mirror of
https://github.com/godotengine/godot.git
synced 2024-11-25 21:52:51 +00:00
93409b8e64
Security update, fixes CVE-2022-37434 in zlib. Only applications exposing/using `inflateGetHeader()` seem to be affected, which is not our case, so this is not critical for Godot. Remove duplicated copy of zlib in freetype sources to force using the updated version in `thirdparty/zlib/`. Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
1182 lines
42 KiB
C
1182 lines
42 KiB
C
/* trees.c -- output deflated data using Huffman coding
|
|
* Copyright (C) 1995-2021 Jean-loup Gailly
|
|
* detect_data_type() function provided freely by Cosmin Truta, 2006
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*/
|
|
|
|
/*
|
|
* ALGORITHM
|
|
*
|
|
* The "deflation" process uses several Huffman trees. The more
|
|
* common source values are represented by shorter bit sequences.
|
|
*
|
|
* Each code tree is stored in a compressed form which is itself
|
|
* a Huffman encoding of the lengths of all the code strings (in
|
|
* ascending order by source values). The actual code strings are
|
|
* reconstructed from the lengths in the inflate process, as described
|
|
* in the deflate specification.
|
|
*
|
|
* REFERENCES
|
|
*
|
|
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
|
|
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
|
|
*
|
|
* Storer, James A.
|
|
* Data Compression: Methods and Theory, pp. 49-50.
|
|
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
|
*
|
|
* Sedgewick, R.
|
|
* Algorithms, p290.
|
|
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
|
*/
|
|
|
|
/* @(#) $Id$ */
|
|
|
|
/* #define GEN_TREES_H */
|
|
|
|
#include "deflate.h"
|
|
|
|
#ifdef ZLIB_DEBUG
|
|
# include <ctype.h>
|
|
#endif
|
|
|
|
/* ===========================================================================
|
|
* Constants
|
|
*/
|
|
|
|
#define MAX_BL_BITS 7
|
|
/* Bit length codes must not exceed MAX_BL_BITS bits */
|
|
|
|
#define END_BLOCK 256
|
|
/* end of block literal code */
|
|
|
|
#define REP_3_6 16
|
|
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
|
|
|
#define REPZ_3_10 17
|
|
/* repeat a zero length 3-10 times (3 bits of repeat count) */
|
|
|
|
#define REPZ_11_138 18
|
|
/* repeat a zero length 11-138 times (7 bits of repeat count) */
|
|
|
|
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
|
|
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
|
|
|
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
|
|
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
|
|
|
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
|
|
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
|
|
|
local const uch bl_order[BL_CODES]
|
|
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
|
/* The lengths of the bit length codes are sent in order of decreasing
|
|
* probability, to avoid transmitting the lengths for unused bit length codes.
|
|
*/
|
|
|
|
/* ===========================================================================
|
|
* Local data. These are initialized only once.
|
|
*/
|
|
|
|
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
|
|
|
|
#if defined(GEN_TREES_H) || !defined(STDC)
|
|
/* non ANSI compilers may not accept trees.h */
|
|
|
|
local ct_data static_ltree[L_CODES+2];
|
|
/* The static literal tree. Since the bit lengths are imposed, there is no
|
|
* need for the L_CODES extra codes used during heap construction. However
|
|
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
|
* below).
|
|
*/
|
|
|
|
local ct_data static_dtree[D_CODES];
|
|
/* The static distance tree. (Actually a trivial tree since all codes use
|
|
* 5 bits.)
|
|
*/
|
|
|
|
uch _dist_code[DIST_CODE_LEN];
|
|
/* Distance codes. The first 256 values correspond to the distances
|
|
* 3 .. 258, the last 256 values correspond to the top 8 bits of
|
|
* the 15 bit distances.
|
|
*/
|
|
|
|
uch _length_code[MAX_MATCH-MIN_MATCH+1];
|
|
/* length code for each normalized match length (0 == MIN_MATCH) */
|
|
|
|
local int base_length[LENGTH_CODES];
|
|
/* First normalized length for each code (0 = MIN_MATCH) */
|
|
|
|
local int base_dist[D_CODES];
|
|
/* First normalized distance for each code (0 = distance of 1) */
|
|
|
|
#else
|
|
# include "trees.h"
|
|
#endif /* GEN_TREES_H */
|
|
|
|
struct static_tree_desc_s {
|
|
const ct_data *static_tree; /* static tree or NULL */
|
|
const intf *extra_bits; /* extra bits for each code or NULL */
|
|
int extra_base; /* base index for extra_bits */
|
|
int elems; /* max number of elements in the tree */
|
|
int max_length; /* max bit length for the codes */
|
|
};
|
|
|
|
local const static_tree_desc static_l_desc =
|
|
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
|
|
|
|
local const static_tree_desc static_d_desc =
|
|
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
|
|
|
|
local const static_tree_desc static_bl_desc =
|
|
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
|
|
|
|
/* ===========================================================================
|
|
* Local (static) routines in this file.
|
|
*/
|
|
|
|
local void tr_static_init OF((void));
|
|
local void init_block OF((deflate_state *s));
|
|
local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
|
|
local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
|
|
local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
|
|
local void build_tree OF((deflate_state *s, tree_desc *desc));
|
|
local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
|
local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
|
local int build_bl_tree OF((deflate_state *s));
|
|
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
|
|
int blcodes));
|
|
local void compress_block OF((deflate_state *s, const ct_data *ltree,
|
|
const ct_data *dtree));
|
|
local int detect_data_type OF((deflate_state *s));
|
|
local unsigned bi_reverse OF((unsigned code, int len));
|
|
local void bi_windup OF((deflate_state *s));
|
|
local void bi_flush OF((deflate_state *s));
|
|
|
|
#ifdef GEN_TREES_H
|
|
local void gen_trees_header OF((void));
|
|
#endif
|
|
|
|
#ifndef ZLIB_DEBUG
|
|
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
|
|
/* Send a code of the given tree. c and tree must not have side effects */
|
|
|
|
#else /* !ZLIB_DEBUG */
|
|
# define send_code(s, c, tree) \
|
|
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
|
|
send_bits(s, tree[c].Code, tree[c].Len); }
|
|
#endif
|
|
|
|
/* ===========================================================================
|
|
* Output a short LSB first on the stream.
|
|
* IN assertion: there is enough room in pendingBuf.
|
|
*/
|
|
#define put_short(s, w) { \
|
|
put_byte(s, (uch)((w) & 0xff)); \
|
|
put_byte(s, (uch)((ush)(w) >> 8)); \
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send a value on a given number of bits.
|
|
* IN assertion: length <= 16 and value fits in length bits.
|
|
*/
|
|
#ifdef ZLIB_DEBUG
|
|
local void send_bits OF((deflate_state *s, int value, int length));
|
|
|
|
local void send_bits(s, value, length)
|
|
deflate_state *s;
|
|
int value; /* value to send */
|
|
int length; /* number of bits */
|
|
{
|
|
Tracevv((stderr," l %2d v %4x ", length, value));
|
|
Assert(length > 0 && length <= 15, "invalid length");
|
|
s->bits_sent += (ulg)length;
|
|
|
|
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
|
|
* (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
|
|
* unused bits in value.
|
|
*/
|
|
if (s->bi_valid > (int)Buf_size - length) {
|
|
s->bi_buf |= (ush)value << s->bi_valid;
|
|
put_short(s, s->bi_buf);
|
|
s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
|
|
s->bi_valid += length - Buf_size;
|
|
} else {
|
|
s->bi_buf |= (ush)value << s->bi_valid;
|
|
s->bi_valid += length;
|
|
}
|
|
}
|
|
#else /* !ZLIB_DEBUG */
|
|
|
|
#define send_bits(s, value, length) \
|
|
{ int len = length;\
|
|
if (s->bi_valid > (int)Buf_size - len) {\
|
|
int val = (int)value;\
|
|
s->bi_buf |= (ush)val << s->bi_valid;\
|
|
put_short(s, s->bi_buf);\
|
|
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
|
|
s->bi_valid += len - Buf_size;\
|
|
} else {\
|
|
s->bi_buf |= (ush)(value) << s->bi_valid;\
|
|
s->bi_valid += len;\
|
|
}\
|
|
}
|
|
#endif /* ZLIB_DEBUG */
|
|
|
|
|
|
/* the arguments must not have side effects */
|
|
|
|
/* ===========================================================================
|
|
* Initialize the various 'constant' tables.
|
|
*/
|
|
local void tr_static_init()
|
|
{
|
|
#if defined(GEN_TREES_H) || !defined(STDC)
|
|
static int static_init_done = 0;
|
|
int n; /* iterates over tree elements */
|
|
int bits; /* bit counter */
|
|
int length; /* length value */
|
|
int code; /* code value */
|
|
int dist; /* distance index */
|
|
ush bl_count[MAX_BITS+1];
|
|
/* number of codes at each bit length for an optimal tree */
|
|
|
|
if (static_init_done) return;
|
|
|
|
/* For some embedded targets, global variables are not initialized: */
|
|
#ifdef NO_INIT_GLOBAL_POINTERS
|
|
static_l_desc.static_tree = static_ltree;
|
|
static_l_desc.extra_bits = extra_lbits;
|
|
static_d_desc.static_tree = static_dtree;
|
|
static_d_desc.extra_bits = extra_dbits;
|
|
static_bl_desc.extra_bits = extra_blbits;
|
|
#endif
|
|
|
|
/* Initialize the mapping length (0..255) -> length code (0..28) */
|
|
length = 0;
|
|
for (code = 0; code < LENGTH_CODES-1; code++) {
|
|
base_length[code] = length;
|
|
for (n = 0; n < (1 << extra_lbits[code]); n++) {
|
|
_length_code[length++] = (uch)code;
|
|
}
|
|
}
|
|
Assert (length == 256, "tr_static_init: length != 256");
|
|
/* Note that the length 255 (match length 258) can be represented
|
|
* in two different ways: code 284 + 5 bits or code 285, so we
|
|
* overwrite length_code[255] to use the best encoding:
|
|
*/
|
|
_length_code[length - 1] = (uch)code;
|
|
|
|
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
|
dist = 0;
|
|
for (code = 0 ; code < 16; code++) {
|
|
base_dist[code] = dist;
|
|
for (n = 0; n < (1 << extra_dbits[code]); n++) {
|
|
_dist_code[dist++] = (uch)code;
|
|
}
|
|
}
|
|
Assert (dist == 256, "tr_static_init: dist != 256");
|
|
dist >>= 7; /* from now on, all distances are divided by 128 */
|
|
for ( ; code < D_CODES; code++) {
|
|
base_dist[code] = dist << 7;
|
|
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
|
|
_dist_code[256 + dist++] = (uch)code;
|
|
}
|
|
}
|
|
Assert (dist == 256, "tr_static_init: 256 + dist != 512");
|
|
|
|
/* Construct the codes of the static literal tree */
|
|
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
|
n = 0;
|
|
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
|
|
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
|
|
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
|
|
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
|
|
/* Codes 286 and 287 do not exist, but we must include them in the
|
|
* tree construction to get a canonical Huffman tree (longest code
|
|
* all ones)
|
|
*/
|
|
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
|
|
|
|
/* The static distance tree is trivial: */
|
|
for (n = 0; n < D_CODES; n++) {
|
|
static_dtree[n].Len = 5;
|
|
static_dtree[n].Code = bi_reverse((unsigned)n, 5);
|
|
}
|
|
static_init_done = 1;
|
|
|
|
# ifdef GEN_TREES_H
|
|
gen_trees_header();
|
|
# endif
|
|
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Generate the file trees.h describing the static trees.
|
|
*/
|
|
#ifdef GEN_TREES_H
|
|
# ifndef ZLIB_DEBUG
|
|
# include <stdio.h>
|
|
# endif
|
|
|
|
# define SEPARATOR(i, last, width) \
|
|
((i) == (last)? "\n};\n\n" : \
|
|
((i) % (width) == (width) - 1 ? ",\n" : ", "))
|
|
|
|
void gen_trees_header()
|
|
{
|
|
FILE *header = fopen("trees.h", "w");
|
|
int i;
|
|
|
|
Assert (header != NULL, "Can't open trees.h");
|
|
fprintf(header,
|
|
"/* header created automatically with -DGEN_TREES_H */\n\n");
|
|
|
|
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
|
|
for (i = 0; i < L_CODES+2; i++) {
|
|
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
|
|
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
|
|
}
|
|
|
|
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
|
|
for (i = 0; i < D_CODES; i++) {
|
|
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
|
|
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
|
|
}
|
|
|
|
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
|
|
for (i = 0; i < DIST_CODE_LEN; i++) {
|
|
fprintf(header, "%2u%s", _dist_code[i],
|
|
SEPARATOR(i, DIST_CODE_LEN-1, 20));
|
|
}
|
|
|
|
fprintf(header,
|
|
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
|
|
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
|
|
fprintf(header, "%2u%s", _length_code[i],
|
|
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
|
|
}
|
|
|
|
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
|
|
for (i = 0; i < LENGTH_CODES; i++) {
|
|
fprintf(header, "%1u%s", base_length[i],
|
|
SEPARATOR(i, LENGTH_CODES-1, 20));
|
|
}
|
|
|
|
fprintf(header, "local const int base_dist[D_CODES] = {\n");
|
|
for (i = 0; i < D_CODES; i++) {
|
|
fprintf(header, "%5u%s", base_dist[i],
|
|
SEPARATOR(i, D_CODES-1, 10));
|
|
}
|
|
|
|
fclose(header);
|
|
}
|
|
#endif /* GEN_TREES_H */
|
|
|
|
/* ===========================================================================
|
|
* Initialize the tree data structures for a new zlib stream.
|
|
*/
|
|
void ZLIB_INTERNAL _tr_init(s)
|
|
deflate_state *s;
|
|
{
|
|
tr_static_init();
|
|
|
|
s->l_desc.dyn_tree = s->dyn_ltree;
|
|
s->l_desc.stat_desc = &static_l_desc;
|
|
|
|
s->d_desc.dyn_tree = s->dyn_dtree;
|
|
s->d_desc.stat_desc = &static_d_desc;
|
|
|
|
s->bl_desc.dyn_tree = s->bl_tree;
|
|
s->bl_desc.stat_desc = &static_bl_desc;
|
|
|
|
s->bi_buf = 0;
|
|
s->bi_valid = 0;
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len = 0L;
|
|
s->bits_sent = 0L;
|
|
#endif
|
|
|
|
/* Initialize the first block of the first file: */
|
|
init_block(s);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Initialize a new block.
|
|
*/
|
|
local void init_block(s)
|
|
deflate_state *s;
|
|
{
|
|
int n; /* iterates over tree elements */
|
|
|
|
/* Initialize the trees. */
|
|
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
|
|
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
|
|
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
|
|
|
|
s->dyn_ltree[END_BLOCK].Freq = 1;
|
|
s->opt_len = s->static_len = 0L;
|
|
s->sym_next = s->matches = 0;
|
|
}
|
|
|
|
#define SMALLEST 1
|
|
/* Index within the heap array of least frequent node in the Huffman tree */
|
|
|
|
|
|
/* ===========================================================================
|
|
* Remove the smallest element from the heap and recreate the heap with
|
|
* one less element. Updates heap and heap_len.
|
|
*/
|
|
#define pqremove(s, tree, top) \
|
|
{\
|
|
top = s->heap[SMALLEST]; \
|
|
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
|
|
pqdownheap(s, tree, SMALLEST); \
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Compares to subtrees, using the tree depth as tie breaker when
|
|
* the subtrees have equal frequency. This minimizes the worst case length.
|
|
*/
|
|
#define smaller(tree, n, m, depth) \
|
|
(tree[n].Freq < tree[m].Freq || \
|
|
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
|
|
|
|
/* ===========================================================================
|
|
* Restore the heap property by moving down the tree starting at node k,
|
|
* exchanging a node with the smallest of its two sons if necessary, stopping
|
|
* when the heap property is re-established (each father smaller than its
|
|
* two sons).
|
|
*/
|
|
local void pqdownheap(s, tree, k)
|
|
deflate_state *s;
|
|
ct_data *tree; /* the tree to restore */
|
|
int k; /* node to move down */
|
|
{
|
|
int v = s->heap[k];
|
|
int j = k << 1; /* left son of k */
|
|
while (j <= s->heap_len) {
|
|
/* Set j to the smallest of the two sons: */
|
|
if (j < s->heap_len &&
|
|
smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
|
|
j++;
|
|
}
|
|
/* Exit if v is smaller than both sons */
|
|
if (smaller(tree, v, s->heap[j], s->depth)) break;
|
|
|
|
/* Exchange v with the smallest son */
|
|
s->heap[k] = s->heap[j]; k = j;
|
|
|
|
/* And continue down the tree, setting j to the left son of k */
|
|
j <<= 1;
|
|
}
|
|
s->heap[k] = v;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Compute the optimal bit lengths for a tree and update the total bit length
|
|
* for the current block.
|
|
* IN assertion: the fields freq and dad are set, heap[heap_max] and
|
|
* above are the tree nodes sorted by increasing frequency.
|
|
* OUT assertions: the field len is set to the optimal bit length, the
|
|
* array bl_count contains the frequencies for each bit length.
|
|
* The length opt_len is updated; static_len is also updated if stree is
|
|
* not null.
|
|
*/
|
|
local void gen_bitlen(s, desc)
|
|
deflate_state *s;
|
|
tree_desc *desc; /* the tree descriptor */
|
|
{
|
|
ct_data *tree = desc->dyn_tree;
|
|
int max_code = desc->max_code;
|
|
const ct_data *stree = desc->stat_desc->static_tree;
|
|
const intf *extra = desc->stat_desc->extra_bits;
|
|
int base = desc->stat_desc->extra_base;
|
|
int max_length = desc->stat_desc->max_length;
|
|
int h; /* heap index */
|
|
int n, m; /* iterate over the tree elements */
|
|
int bits; /* bit length */
|
|
int xbits; /* extra bits */
|
|
ush f; /* frequency */
|
|
int overflow = 0; /* number of elements with bit length too large */
|
|
|
|
for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
|
|
|
|
/* In a first pass, compute the optimal bit lengths (which may
|
|
* overflow in the case of the bit length tree).
|
|
*/
|
|
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
|
|
|
|
for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
|
|
n = s->heap[h];
|
|
bits = tree[tree[n].Dad].Len + 1;
|
|
if (bits > max_length) bits = max_length, overflow++;
|
|
tree[n].Len = (ush)bits;
|
|
/* We overwrite tree[n].Dad which is no longer needed */
|
|
|
|
if (n > max_code) continue; /* not a leaf node */
|
|
|
|
s->bl_count[bits]++;
|
|
xbits = 0;
|
|
if (n >= base) xbits = extra[n - base];
|
|
f = tree[n].Freq;
|
|
s->opt_len += (ulg)f * (unsigned)(bits + xbits);
|
|
if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
|
|
}
|
|
if (overflow == 0) return;
|
|
|
|
Tracev((stderr,"\nbit length overflow\n"));
|
|
/* This happens for example on obj2 and pic of the Calgary corpus */
|
|
|
|
/* Find the first bit length which could increase: */
|
|
do {
|
|
bits = max_length - 1;
|
|
while (s->bl_count[bits] == 0) bits--;
|
|
s->bl_count[bits]--; /* move one leaf down the tree */
|
|
s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
|
|
s->bl_count[max_length]--;
|
|
/* The brother of the overflow item also moves one step up,
|
|
* but this does not affect bl_count[max_length]
|
|
*/
|
|
overflow -= 2;
|
|
} while (overflow > 0);
|
|
|
|
/* Now recompute all bit lengths, scanning in increasing frequency.
|
|
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
|
* lengths instead of fixing only the wrong ones. This idea is taken
|
|
* from 'ar' written by Haruhiko Okumura.)
|
|
*/
|
|
for (bits = max_length; bits != 0; bits--) {
|
|
n = s->bl_count[bits];
|
|
while (n != 0) {
|
|
m = s->heap[--h];
|
|
if (m > max_code) continue;
|
|
if ((unsigned) tree[m].Len != (unsigned) bits) {
|
|
Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
|
s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
|
|
tree[m].Len = (ush)bits;
|
|
}
|
|
n--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Generate the codes for a given tree and bit counts (which need not be
|
|
* optimal).
|
|
* IN assertion: the array bl_count contains the bit length statistics for
|
|
* the given tree and the field len is set for all tree elements.
|
|
* OUT assertion: the field code is set for all tree elements of non
|
|
* zero code length.
|
|
*/
|
|
local void gen_codes(tree, max_code, bl_count)
|
|
ct_data *tree; /* the tree to decorate */
|
|
int max_code; /* largest code with non zero frequency */
|
|
ushf *bl_count; /* number of codes at each bit length */
|
|
{
|
|
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
|
unsigned code = 0; /* running code value */
|
|
int bits; /* bit index */
|
|
int n; /* code index */
|
|
|
|
/* The distribution counts are first used to generate the code values
|
|
* without bit reversal.
|
|
*/
|
|
for (bits = 1; bits <= MAX_BITS; bits++) {
|
|
code = (code + bl_count[bits - 1]) << 1;
|
|
next_code[bits] = (ush)code;
|
|
}
|
|
/* Check that the bit counts in bl_count are consistent. The last code
|
|
* must be all ones.
|
|
*/
|
|
Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
|
|
"inconsistent bit counts");
|
|
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
int len = tree[n].Len;
|
|
if (len == 0) continue;
|
|
/* Now reverse the bits */
|
|
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
|
|
|
|
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
|
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Construct one Huffman tree and assigns the code bit strings and lengths.
|
|
* Update the total bit length for the current block.
|
|
* IN assertion: the field freq is set for all tree elements.
|
|
* OUT assertions: the fields len and code are set to the optimal bit length
|
|
* and corresponding code. The length opt_len is updated; static_len is
|
|
* also updated if stree is not null. The field max_code is set.
|
|
*/
|
|
local void build_tree(s, desc)
|
|
deflate_state *s;
|
|
tree_desc *desc; /* the tree descriptor */
|
|
{
|
|
ct_data *tree = desc->dyn_tree;
|
|
const ct_data *stree = desc->stat_desc->static_tree;
|
|
int elems = desc->stat_desc->elems;
|
|
int n, m; /* iterate over heap elements */
|
|
int max_code = -1; /* largest code with non zero frequency */
|
|
int node; /* new node being created */
|
|
|
|
/* Construct the initial heap, with least frequent element in
|
|
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
|
|
* heap[0] is not used.
|
|
*/
|
|
s->heap_len = 0, s->heap_max = HEAP_SIZE;
|
|
|
|
for (n = 0; n < elems; n++) {
|
|
if (tree[n].Freq != 0) {
|
|
s->heap[++(s->heap_len)] = max_code = n;
|
|
s->depth[n] = 0;
|
|
} else {
|
|
tree[n].Len = 0;
|
|
}
|
|
}
|
|
|
|
/* The pkzip format requires that at least one distance code exists,
|
|
* and that at least one bit should be sent even if there is only one
|
|
* possible code. So to avoid special checks later on we force at least
|
|
* two codes of non zero frequency.
|
|
*/
|
|
while (s->heap_len < 2) {
|
|
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
|
|
tree[node].Freq = 1;
|
|
s->depth[node] = 0;
|
|
s->opt_len--; if (stree) s->static_len -= stree[node].Len;
|
|
/* node is 0 or 1 so it does not have extra bits */
|
|
}
|
|
desc->max_code = max_code;
|
|
|
|
/* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
|
|
* establish sub-heaps of increasing lengths:
|
|
*/
|
|
for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
|
|
|
|
/* Construct the Huffman tree by repeatedly combining the least two
|
|
* frequent nodes.
|
|
*/
|
|
node = elems; /* next internal node of the tree */
|
|
do {
|
|
pqremove(s, tree, n); /* n = node of least frequency */
|
|
m = s->heap[SMALLEST]; /* m = node of next least frequency */
|
|
|
|
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
|
|
s->heap[--(s->heap_max)] = m;
|
|
|
|
/* Create a new node father of n and m */
|
|
tree[node].Freq = tree[n].Freq + tree[m].Freq;
|
|
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
|
|
s->depth[n] : s->depth[m]) + 1);
|
|
tree[n].Dad = tree[m].Dad = (ush)node;
|
|
#ifdef DUMP_BL_TREE
|
|
if (tree == s->bl_tree) {
|
|
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
|
|
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
|
|
}
|
|
#endif
|
|
/* and insert the new node in the heap */
|
|
s->heap[SMALLEST] = node++;
|
|
pqdownheap(s, tree, SMALLEST);
|
|
|
|
} while (s->heap_len >= 2);
|
|
|
|
s->heap[--(s->heap_max)] = s->heap[SMALLEST];
|
|
|
|
/* At this point, the fields freq and dad are set. We can now
|
|
* generate the bit lengths.
|
|
*/
|
|
gen_bitlen(s, (tree_desc *)desc);
|
|
|
|
/* The field len is now set, we can generate the bit codes */
|
|
gen_codes ((ct_data *)tree, max_code, s->bl_count);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Scan a literal or distance tree to determine the frequencies of the codes
|
|
* in the bit length tree.
|
|
*/
|
|
local void scan_tree(s, tree, max_code)
|
|
deflate_state *s;
|
|
ct_data *tree; /* the tree to be scanned */
|
|
int max_code; /* and its largest code of non zero frequency */
|
|
{
|
|
int n; /* iterates over all tree elements */
|
|
int prevlen = -1; /* last emitted length */
|
|
int curlen; /* length of current code */
|
|
int nextlen = tree[0].Len; /* length of next code */
|
|
int count = 0; /* repeat count of the current code */
|
|
int max_count = 7; /* max repeat count */
|
|
int min_count = 4; /* min repeat count */
|
|
|
|
if (nextlen == 0) max_count = 138, min_count = 3;
|
|
tree[max_code + 1].Len = (ush)0xffff; /* guard */
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[n + 1].Len;
|
|
if (++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
} else if (count < min_count) {
|
|
s->bl_tree[curlen].Freq += count;
|
|
} else if (curlen != 0) {
|
|
if (curlen != prevlen) s->bl_tree[curlen].Freq++;
|
|
s->bl_tree[REP_3_6].Freq++;
|
|
} else if (count <= 10) {
|
|
s->bl_tree[REPZ_3_10].Freq++;
|
|
} else {
|
|
s->bl_tree[REPZ_11_138].Freq++;
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if (nextlen == 0) {
|
|
max_count = 138, min_count = 3;
|
|
} else if (curlen == nextlen) {
|
|
max_count = 6, min_count = 3;
|
|
} else {
|
|
max_count = 7, min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send a literal or distance tree in compressed form, using the codes in
|
|
* bl_tree.
|
|
*/
|
|
local void send_tree(s, tree, max_code)
|
|
deflate_state *s;
|
|
ct_data *tree; /* the tree to be scanned */
|
|
int max_code; /* and its largest code of non zero frequency */
|
|
{
|
|
int n; /* iterates over all tree elements */
|
|
int prevlen = -1; /* last emitted length */
|
|
int curlen; /* length of current code */
|
|
int nextlen = tree[0].Len; /* length of next code */
|
|
int count = 0; /* repeat count of the current code */
|
|
int max_count = 7; /* max repeat count */
|
|
int min_count = 4; /* min repeat count */
|
|
|
|
/* tree[max_code + 1].Len = -1; */ /* guard already set */
|
|
if (nextlen == 0) max_count = 138, min_count = 3;
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[n + 1].Len;
|
|
if (++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
} else if (count < min_count) {
|
|
do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
|
|
|
|
} else if (curlen != 0) {
|
|
if (curlen != prevlen) {
|
|
send_code(s, curlen, s->bl_tree); count--;
|
|
}
|
|
Assert(count >= 3 && count <= 6, " 3_6?");
|
|
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
|
|
|
|
} else if (count <= 10) {
|
|
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
|
|
|
|
} else {
|
|
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if (nextlen == 0) {
|
|
max_count = 138, min_count = 3;
|
|
} else if (curlen == nextlen) {
|
|
max_count = 6, min_count = 3;
|
|
} else {
|
|
max_count = 7, min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Construct the Huffman tree for the bit lengths and return the index in
|
|
* bl_order of the last bit length code to send.
|
|
*/
|
|
local int build_bl_tree(s)
|
|
deflate_state *s;
|
|
{
|
|
int max_blindex; /* index of last bit length code of non zero freq */
|
|
|
|
/* Determine the bit length frequencies for literal and distance trees */
|
|
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
|
|
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
|
|
|
|
/* Build the bit length tree: */
|
|
build_tree(s, (tree_desc *)(&(s->bl_desc)));
|
|
/* opt_len now includes the length of the tree representations, except the
|
|
* lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
|
|
*/
|
|
|
|
/* Determine the number of bit length codes to send. The pkzip format
|
|
* requires that at least 4 bit length codes be sent. (appnote.txt says
|
|
* 3 but the actual value used is 4.)
|
|
*/
|
|
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
|
if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
|
|
}
|
|
/* Update opt_len to include the bit length tree and counts */
|
|
s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
|
|
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
|
|
s->opt_len, s->static_len));
|
|
|
|
return max_blindex;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send the header for a block using dynamic Huffman trees: the counts, the
|
|
* lengths of the bit length codes, the literal tree and the distance tree.
|
|
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
|
*/
|
|
local void send_all_trees(s, lcodes, dcodes, blcodes)
|
|
deflate_state *s;
|
|
int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
|
{
|
|
int rank; /* index in bl_order */
|
|
|
|
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
|
Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
|
"too many codes");
|
|
Tracev((stderr, "\nbl counts: "));
|
|
send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
|
|
send_bits(s, dcodes - 1, 5);
|
|
send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
|
|
for (rank = 0; rank < blcodes; rank++) {
|
|
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
|
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
|
|
}
|
|
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
|
|
|
|
send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
|
|
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
|
|
|
|
send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
|
|
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send a stored block
|
|
*/
|
|
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
|
|
deflate_state *s;
|
|
charf *buf; /* input block */
|
|
ulg stored_len; /* length of input block */
|
|
int last; /* one if this is the last block for a file */
|
|
{
|
|
send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
|
|
bi_windup(s); /* align on byte boundary */
|
|
put_short(s, (ush)stored_len);
|
|
put_short(s, (ush)~stored_len);
|
|
if (stored_len)
|
|
zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
|
|
s->pending += stored_len;
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
|
|
s->compressed_len += (stored_len + 4) << 3;
|
|
s->bits_sent += 2*16;
|
|
s->bits_sent += stored_len << 3;
|
|
#endif
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
|
|
*/
|
|
void ZLIB_INTERNAL _tr_flush_bits(s)
|
|
deflate_state *s;
|
|
{
|
|
bi_flush(s);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send one empty static block to give enough lookahead for inflate.
|
|
* This takes 10 bits, of which 7 may remain in the bit buffer.
|
|
*/
|
|
void ZLIB_INTERNAL _tr_align(s)
|
|
deflate_state *s;
|
|
{
|
|
send_bits(s, STATIC_TREES<<1, 3);
|
|
send_code(s, END_BLOCK, static_ltree);
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
|
|
#endif
|
|
bi_flush(s);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Determine the best encoding for the current block: dynamic trees, static
|
|
* trees or store, and write out the encoded block.
|
|
*/
|
|
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
|
|
deflate_state *s;
|
|
charf *buf; /* input block, or NULL if too old */
|
|
ulg stored_len; /* length of input block */
|
|
int last; /* one if this is the last block for a file */
|
|
{
|
|
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
|
int max_blindex = 0; /* index of last bit length code of non zero freq */
|
|
|
|
/* Build the Huffman trees unless a stored block is forced */
|
|
if (s->level > 0) {
|
|
|
|
/* Check if the file is binary or text */
|
|
if (s->strm->data_type == Z_UNKNOWN)
|
|
s->strm->data_type = detect_data_type(s);
|
|
|
|
/* Construct the literal and distance trees */
|
|
build_tree(s, (tree_desc *)(&(s->l_desc)));
|
|
Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
|
|
s->static_len));
|
|
|
|
build_tree(s, (tree_desc *)(&(s->d_desc)));
|
|
Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
|
|
s->static_len));
|
|
/* At this point, opt_len and static_len are the total bit lengths of
|
|
* the compressed block data, excluding the tree representations.
|
|
*/
|
|
|
|
/* Build the bit length tree for the above two trees, and get the index
|
|
* in bl_order of the last bit length code to send.
|
|
*/
|
|
max_blindex = build_bl_tree(s);
|
|
|
|
/* Determine the best encoding. Compute the block lengths in bytes. */
|
|
opt_lenb = (s->opt_len + 3 + 7) >> 3;
|
|
static_lenb = (s->static_len + 3 + 7) >> 3;
|
|
|
|
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
|
|
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
|
|
s->sym_next / 3));
|
|
|
|
#ifndef FORCE_STATIC
|
|
if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
|
|
#endif
|
|
opt_lenb = static_lenb;
|
|
|
|
} else {
|
|
Assert(buf != (char*)0, "lost buf");
|
|
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
|
|
}
|
|
|
|
#ifdef FORCE_STORED
|
|
if (buf != (char*)0) { /* force stored block */
|
|
#else
|
|
if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
|
|
/* 4: two words for the lengths */
|
|
#endif
|
|
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
|
* Otherwise we can't have processed more than WSIZE input bytes since
|
|
* the last block flush, because compression would have been
|
|
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
|
* transform a block into a stored block.
|
|
*/
|
|
_tr_stored_block(s, buf, stored_len, last);
|
|
|
|
} else if (static_lenb == opt_lenb) {
|
|
send_bits(s, (STATIC_TREES<<1) + last, 3);
|
|
compress_block(s, (const ct_data *)static_ltree,
|
|
(const ct_data *)static_dtree);
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len += 3 + s->static_len;
|
|
#endif
|
|
} else {
|
|
send_bits(s, (DYN_TREES<<1) + last, 3);
|
|
send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
|
|
max_blindex + 1);
|
|
compress_block(s, (const ct_data *)s->dyn_ltree,
|
|
(const ct_data *)s->dyn_dtree);
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len += 3 + s->opt_len;
|
|
#endif
|
|
}
|
|
Assert (s->compressed_len == s->bits_sent, "bad compressed size");
|
|
/* The above check is made mod 2^32, for files larger than 512 MB
|
|
* and uLong implemented on 32 bits.
|
|
*/
|
|
init_block(s);
|
|
|
|
if (last) {
|
|
bi_windup(s);
|
|
#ifdef ZLIB_DEBUG
|
|
s->compressed_len += 7; /* align on byte boundary */
|
|
#endif
|
|
}
|
|
Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
|
|
s->compressed_len - 7*last));
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Save the match info and tally the frequency counts. Return true if
|
|
* the current block must be flushed.
|
|
*/
|
|
int ZLIB_INTERNAL _tr_tally(s, dist, lc)
|
|
deflate_state *s;
|
|
unsigned dist; /* distance of matched string */
|
|
unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */
|
|
{
|
|
s->sym_buf[s->sym_next++] = (uch)dist;
|
|
s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
|
|
s->sym_buf[s->sym_next++] = (uch)lc;
|
|
if (dist == 0) {
|
|
/* lc is the unmatched char */
|
|
s->dyn_ltree[lc].Freq++;
|
|
} else {
|
|
s->matches++;
|
|
/* Here, lc is the match length - MIN_MATCH */
|
|
dist--; /* dist = match distance - 1 */
|
|
Assert((ush)dist < (ush)MAX_DIST(s) &&
|
|
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
|
(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
|
|
|
|
s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
|
|
s->dyn_dtree[d_code(dist)].Freq++;
|
|
}
|
|
return (s->sym_next == s->sym_end);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Send the block data compressed using the given Huffman trees
|
|
*/
|
|
local void compress_block(s, ltree, dtree)
|
|
deflate_state *s;
|
|
const ct_data *ltree; /* literal tree */
|
|
const ct_data *dtree; /* distance tree */
|
|
{
|
|
unsigned dist; /* distance of matched string */
|
|
int lc; /* match length or unmatched char (if dist == 0) */
|
|
unsigned sx = 0; /* running index in sym_buf */
|
|
unsigned code; /* the code to send */
|
|
int extra; /* number of extra bits to send */
|
|
|
|
if (s->sym_next != 0) do {
|
|
dist = s->sym_buf[sx++] & 0xff;
|
|
dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
|
|
lc = s->sym_buf[sx++];
|
|
if (dist == 0) {
|
|
send_code(s, lc, ltree); /* send a literal byte */
|
|
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
|
} else {
|
|
/* Here, lc is the match length - MIN_MATCH */
|
|
code = _length_code[lc];
|
|
send_code(s, code + LITERALS + 1, ltree); /* send length code */
|
|
extra = extra_lbits[code];
|
|
if (extra != 0) {
|
|
lc -= base_length[code];
|
|
send_bits(s, lc, extra); /* send the extra length bits */
|
|
}
|
|
dist--; /* dist is now the match distance - 1 */
|
|
code = d_code(dist);
|
|
Assert (code < D_CODES, "bad d_code");
|
|
|
|
send_code(s, code, dtree); /* send the distance code */
|
|
extra = extra_dbits[code];
|
|
if (extra != 0) {
|
|
dist -= (unsigned)base_dist[code];
|
|
send_bits(s, dist, extra); /* send the extra distance bits */
|
|
}
|
|
} /* literal or match pair ? */
|
|
|
|
/* Check that the overlay between pending_buf and sym_buf is ok: */
|
|
Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
|
|
|
|
} while (sx < s->sym_next);
|
|
|
|
send_code(s, END_BLOCK, ltree);
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Check if the data type is TEXT or BINARY, using the following algorithm:
|
|
* - TEXT if the two conditions below are satisfied:
|
|
* a) There are no non-portable control characters belonging to the
|
|
* "block list" (0..6, 14..25, 28..31).
|
|
* b) There is at least one printable character belonging to the
|
|
* "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
|
* - BINARY otherwise.
|
|
* - The following partially-portable control characters form a
|
|
* "gray list" that is ignored in this detection algorithm:
|
|
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
|
* IN assertion: the fields Freq of dyn_ltree are set.
|
|
*/
|
|
local int detect_data_type(s)
|
|
deflate_state *s;
|
|
{
|
|
/* block_mask is the bit mask of block-listed bytes
|
|
* set bits 0..6, 14..25, and 28..31
|
|
* 0xf3ffc07f = binary 11110011111111111100000001111111
|
|
*/
|
|
unsigned long block_mask = 0xf3ffc07fUL;
|
|
int n;
|
|
|
|
/* Check for non-textual ("block-listed") bytes. */
|
|
for (n = 0; n <= 31; n++, block_mask >>= 1)
|
|
if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
|
|
return Z_BINARY;
|
|
|
|
/* Check for textual ("allow-listed") bytes. */
|
|
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|
|
|| s->dyn_ltree[13].Freq != 0)
|
|
return Z_TEXT;
|
|
for (n = 32; n < LITERALS; n++)
|
|
if (s->dyn_ltree[n].Freq != 0)
|
|
return Z_TEXT;
|
|
|
|
/* There are no "block-listed" or "allow-listed" bytes:
|
|
* this stream either is empty or has tolerated ("gray-listed") bytes only.
|
|
*/
|
|
return Z_BINARY;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Reverse the first len bits of a code, using straightforward code (a faster
|
|
* method would use a table)
|
|
* IN assertion: 1 <= len <= 15
|
|
*/
|
|
local unsigned bi_reverse(code, len)
|
|
unsigned code; /* the value to invert */
|
|
int len; /* its bit length */
|
|
{
|
|
register unsigned res = 0;
|
|
do {
|
|
res |= code & 1;
|
|
code >>= 1, res <<= 1;
|
|
} while (--len > 0);
|
|
return res >> 1;
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Flush the bit buffer, keeping at most 7 bits in it.
|
|
*/
|
|
local void bi_flush(s)
|
|
deflate_state *s;
|
|
{
|
|
if (s->bi_valid == 16) {
|
|
put_short(s, s->bi_buf);
|
|
s->bi_buf = 0;
|
|
s->bi_valid = 0;
|
|
} else if (s->bi_valid >= 8) {
|
|
put_byte(s, (Byte)s->bi_buf);
|
|
s->bi_buf >>= 8;
|
|
s->bi_valid -= 8;
|
|
}
|
|
}
|
|
|
|
/* ===========================================================================
|
|
* Flush the bit buffer and align the output on a byte boundary
|
|
*/
|
|
local void bi_windup(s)
|
|
deflate_state *s;
|
|
{
|
|
if (s->bi_valid > 8) {
|
|
put_short(s, s->bi_buf);
|
|
} else if (s->bi_valid > 0) {
|
|
put_byte(s, (Byte)s->bi_buf);
|
|
}
|
|
s->bi_buf = 0;
|
|
s->bi_valid = 0;
|
|
#ifdef ZLIB_DEBUG
|
|
s->bits_sent = (s->bits_sent + 7) & ~7;
|
|
#endif
|
|
}
|