mirror of
https://github.com/godotengine/godot.git
synced 2024-11-22 04:06:14 +00:00
308dbb8c63
Convenience for a number of cases operating on single values
394 lines
14 KiB
C++
394 lines
14 KiB
C++
/**************************************************************************/
|
|
/* delaunay_3d.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef DELAUNAY_3D_H
|
|
#define DELAUNAY_3D_H
|
|
|
|
#include "core/io/file_access.h"
|
|
#include "core/math/aabb.h"
|
|
#include "core/math/projection.h"
|
|
#include "core/math/vector3.h"
|
|
#include "core/templates/local_vector.h"
|
|
#include "core/templates/oa_hash_map.h"
|
|
#include "core/templates/vector.h"
|
|
#include "core/variant/variant.h"
|
|
|
|
#include "thirdparty/misc/r128.h"
|
|
|
|
class Delaunay3D {
|
|
struct Simplex;
|
|
|
|
enum {
|
|
ACCEL_GRID_SIZE = 16,
|
|
QUANTIZATION_MAX = 1 << 16 // A power of two smaller than the 23 bit significand of a float.
|
|
};
|
|
struct GridPos {
|
|
Vector3i pos;
|
|
List<Simplex *>::Element *E = nullptr;
|
|
};
|
|
|
|
struct Simplex {
|
|
uint32_t points[4];
|
|
R128 circum_center_x;
|
|
R128 circum_center_y;
|
|
R128 circum_center_z;
|
|
R128 circum_r2;
|
|
LocalVector<GridPos> grid_positions;
|
|
List<Simplex *>::Element *SE = nullptr;
|
|
|
|
_FORCE_INLINE_ Simplex() {}
|
|
_FORCE_INLINE_ Simplex(uint32_t p_a, uint32_t p_b, uint32_t p_c, uint32_t p_d) {
|
|
points[0] = p_a;
|
|
points[1] = p_b;
|
|
points[2] = p_c;
|
|
points[3] = p_d;
|
|
}
|
|
};
|
|
|
|
struct Triangle {
|
|
uint32_t triangle[3];
|
|
bool bad = false;
|
|
_FORCE_INLINE_ bool operator==(const Triangle &p_triangle) const {
|
|
return triangle[0] == p_triangle.triangle[0] && triangle[1] == p_triangle.triangle[1] && triangle[2] == p_triangle.triangle[2];
|
|
}
|
|
|
|
_FORCE_INLINE_ Triangle() {}
|
|
_FORCE_INLINE_ Triangle(uint32_t p_a, uint32_t p_b, uint32_t p_c) {
|
|
if (p_a > p_b) {
|
|
SWAP(p_a, p_b);
|
|
}
|
|
if (p_b > p_c) {
|
|
SWAP(p_b, p_c);
|
|
}
|
|
if (p_a > p_b) {
|
|
SWAP(p_a, p_b);
|
|
}
|
|
|
|
triangle[0] = p_a;
|
|
triangle[1] = p_b;
|
|
triangle[2] = p_c;
|
|
}
|
|
};
|
|
|
|
struct TriangleHasher {
|
|
_FORCE_INLINE_ static uint32_t hash(const Triangle &p_triangle) {
|
|
uint32_t h = hash_djb2_one_32(p_triangle.triangle[0]);
|
|
h = hash_djb2_one_32(p_triangle.triangle[1], h);
|
|
return hash_fmix32(hash_djb2_one_32(p_triangle.triangle[2], h));
|
|
}
|
|
};
|
|
|
|
_FORCE_INLINE_ static void circum_sphere_compute(const Vector3 *p_points, Simplex *p_simplex) {
|
|
// The only part in the algorithm where there may be precision errors is this one,
|
|
// so ensure that we do it with the maximum precision possible.
|
|
|
|
R128 v0_x = p_points[p_simplex->points[0]].x;
|
|
R128 v0_y = p_points[p_simplex->points[0]].y;
|
|
R128 v0_z = p_points[p_simplex->points[0]].z;
|
|
R128 v1_x = p_points[p_simplex->points[1]].x;
|
|
R128 v1_y = p_points[p_simplex->points[1]].y;
|
|
R128 v1_z = p_points[p_simplex->points[1]].z;
|
|
R128 v2_x = p_points[p_simplex->points[2]].x;
|
|
R128 v2_y = p_points[p_simplex->points[2]].y;
|
|
R128 v2_z = p_points[p_simplex->points[2]].z;
|
|
R128 v3_x = p_points[p_simplex->points[3]].x;
|
|
R128 v3_y = p_points[p_simplex->points[3]].y;
|
|
R128 v3_z = p_points[p_simplex->points[3]].z;
|
|
|
|
// Create the rows of our "unrolled" 3x3 matrix.
|
|
R128 row1_x = v1_x - v0_x;
|
|
R128 row1_y = v1_y - v0_y;
|
|
R128 row1_z = v1_z - v0_z;
|
|
|
|
R128 row2_x = v2_x - v0_x;
|
|
R128 row2_y = v2_y - v0_y;
|
|
R128 row2_z = v2_z - v0_z;
|
|
|
|
R128 row3_x = v3_x - v0_x;
|
|
R128 row3_y = v3_y - v0_y;
|
|
R128 row3_z = v3_z - v0_z;
|
|
|
|
R128 sq_lenght1 = row1_x * row1_x + row1_y * row1_y + row1_z * row1_z;
|
|
R128 sq_lenght2 = row2_x * row2_x + row2_y * row2_y + row2_z * row2_z;
|
|
R128 sq_lenght3 = row3_x * row3_x + row3_y * row3_y + row3_z * row3_z;
|
|
|
|
// Compute the determinant of said matrix.
|
|
R128 determinant = row1_x * (row2_y * row3_z - row3_y * row2_z) - row2_x * (row1_y * row3_z - row3_y * row1_z) + row3_x * (row1_y * row2_z - row2_y * row1_z);
|
|
|
|
// Compute the volume of the tetrahedron, and precompute a scalar quantity for reuse in the formula.
|
|
R128 volume = determinant / R128(6.f);
|
|
R128 i12volume = R128(1.f) / (volume * R128(12.f));
|
|
|
|
R128 center_x = v0_x + i12volume * ((row2_y * row3_z - row3_y * row2_z) * sq_lenght1 - (row1_y * row3_z - row3_y * row1_z) * sq_lenght2 + (row1_y * row2_z - row2_y * row1_z) * sq_lenght3);
|
|
R128 center_y = v0_y + i12volume * (-(row2_x * row3_z - row3_x * row2_z) * sq_lenght1 + (row1_x * row3_z - row3_x * row1_z) * sq_lenght2 - (row1_x * row2_z - row2_x * row1_z) * sq_lenght3);
|
|
R128 center_z = v0_z + i12volume * ((row2_x * row3_y - row3_x * row2_y) * sq_lenght1 - (row1_x * row3_y - row3_x * row1_y) * sq_lenght2 + (row1_x * row2_y - row2_x * row1_y) * sq_lenght3);
|
|
|
|
// Once we know the center, the radius is clearly the distance to any vertex.
|
|
R128 rel1_x = center_x - v0_x;
|
|
R128 rel1_y = center_y - v0_y;
|
|
R128 rel1_z = center_z - v0_z;
|
|
|
|
R128 radius1 = rel1_x * rel1_x + rel1_y * rel1_y + rel1_z * rel1_z;
|
|
|
|
p_simplex->circum_center_x = center_x;
|
|
p_simplex->circum_center_y = center_y;
|
|
p_simplex->circum_center_z = center_z;
|
|
p_simplex->circum_r2 = radius1;
|
|
}
|
|
|
|
_FORCE_INLINE_ static bool simplex_contains(const Vector3 *p_points, const Simplex &p_simplex, uint32_t p_vertex) {
|
|
R128 v_x = p_points[p_vertex].x;
|
|
R128 v_y = p_points[p_vertex].y;
|
|
R128 v_z = p_points[p_vertex].z;
|
|
|
|
R128 rel2_x = p_simplex.circum_center_x - v_x;
|
|
R128 rel2_y = p_simplex.circum_center_y - v_y;
|
|
R128 rel2_z = p_simplex.circum_center_z - v_z;
|
|
|
|
R128 radius2 = rel2_x * rel2_x + rel2_y * rel2_y + rel2_z * rel2_z;
|
|
|
|
return radius2 < (p_simplex.circum_r2 - R128(0.0000000001));
|
|
// When this tolerance is too big, it can result in overlapping simplices.
|
|
// When it's too small, large amounts of planar simplices are created.
|
|
}
|
|
|
|
static bool simplex_is_coplanar(const Vector3 *p_points, const Simplex &p_simplex) {
|
|
// Checking every possible distance like this is overkill, but only checking
|
|
// one is not enough. If the simplex is almost planar then the vectors p1-p2
|
|
// and p1-p3 can be practically collinear, which makes Plane unreliable.
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
Plane p(p_points[p_simplex.points[i]], p_points[p_simplex.points[(i + 1) % 4]], p_points[p_simplex.points[(i + 2) % 4]]);
|
|
// This tolerance should not be smaller than the one used with
|
|
// Plane::has_point() when creating the LightmapGI probe BSP tree.
|
|
if (ABS(p.distance_to(p_points[p_simplex.points[(i + 3) % 4]])) < 0.001) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
struct OutputSimplex {
|
|
uint32_t points[4];
|
|
};
|
|
|
|
static Vector<OutputSimplex> tetrahedralize(const Vector<Vector3> &p_points) {
|
|
uint32_t point_count = p_points.size();
|
|
Vector3 *points = (Vector3 *)memalloc(sizeof(Vector3) * (point_count + 4));
|
|
const Vector3 *src_points = p_points.ptr();
|
|
Vector3 proportions;
|
|
|
|
{
|
|
AABB rect;
|
|
for (uint32_t i = 0; i < point_count; i++) {
|
|
Vector3 point = src_points[i];
|
|
if (i == 0) {
|
|
rect.position = point;
|
|
} else {
|
|
rect.expand_to(point);
|
|
}
|
|
}
|
|
|
|
real_t longest_axis = rect.size[rect.get_longest_axis_index()];
|
|
proportions = Vector3(longest_axis, longest_axis, longest_axis) / rect.size;
|
|
|
|
for (uint32_t i = 0; i < point_count; i++) {
|
|
// Scale points to the unit cube to better utilize R128 precision
|
|
// and quantize to stabilize triangulation over a wide range of
|
|
// distances.
|
|
points[i] = Vector3(Vector3i((src_points[i] - rect.position) / longest_axis * QUANTIZATION_MAX)) / QUANTIZATION_MAX;
|
|
}
|
|
|
|
const real_t delta_max = Math::sqrt(2.0) * 100.0;
|
|
Vector3 center = Vector3(0.5, 0.5, 0.5);
|
|
|
|
// The larger the root simplex is, the more likely it is that the
|
|
// triangulation is convex. If it's not absolutely huge, there can
|
|
// be missing simplices that are not created for the outermost faces
|
|
// of the point cloud if the point density is very low there.
|
|
points[point_count + 0] = center + Vector3(0, 1, 0) * delta_max;
|
|
points[point_count + 1] = center + Vector3(0, -1, 1) * delta_max;
|
|
points[point_count + 2] = center + Vector3(1, -1, -1) * delta_max;
|
|
points[point_count + 3] = center + Vector3(-1, -1, -1) * delta_max;
|
|
}
|
|
|
|
List<Simplex *> acceleration_grid[ACCEL_GRID_SIZE][ACCEL_GRID_SIZE][ACCEL_GRID_SIZE];
|
|
|
|
List<Simplex *> simplex_list;
|
|
{
|
|
//create root simplex
|
|
Simplex *root = memnew(Simplex(point_count + 0, point_count + 1, point_count + 2, point_count + 3));
|
|
root->SE = simplex_list.push_back(root);
|
|
|
|
for (uint32_t i = 0; i < ACCEL_GRID_SIZE; i++) {
|
|
for (uint32_t j = 0; j < ACCEL_GRID_SIZE; j++) {
|
|
for (uint32_t k = 0; k < ACCEL_GRID_SIZE; k++) {
|
|
GridPos gp;
|
|
gp.E = acceleration_grid[i][j][k].push_back(root);
|
|
gp.pos = Vector3i(i, j, k);
|
|
root->grid_positions.push_back(gp);
|
|
}
|
|
}
|
|
}
|
|
|
|
circum_sphere_compute(points, root);
|
|
}
|
|
|
|
OAHashMap<Triangle, uint32_t, TriangleHasher> triangles_inserted;
|
|
LocalVector<Triangle> triangles;
|
|
|
|
for (uint32_t i = 0; i < point_count; i++) {
|
|
bool unique = true;
|
|
for (uint32_t j = i + 1; j < point_count; j++) {
|
|
if (points[i] == points[j]) {
|
|
unique = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!unique) {
|
|
continue;
|
|
}
|
|
|
|
Vector3i grid_pos = Vector3i(points[i] * proportions * ACCEL_GRID_SIZE);
|
|
grid_pos = grid_pos.clampi(0, ACCEL_GRID_SIZE - 1);
|
|
|
|
for (List<Simplex *>::Element *E = acceleration_grid[grid_pos.x][grid_pos.y][grid_pos.z].front(); E;) {
|
|
List<Simplex *>::Element *N = E->next(); //may be deleted
|
|
|
|
Simplex *simplex = E->get();
|
|
|
|
if (simplex_contains(points, *simplex, i)) {
|
|
static const uint32_t triangle_order[4][3] = {
|
|
{ 0, 1, 2 },
|
|
{ 0, 1, 3 },
|
|
{ 0, 2, 3 },
|
|
{ 1, 2, 3 },
|
|
};
|
|
|
|
for (uint32_t k = 0; k < 4; k++) {
|
|
Triangle t = Triangle(simplex->points[triangle_order[k][0]], simplex->points[triangle_order[k][1]], simplex->points[triangle_order[k][2]]);
|
|
uint32_t *p = triangles_inserted.lookup_ptr(t);
|
|
if (p) {
|
|
// This Delaunay implementation uses the Bowyer-Watson algorithm.
|
|
// The rule is that you don't reuse any triangles that were
|
|
// shared by any of the retriangulated simplices.
|
|
triangles[*p].bad = true;
|
|
} else {
|
|
triangles_inserted.insert(t, triangles.size());
|
|
triangles.push_back(t);
|
|
}
|
|
}
|
|
|
|
simplex_list.erase(simplex->SE);
|
|
|
|
for (const GridPos &gp : simplex->grid_positions) {
|
|
Vector3i p = gp.pos;
|
|
acceleration_grid[p.x][p.y][p.z].erase(gp.E);
|
|
}
|
|
memdelete(simplex);
|
|
}
|
|
E = N;
|
|
}
|
|
|
|
for (const Triangle &triangle : triangles) {
|
|
if (triangle.bad) {
|
|
continue;
|
|
}
|
|
Simplex *new_simplex = memnew(Simplex(triangle.triangle[0], triangle.triangle[1], triangle.triangle[2], i));
|
|
circum_sphere_compute(points, new_simplex);
|
|
new_simplex->SE = simplex_list.push_back(new_simplex);
|
|
{
|
|
Vector3 center;
|
|
center.x = double(new_simplex->circum_center_x);
|
|
center.y = double(new_simplex->circum_center_y);
|
|
center.z = double(new_simplex->circum_center_z);
|
|
|
|
const real_t radius2 = Math::sqrt(double(new_simplex->circum_r2)) + 0.0001;
|
|
Vector3 extents = Vector3(radius2, radius2, radius2);
|
|
Vector3i from = Vector3i((center - extents) * proportions * ACCEL_GRID_SIZE);
|
|
Vector3i to = Vector3i((center + extents) * proportions * ACCEL_GRID_SIZE);
|
|
from = from.clampi(0, ACCEL_GRID_SIZE - 1);
|
|
to = to.clampi(0, ACCEL_GRID_SIZE - 1);
|
|
|
|
for (int32_t x = from.x; x <= to.x; x++) {
|
|
for (int32_t y = from.y; y <= to.y; y++) {
|
|
for (int32_t z = from.z; z <= to.z; z++) {
|
|
GridPos gp;
|
|
gp.pos = Vector3(x, y, z);
|
|
gp.E = acceleration_grid[x][y][z].push_back(new_simplex);
|
|
new_simplex->grid_positions.push_back(gp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
triangles.clear();
|
|
triangles_inserted.clear();
|
|
}
|
|
|
|
//print_line("end with simplices: " + itos(simplex_list.size()));
|
|
Vector<OutputSimplex> ret_simplices;
|
|
ret_simplices.resize(simplex_list.size());
|
|
OutputSimplex *ret_simplicesw = ret_simplices.ptrw();
|
|
uint32_t simplices_written = 0;
|
|
|
|
for (Simplex *simplex : simplex_list) {
|
|
bool invalid = false;
|
|
for (int j = 0; j < 4; j++) {
|
|
if (simplex->points[j] >= point_count) {
|
|
invalid = true;
|
|
break;
|
|
}
|
|
}
|
|
if (invalid || simplex_is_coplanar(src_points, *simplex)) {
|
|
memdelete(simplex);
|
|
continue;
|
|
}
|
|
|
|
ret_simplicesw[simplices_written].points[0] = simplex->points[0];
|
|
ret_simplicesw[simplices_written].points[1] = simplex->points[1];
|
|
ret_simplicesw[simplices_written].points[2] = simplex->points[2];
|
|
ret_simplicesw[simplices_written].points[3] = simplex->points[3];
|
|
simplices_written++;
|
|
memdelete(simplex);
|
|
}
|
|
|
|
ret_simplices.resize(simplices_written);
|
|
|
|
memfree(points);
|
|
|
|
return ret_simplices;
|
|
}
|
|
};
|
|
|
|
#endif // DELAUNAY_3D_H
|