mirror of
https://github.com/godotengine/godot.git
synced 2024-11-22 04:06:14 +00:00
a4cfc77dc0
Moves all the navigation mesh query related functions from NavMap and NavRegion to a dedicated file and makes them static.
900 lines
32 KiB
C++
900 lines
32 KiB
C++
/**************************************************************************/
|
|
/* nav_map.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "nav_map.h"
|
|
|
|
#include "nav_agent.h"
|
|
#include "nav_link.h"
|
|
#include "nav_obstacle.h"
|
|
#include "nav_region.h"
|
|
|
|
#include "3d/nav_mesh_queries_3d.h"
|
|
|
|
#include "core/config/project_settings.h"
|
|
#include "core/object/worker_thread_pool.h"
|
|
|
|
#include <Obstacle2d.h>
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
#define NAVMAP_ITERATION_ZERO_ERROR_MSG() \
|
|
ERR_PRINT_ONCE("NavigationServer navigation map query failed because it was made before first map synchronization.\n\
|
|
NavigationServer 'map_changed' signal can be used to receive update notifications.\n\
|
|
NavigationServer 'map_get_iteration_id()' can be used to check if a map has finished its newest iteration.");
|
|
#else
|
|
#define NAVMAP_ITERATION_ZERO_ERROR_MSG()
|
|
#endif // DEBUG_ENABLED
|
|
|
|
void NavMap::set_up(Vector3 p_up) {
|
|
if (up == p_up) {
|
|
return;
|
|
}
|
|
up = p_up;
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_cell_size(real_t p_cell_size) {
|
|
if (cell_size == p_cell_size) {
|
|
return;
|
|
}
|
|
cell_size = p_cell_size;
|
|
_update_merge_rasterizer_cell_dimensions();
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_cell_height(real_t p_cell_height) {
|
|
if (cell_height == p_cell_height) {
|
|
return;
|
|
}
|
|
cell_height = p_cell_height;
|
|
_update_merge_rasterizer_cell_dimensions();
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_merge_rasterizer_cell_scale(float p_value) {
|
|
if (merge_rasterizer_cell_scale == p_value) {
|
|
return;
|
|
}
|
|
merge_rasterizer_cell_scale = p_value;
|
|
_update_merge_rasterizer_cell_dimensions();
|
|
regenerate_polygons = true;
|
|
}
|
|
|
|
void NavMap::set_use_edge_connections(bool p_enabled) {
|
|
if (use_edge_connections == p_enabled) {
|
|
return;
|
|
}
|
|
use_edge_connections = p_enabled;
|
|
regenerate_links = true;
|
|
}
|
|
|
|
void NavMap::set_edge_connection_margin(real_t p_edge_connection_margin) {
|
|
if (edge_connection_margin == p_edge_connection_margin) {
|
|
return;
|
|
}
|
|
edge_connection_margin = p_edge_connection_margin;
|
|
regenerate_links = true;
|
|
}
|
|
|
|
void NavMap::set_link_connection_radius(real_t p_link_connection_radius) {
|
|
if (link_connection_radius == p_link_connection_radius) {
|
|
return;
|
|
}
|
|
link_connection_radius = p_link_connection_radius;
|
|
regenerate_links = true;
|
|
}
|
|
|
|
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
|
|
const int x = static_cast<int>(Math::floor(p_pos.x / merge_rasterizer_cell_size));
|
|
const int y = static_cast<int>(Math::floor(p_pos.y / merge_rasterizer_cell_height));
|
|
const int z = static_cast<int>(Math::floor(p_pos.z / merge_rasterizer_cell_size));
|
|
|
|
gd::PointKey p;
|
|
p.key = 0;
|
|
p.x = x;
|
|
p.y = y;
|
|
p.z = z;
|
|
return p;
|
|
}
|
|
|
|
Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
if (iteration_id == 0) {
|
|
NAVMAP_ITERATION_ZERO_ERROR_MSG();
|
|
return Vector<Vector3>();
|
|
}
|
|
|
|
return NavMeshQueries3D::polygons_get_path(
|
|
polygons, p_origin, p_destination, p_optimize, p_navigation_layers,
|
|
r_path_types, r_path_rids, r_path_owners, up, link_polygons.size());
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
if (iteration_id == 0) {
|
|
NAVMAP_ITERATION_ZERO_ERROR_MSG();
|
|
return Vector3();
|
|
}
|
|
|
|
return NavMeshQueries3D::polygons_get_closest_point_to_segment(polygons, p_from, p_to, p_use_collision);
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
if (iteration_id == 0) {
|
|
NAVMAP_ITERATION_ZERO_ERROR_MSG();
|
|
return Vector3();
|
|
}
|
|
|
|
return NavMeshQueries3D::polygons_get_closest_point(polygons, p_point);
|
|
}
|
|
|
|
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
if (iteration_id == 0) {
|
|
NAVMAP_ITERATION_ZERO_ERROR_MSG();
|
|
return Vector3();
|
|
}
|
|
|
|
return NavMeshQueries3D::polygons_get_closest_point_normal(polygons, p_point);
|
|
}
|
|
|
|
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
if (iteration_id == 0) {
|
|
NAVMAP_ITERATION_ZERO_ERROR_MSG();
|
|
return RID();
|
|
}
|
|
|
|
return NavMeshQueries3D::polygons_get_closest_point_owner(polygons, p_point);
|
|
}
|
|
|
|
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
|
|
return NavMeshQueries3D::polygons_get_closest_point_info(polygons, p_point);
|
|
}
|
|
|
|
void NavMap::add_region(NavRegion *p_region) {
|
|
regions.push_back(p_region);
|
|
regenerate_links = true;
|
|
}
|
|
|
|
void NavMap::remove_region(NavRegion *p_region) {
|
|
int64_t region_index = regions.find(p_region);
|
|
if (region_index >= 0) {
|
|
regions.remove_at_unordered(region_index);
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::add_link(NavLink *p_link) {
|
|
links.push_back(p_link);
|
|
regenerate_links = true;
|
|
}
|
|
|
|
void NavMap::remove_link(NavLink *p_link) {
|
|
int64_t link_index = links.find(p_link);
|
|
if (link_index >= 0) {
|
|
links.remove_at_unordered(link_index);
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
bool NavMap::has_agent(NavAgent *agent) const {
|
|
return agents.has(agent);
|
|
}
|
|
|
|
void NavMap::add_agent(NavAgent *agent) {
|
|
if (!has_agent(agent)) {
|
|
agents.push_back(agent);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::remove_agent(NavAgent *agent) {
|
|
remove_agent_as_controlled(agent);
|
|
int64_t agent_index = agents.find(agent);
|
|
if (agent_index >= 0) {
|
|
agents.remove_at_unordered(agent_index);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
bool NavMap::has_obstacle(NavObstacle *obstacle) const {
|
|
return obstacles.has(obstacle);
|
|
}
|
|
|
|
void NavMap::add_obstacle(NavObstacle *obstacle) {
|
|
if (obstacle->get_paused()) {
|
|
// No point in adding a paused obstacle, it will add itself when unpaused again.
|
|
return;
|
|
}
|
|
|
|
if (!has_obstacle(obstacle)) {
|
|
obstacles.push_back(obstacle);
|
|
obstacles_dirty = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::remove_obstacle(NavObstacle *obstacle) {
|
|
int64_t obstacle_index = obstacles.find(obstacle);
|
|
if (obstacle_index >= 0) {
|
|
obstacles.remove_at_unordered(obstacle_index);
|
|
obstacles_dirty = true;
|
|
}
|
|
}
|
|
|
|
void NavMap::set_agent_as_controlled(NavAgent *agent) {
|
|
remove_agent_as_controlled(agent);
|
|
|
|
if (agent->get_paused()) {
|
|
// No point in adding a paused agent, it will add itself when unpaused again.
|
|
return;
|
|
}
|
|
|
|
if (agent->get_use_3d_avoidance()) {
|
|
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
|
|
if (agent_3d_index < 0) {
|
|
active_3d_avoidance_agents.push_back(agent);
|
|
agents_dirty = true;
|
|
}
|
|
} else {
|
|
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
|
|
if (agent_2d_index < 0) {
|
|
active_2d_avoidance_agents.push_back(agent);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMap::remove_agent_as_controlled(NavAgent *agent) {
|
|
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
|
|
if (agent_3d_index >= 0) {
|
|
active_3d_avoidance_agents.remove_at_unordered(agent_3d_index);
|
|
agents_dirty = true;
|
|
}
|
|
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
|
|
if (agent_2d_index >= 0) {
|
|
active_2d_avoidance_agents.remove_at_unordered(agent_2d_index);
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
Vector3 NavMap::get_random_point(uint32_t p_navigation_layers, bool p_uniformly) const {
|
|
RWLockRead read_lock(map_rwlock);
|
|
|
|
const LocalVector<NavRegion *> map_regions = get_regions();
|
|
|
|
if (map_regions.is_empty()) {
|
|
return Vector3();
|
|
}
|
|
|
|
LocalVector<const NavRegion *> accessible_regions;
|
|
|
|
for (const NavRegion *region : map_regions) {
|
|
if (!region->get_enabled() || (p_navigation_layers & region->get_navigation_layers()) == 0) {
|
|
continue;
|
|
}
|
|
accessible_regions.push_back(region);
|
|
}
|
|
|
|
if (accessible_regions.is_empty()) {
|
|
// All existing region polygons are disabled.
|
|
return Vector3();
|
|
}
|
|
|
|
if (p_uniformly) {
|
|
real_t accumulated_region_surface_area = 0;
|
|
RBMap<real_t, uint32_t> accessible_regions_area_map;
|
|
|
|
for (uint32_t accessible_region_index = 0; accessible_region_index < accessible_regions.size(); accessible_region_index++) {
|
|
const NavRegion *region = accessible_regions[accessible_region_index];
|
|
|
|
real_t region_surface_area = region->get_surface_area();
|
|
|
|
if (region_surface_area == 0.0f) {
|
|
continue;
|
|
}
|
|
|
|
accessible_regions_area_map[accumulated_region_surface_area] = accessible_region_index;
|
|
accumulated_region_surface_area += region_surface_area;
|
|
}
|
|
if (accessible_regions_area_map.is_empty() || accumulated_region_surface_area == 0) {
|
|
// All faces have no real surface / no area.
|
|
return Vector3();
|
|
}
|
|
|
|
real_t random_accessible_regions_area_map = Math::random(real_t(0), accumulated_region_surface_area);
|
|
|
|
RBMap<real_t, uint32_t>::Iterator E = accessible_regions_area_map.find_closest(random_accessible_regions_area_map);
|
|
ERR_FAIL_COND_V(!E, Vector3());
|
|
uint32_t random_region_index = E->value;
|
|
ERR_FAIL_UNSIGNED_INDEX_V(random_region_index, accessible_regions.size(), Vector3());
|
|
|
|
const NavRegion *random_region = accessible_regions[random_region_index];
|
|
ERR_FAIL_NULL_V(random_region, Vector3());
|
|
|
|
return random_region->get_random_point(p_navigation_layers, p_uniformly);
|
|
|
|
} else {
|
|
uint32_t random_region_index = Math::random(int(0), accessible_regions.size() - 1);
|
|
|
|
const NavRegion *random_region = accessible_regions[random_region_index];
|
|
ERR_FAIL_NULL_V(random_region, Vector3());
|
|
|
|
return random_region->get_random_point(p_navigation_layers, p_uniformly);
|
|
}
|
|
}
|
|
|
|
void NavMap::sync() {
|
|
RWLockWrite write_lock(map_rwlock);
|
|
|
|
// Performance Monitor
|
|
int _new_pm_region_count = regions.size();
|
|
int _new_pm_agent_count = agents.size();
|
|
int _new_pm_link_count = links.size();
|
|
int _new_pm_polygon_count = pm_polygon_count;
|
|
int _new_pm_edge_count = pm_edge_count;
|
|
int _new_pm_edge_merge_count = pm_edge_merge_count;
|
|
int _new_pm_edge_connection_count = pm_edge_connection_count;
|
|
int _new_pm_edge_free_count = pm_edge_free_count;
|
|
int _new_pm_obstacle_count = obstacles.size();
|
|
|
|
// Check if we need to update the links.
|
|
if (regenerate_polygons) {
|
|
for (NavRegion *region : regions) {
|
|
region->scratch_polygons();
|
|
}
|
|
regenerate_links = true;
|
|
}
|
|
|
|
for (NavRegion *region : regions) {
|
|
if (region->sync()) {
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
for (NavLink *link : links) {
|
|
if (link->check_dirty()) {
|
|
regenerate_links = true;
|
|
}
|
|
}
|
|
|
|
if (regenerate_links) {
|
|
_new_pm_polygon_count = 0;
|
|
_new_pm_edge_count = 0;
|
|
_new_pm_edge_merge_count = 0;
|
|
_new_pm_edge_connection_count = 0;
|
|
_new_pm_edge_free_count = 0;
|
|
|
|
// Remove regions connections.
|
|
region_external_connections.clear();
|
|
for (NavRegion *region : regions) {
|
|
region_external_connections[region] = LocalVector<gd::Edge::Connection>();
|
|
}
|
|
|
|
// Resize the polygon count.
|
|
int polygon_count = 0;
|
|
for (const NavRegion *region : regions) {
|
|
if (!region->get_enabled()) {
|
|
continue;
|
|
}
|
|
polygon_count += region->get_polygons().size();
|
|
}
|
|
polygons.resize(polygon_count);
|
|
|
|
// Copy all region polygons in the map.
|
|
polygon_count = 0;
|
|
for (const NavRegion *region : regions) {
|
|
if (!region->get_enabled()) {
|
|
continue;
|
|
}
|
|
const LocalVector<gd::Polygon> &polygons_source = region->get_polygons();
|
|
for (uint32_t n = 0; n < polygons_source.size(); n++) {
|
|
polygons[polygon_count] = polygons_source[n];
|
|
polygons[polygon_count].id = polygon_count;
|
|
polygon_count++;
|
|
}
|
|
}
|
|
|
|
_new_pm_polygon_count = polygon_count;
|
|
|
|
// Group all edges per key.
|
|
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
|
|
for (gd::Polygon &poly : polygons) {
|
|
for (uint32_t p = 0; p < poly.points.size(); p++) {
|
|
int next_point = (p + 1) % poly.points.size();
|
|
gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
|
|
|
|
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek);
|
|
if (!connection) {
|
|
connections[ek] = Vector<gd::Edge::Connection>();
|
|
_new_pm_edge_count += 1;
|
|
}
|
|
if (connections[ek].size() <= 1) {
|
|
// Add the polygon/edge tuple to this key.
|
|
gd::Edge::Connection new_connection;
|
|
new_connection.polygon = &poly;
|
|
new_connection.edge = p;
|
|
new_connection.pathway_start = poly.points[p].pos;
|
|
new_connection.pathway_end = poly.points[next_point].pos;
|
|
connections[ek].push_back(new_connection);
|
|
} else {
|
|
// The edge is already connected with another edge, skip.
|
|
ERR_PRINT_ONCE("Navigation map synchronization error. Attempted to merge a navigation mesh polygon edge with another already-merged edge. This is usually caused by crossing edges, overlapping polygons, or a mismatch of the NavigationMesh / NavigationPolygon baked 'cell_size' and navigation map 'cell_size'. If you're certain none of above is the case, change 'navigation/3d/merge_rasterizer_cell_scale' to 0.001.");
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector<gd::Edge::Connection> free_edges;
|
|
for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) {
|
|
if (E.value.size() == 2) {
|
|
// Connect edge that are shared in different polygons.
|
|
gd::Edge::Connection &c1 = E.value.write[0];
|
|
gd::Edge::Connection &c2 = E.value.write[1];
|
|
c1.polygon->edges[c1.edge].connections.push_back(c2);
|
|
c2.polygon->edges[c2.edge].connections.push_back(c1);
|
|
// Note: The pathway_start/end are full for those connection and do not need to be modified.
|
|
_new_pm_edge_merge_count += 1;
|
|
} else {
|
|
CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d", E.value.size()));
|
|
if (use_edge_connections && E.value[0].polygon->owner->get_use_edge_connections()) {
|
|
free_edges.push_back(E.value[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the compatible near edges.
|
|
//
|
|
// Note:
|
|
// Considering that the edges must be compatible (for obvious reasons)
|
|
// to be connected, create new polygons to remove that small gap is
|
|
// not really useful and would result in wasteful computation during
|
|
// connection, integration and path finding.
|
|
_new_pm_edge_free_count = free_edges.size();
|
|
|
|
for (int i = 0; i < free_edges.size(); i++) {
|
|
const gd::Edge::Connection &free_edge = free_edges[i];
|
|
Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
|
|
Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
|
|
|
|
for (int j = 0; j < free_edges.size(); j++) {
|
|
const gd::Edge::Connection &other_edge = free_edges[j];
|
|
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
|
|
continue;
|
|
}
|
|
|
|
Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
|
|
Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
|
|
|
|
// Compute the projection of the opposite edge on the current one
|
|
Vector3 edge_vector = edge_p2 - edge_p1;
|
|
real_t projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
|
|
real_t projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
|
|
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
|
|
continue;
|
|
}
|
|
|
|
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
|
|
Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
|
|
Vector3 other1;
|
|
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
|
|
other1 = other_edge_p1;
|
|
} else {
|
|
other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
|
|
}
|
|
if (other1.distance_to(self1) > edge_connection_margin) {
|
|
continue;
|
|
}
|
|
|
|
Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
|
|
Vector3 other2;
|
|
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
|
|
other2 = other_edge_p2;
|
|
} else {
|
|
other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
|
|
}
|
|
if (other2.distance_to(self2) > edge_connection_margin) {
|
|
continue;
|
|
}
|
|
|
|
// The edges can now be connected.
|
|
gd::Edge::Connection new_connection = other_edge;
|
|
new_connection.pathway_start = (self1 + other1) / 2.0;
|
|
new_connection.pathway_end = (self2 + other2) / 2.0;
|
|
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
|
|
|
|
// Add the connection to the region_connection map.
|
|
region_external_connections[(NavRegion *)free_edge.polygon->owner].push_back(new_connection);
|
|
_new_pm_edge_connection_count += 1;
|
|
}
|
|
}
|
|
|
|
uint32_t link_poly_idx = 0;
|
|
link_polygons.resize(links.size());
|
|
|
|
// Search for polygons within range of a nav link.
|
|
for (const NavLink *link : links) {
|
|
if (!link->get_enabled()) {
|
|
continue;
|
|
}
|
|
const Vector3 start = link->get_start_position();
|
|
const Vector3 end = link->get_end_position();
|
|
|
|
gd::Polygon *closest_start_polygon = nullptr;
|
|
real_t closest_start_distance = link_connection_radius;
|
|
Vector3 closest_start_point;
|
|
|
|
gd::Polygon *closest_end_polygon = nullptr;
|
|
real_t closest_end_distance = link_connection_radius;
|
|
Vector3 closest_end_point;
|
|
|
|
// Create link to any polygons within the search radius of the start point.
|
|
for (uint32_t start_index = 0; start_index < polygons.size(); start_index++) {
|
|
gd::Polygon &start_poly = polygons[start_index];
|
|
|
|
// For each face check the distance to the start
|
|
for (uint32_t start_point_id = 2; start_point_id < start_poly.points.size(); start_point_id += 1) {
|
|
const Face3 start_face(start_poly.points[0].pos, start_poly.points[start_point_id - 1].pos, start_poly.points[start_point_id].pos);
|
|
const Vector3 start_point = start_face.get_closest_point_to(start);
|
|
const real_t start_distance = start_point.distance_to(start);
|
|
|
|
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
|
|
if (start_distance <= link_connection_radius && start_distance < closest_start_distance) {
|
|
closest_start_distance = start_distance;
|
|
closest_start_point = start_point;
|
|
closest_start_polygon = &start_poly;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find any polygons within the search radius of the end point.
|
|
for (gd::Polygon &end_poly : polygons) {
|
|
// For each face check the distance to the end
|
|
for (uint32_t end_point_id = 2; end_point_id < end_poly.points.size(); end_point_id += 1) {
|
|
const Face3 end_face(end_poly.points[0].pos, end_poly.points[end_point_id - 1].pos, end_poly.points[end_point_id].pos);
|
|
const Vector3 end_point = end_face.get_closest_point_to(end);
|
|
const real_t end_distance = end_point.distance_to(end);
|
|
|
|
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
|
|
if (end_distance <= link_connection_radius && end_distance < closest_end_distance) {
|
|
closest_end_distance = end_distance;
|
|
closest_end_point = end_point;
|
|
closest_end_polygon = &end_poly;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have both a start and end point, then create a synthetic polygon to route through.
|
|
if (closest_start_polygon && closest_end_polygon) {
|
|
gd::Polygon &new_polygon = link_polygons[link_poly_idx++];
|
|
new_polygon.id = polygon_count++;
|
|
new_polygon.owner = link;
|
|
|
|
new_polygon.edges.clear();
|
|
new_polygon.edges.resize(4);
|
|
new_polygon.points.clear();
|
|
new_polygon.points.reserve(4);
|
|
|
|
// Build a set of vertices that create a thin polygon going from the start to the end point.
|
|
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
|
|
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
|
|
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
|
|
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
|
|
|
|
// Setup connections to go forward in the link.
|
|
{
|
|
gd::Edge::Connection entry_connection;
|
|
entry_connection.polygon = &new_polygon;
|
|
entry_connection.edge = -1;
|
|
entry_connection.pathway_start = new_polygon.points[0].pos;
|
|
entry_connection.pathway_end = new_polygon.points[1].pos;
|
|
closest_start_polygon->edges[0].connections.push_back(entry_connection);
|
|
|
|
gd::Edge::Connection exit_connection;
|
|
exit_connection.polygon = closest_end_polygon;
|
|
exit_connection.edge = -1;
|
|
exit_connection.pathway_start = new_polygon.points[2].pos;
|
|
exit_connection.pathway_end = new_polygon.points[3].pos;
|
|
new_polygon.edges[2].connections.push_back(exit_connection);
|
|
}
|
|
|
|
// If the link is bi-directional, create connections from the end to the start.
|
|
if (link->is_bidirectional()) {
|
|
gd::Edge::Connection entry_connection;
|
|
entry_connection.polygon = &new_polygon;
|
|
entry_connection.edge = -1;
|
|
entry_connection.pathway_start = new_polygon.points[2].pos;
|
|
entry_connection.pathway_end = new_polygon.points[3].pos;
|
|
closest_end_polygon->edges[0].connections.push_back(entry_connection);
|
|
|
|
gd::Edge::Connection exit_connection;
|
|
exit_connection.polygon = closest_start_polygon;
|
|
exit_connection.edge = -1;
|
|
exit_connection.pathway_start = new_polygon.points[0].pos;
|
|
exit_connection.pathway_end = new_polygon.points[1].pos;
|
|
new_polygon.edges[0].connections.push_back(exit_connection);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some code treats 0 as a failure case, so we avoid returning 0 and modulo wrap UINT32_MAX manually.
|
|
iteration_id = iteration_id % UINT32_MAX + 1;
|
|
}
|
|
|
|
// Do we have modified obstacle positions?
|
|
for (NavObstacle *obstacle : obstacles) {
|
|
if (obstacle->check_dirty()) {
|
|
obstacles_dirty = true;
|
|
}
|
|
}
|
|
// Do we have modified agent arrays?
|
|
for (NavAgent *agent : agents) {
|
|
if (agent->check_dirty()) {
|
|
agents_dirty = true;
|
|
}
|
|
}
|
|
|
|
// Update avoidance worlds.
|
|
if (obstacles_dirty || agents_dirty) {
|
|
_update_rvo_simulation();
|
|
}
|
|
|
|
regenerate_polygons = false;
|
|
regenerate_links = false;
|
|
obstacles_dirty = false;
|
|
agents_dirty = false;
|
|
|
|
// Performance Monitor.
|
|
pm_region_count = _new_pm_region_count;
|
|
pm_agent_count = _new_pm_agent_count;
|
|
pm_link_count = _new_pm_link_count;
|
|
pm_polygon_count = _new_pm_polygon_count;
|
|
pm_edge_count = _new_pm_edge_count;
|
|
pm_edge_merge_count = _new_pm_edge_merge_count;
|
|
pm_edge_connection_count = _new_pm_edge_connection_count;
|
|
pm_edge_free_count = _new_pm_edge_free_count;
|
|
pm_obstacle_count = _new_pm_obstacle_count;
|
|
}
|
|
|
|
void NavMap::_update_rvo_obstacles_tree_2d() {
|
|
int obstacle_vertex_count = 0;
|
|
for (NavObstacle *obstacle : obstacles) {
|
|
obstacle_vertex_count += obstacle->get_vertices().size();
|
|
}
|
|
|
|
// Cleaning old obstacles.
|
|
for (size_t i = 0; i < rvo_simulation_2d.obstacles_.size(); ++i) {
|
|
delete rvo_simulation_2d.obstacles_[i];
|
|
}
|
|
rvo_simulation_2d.obstacles_.clear();
|
|
|
|
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree
|
|
std::vector<RVO2D::Obstacle2D *> &raw_obstacles = rvo_simulation_2d.obstacles_;
|
|
raw_obstacles.reserve(obstacle_vertex_count);
|
|
|
|
// The following block is modified copy from RVO2D::AddObstacle()
|
|
// Obstacles are linked and depend on all other obstacles.
|
|
for (NavObstacle *obstacle : obstacles) {
|
|
const Vector3 &_obstacle_position = obstacle->get_position();
|
|
const Vector<Vector3> &_obstacle_vertices = obstacle->get_vertices();
|
|
|
|
if (_obstacle_vertices.size() < 2) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<RVO2D::Vector2> rvo_2d_vertices;
|
|
rvo_2d_vertices.reserve(_obstacle_vertices.size());
|
|
|
|
uint32_t _obstacle_avoidance_layers = obstacle->get_avoidance_layers();
|
|
real_t _obstacle_height = obstacle->get_height();
|
|
|
|
for (const Vector3 &_obstacle_vertex : _obstacle_vertices) {
|
|
#ifdef TOOLS_ENABLED
|
|
if (_obstacle_vertex.y != 0) {
|
|
WARN_PRINT_ONCE("Y coordinates of static obstacle vertices are ignored. Please use obstacle position Y to change elevation of obstacle.");
|
|
}
|
|
#endif
|
|
rvo_2d_vertices.push_back(RVO2D::Vector2(_obstacle_vertex.x + _obstacle_position.x, _obstacle_vertex.z + _obstacle_position.z));
|
|
}
|
|
|
|
const size_t obstacleNo = raw_obstacles.size();
|
|
|
|
for (size_t i = 0; i < rvo_2d_vertices.size(); i++) {
|
|
RVO2D::Obstacle2D *rvo_2d_obstacle = new RVO2D::Obstacle2D();
|
|
rvo_2d_obstacle->point_ = rvo_2d_vertices[i];
|
|
rvo_2d_obstacle->height_ = _obstacle_height;
|
|
rvo_2d_obstacle->elevation_ = _obstacle_position.y;
|
|
|
|
rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers;
|
|
|
|
if (i != 0) {
|
|
rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back();
|
|
rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle;
|
|
}
|
|
|
|
if (i == rvo_2d_vertices.size() - 1) {
|
|
rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo];
|
|
rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle;
|
|
}
|
|
|
|
rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]);
|
|
|
|
if (rvo_2d_vertices.size() == 2) {
|
|
rvo_2d_obstacle->isConvex_ = true;
|
|
} else {
|
|
rvo_2d_obstacle->isConvex_ = (leftOf(rvo_2d_vertices[(i == 0 ? rvo_2d_vertices.size() - 1 : i - 1)], rvo_2d_vertices[i], rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f);
|
|
}
|
|
|
|
rvo_2d_obstacle->id_ = raw_obstacles.size();
|
|
|
|
raw_obstacles.push_back(rvo_2d_obstacle);
|
|
}
|
|
}
|
|
|
|
rvo_simulation_2d.kdTree_->buildObstacleTree(raw_obstacles);
|
|
}
|
|
|
|
void NavMap::_update_rvo_agents_tree_2d() {
|
|
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
|
|
std::vector<RVO2D::Agent2D *> raw_agents;
|
|
raw_agents.reserve(active_2d_avoidance_agents.size());
|
|
for (NavAgent *agent : active_2d_avoidance_agents) {
|
|
raw_agents.push_back(agent->get_rvo_agent_2d());
|
|
}
|
|
rvo_simulation_2d.kdTree_->buildAgentTree(raw_agents);
|
|
}
|
|
|
|
void NavMap::_update_rvo_agents_tree_3d() {
|
|
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
|
|
std::vector<RVO3D::Agent3D *> raw_agents;
|
|
raw_agents.reserve(active_3d_avoidance_agents.size());
|
|
for (NavAgent *agent : active_3d_avoidance_agents) {
|
|
raw_agents.push_back(agent->get_rvo_agent_3d());
|
|
}
|
|
rvo_simulation_3d.kdTree_->buildAgentTree(raw_agents);
|
|
}
|
|
|
|
void NavMap::_update_rvo_simulation() {
|
|
if (obstacles_dirty) {
|
|
_update_rvo_obstacles_tree_2d();
|
|
}
|
|
if (agents_dirty) {
|
|
_update_rvo_agents_tree_2d();
|
|
_update_rvo_agents_tree_3d();
|
|
}
|
|
}
|
|
|
|
void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) {
|
|
(*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
|
|
(*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
|
|
(*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d);
|
|
(*(agent + index))->update();
|
|
}
|
|
|
|
void NavMap::compute_single_avoidance_step_3d(uint32_t index, NavAgent **agent) {
|
|
(*(agent + index))->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
|
|
(*(agent + index))->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
|
|
(*(agent + index))->get_rvo_agent_3d()->update(&rvo_simulation_3d);
|
|
(*(agent + index))->update();
|
|
}
|
|
|
|
void NavMap::step(real_t p_deltatime) {
|
|
deltatime = p_deltatime;
|
|
|
|
rvo_simulation_2d.setTimeStep(float(deltatime));
|
|
rvo_simulation_3d.setTimeStep(float(deltatime));
|
|
|
|
if (active_2d_avoidance_agents.size() > 0) {
|
|
if (use_threads && avoidance_use_multiple_threads) {
|
|
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_2d, active_2d_avoidance_agents.ptr(), active_2d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents2D"));
|
|
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
|
|
} else {
|
|
for (NavAgent *agent : active_2d_avoidance_agents) {
|
|
agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
|
|
agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
|
|
agent->get_rvo_agent_2d()->update(&rvo_simulation_2d);
|
|
agent->update();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (active_3d_avoidance_agents.size() > 0) {
|
|
if (use_threads && avoidance_use_multiple_threads) {
|
|
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_3d, active_3d_avoidance_agents.ptr(), active_3d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents3D"));
|
|
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
|
|
} else {
|
|
for (NavAgent *agent : active_3d_avoidance_agents) {
|
|
agent->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
|
|
agent->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
|
|
agent->get_rvo_agent_3d()->update(&rvo_simulation_3d);
|
|
agent->update();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMap::dispatch_callbacks() {
|
|
for (NavAgent *agent : active_2d_avoidance_agents) {
|
|
agent->dispatch_avoidance_callback();
|
|
}
|
|
|
|
for (NavAgent *agent : active_3d_avoidance_agents) {
|
|
agent->dispatch_avoidance_callback();
|
|
}
|
|
}
|
|
|
|
void NavMap::_update_merge_rasterizer_cell_dimensions() {
|
|
merge_rasterizer_cell_size = cell_size * merge_rasterizer_cell_scale;
|
|
merge_rasterizer_cell_height = cell_height * merge_rasterizer_cell_scale;
|
|
}
|
|
|
|
int NavMap::get_region_connections_count(NavRegion *p_region) const {
|
|
ERR_FAIL_NULL_V(p_region, 0);
|
|
|
|
HashMap<NavRegion *, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = region_external_connections.find(p_region);
|
|
if (found_connections) {
|
|
return found_connections->value.size();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Vector3 NavMap::get_region_connection_pathway_start(NavRegion *p_region, int p_connection_id) const {
|
|
ERR_FAIL_NULL_V(p_region, Vector3());
|
|
|
|
HashMap<NavRegion *, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = region_external_connections.find(p_region);
|
|
if (found_connections) {
|
|
ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3());
|
|
return found_connections->value[p_connection_id].pathway_start;
|
|
}
|
|
|
|
return Vector3();
|
|
}
|
|
|
|
Vector3 NavMap::get_region_connection_pathway_end(NavRegion *p_region, int p_connection_id) const {
|
|
ERR_FAIL_NULL_V(p_region, Vector3());
|
|
|
|
HashMap<NavRegion *, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = region_external_connections.find(p_region);
|
|
if (found_connections) {
|
|
ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3());
|
|
return found_connections->value[p_connection_id].pathway_end;
|
|
}
|
|
|
|
return Vector3();
|
|
}
|
|
|
|
NavMap::NavMap() {
|
|
avoidance_use_multiple_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_multiple_threads");
|
|
avoidance_use_high_priority_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_high_priority_threads");
|
|
}
|
|
|
|
NavMap::~NavMap() {
|
|
}
|