not found.";
} else if (ce.error == Variant::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
err_text = "Instance is null";
} else if (ce.error == Variant::CallError::CALL_OK) {
return "Call OK";
}
String class_name = p_base->get_class();
Ref<Script> script = p_base->get_script();
if (script.is_valid() && script->get_path().is_resource_file()) {
class_name += "(" + script->get_path().get_file() + ")";
}
return "'" + class_name + "::" + String(p_method) + "': " + err_text;
}
String vformat(const String &p_text, const Variant &p1, const Variant &p2, const Variant &p3, const Variant &p4, const Variant &p5) {
Array args;
if (p1.get_type() != Variant::NIL) {
args.push_back(p1);
if (p2.get_type() != Variant::NIL) {
args.push_back(p2);
if (p3.get_type() != Variant::NIL) {
args.push_back(p3);
if (p4.get_type() != Variant::NIL) {
args.push_back(p4);
if (p5.get_type() != Variant::NIL) {
args.push_back(p5);
}
}
}
}
}
bool error = false;
String fmt = p_text.sprintf(args, &error);
ERR_FAIL_COND_V(error, String());
return fmt;
}