mirror of
https://github.com/godotengine/godot.git
synced 2024-11-26 22:23:04 +00:00
140350d767
Using clang-tidy's `readability-braces-around-statements`. https://clang.llvm.org/extra/clang-tidy/checks/readability-braces-around-statements.html
410 lines
11 KiB
C++
410 lines
11 KiB
C++
/*************************************************************************/
|
|
/* test_astar.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "test_astar.h"
|
|
|
|
#include "core/math/a_star.h"
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/os/os.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
namespace TestAStar {
|
|
|
|
class ABCX : public AStar {
|
|
public:
|
|
enum { A,
|
|
B,
|
|
C,
|
|
X };
|
|
|
|
ABCX() {
|
|
add_point(A, Vector3(0, 0, 0));
|
|
add_point(B, Vector3(1, 0, 0));
|
|
add_point(C, Vector3(0, 1, 0));
|
|
add_point(X, Vector3(0, 0, 1));
|
|
connect_points(A, B);
|
|
connect_points(A, C);
|
|
connect_points(B, C);
|
|
connect_points(X, A);
|
|
}
|
|
|
|
// Disable heuristic completely
|
|
float _compute_cost(int p_from, int p_to) {
|
|
if (p_from == A && p_to == C) {
|
|
return 1000;
|
|
}
|
|
return 100;
|
|
}
|
|
};
|
|
|
|
bool test_abc() {
|
|
ABCX abcx;
|
|
PoolVector<int> path = abcx.get_id_path(ABCX::A, ABCX::C);
|
|
bool ok = path.size() == 3;
|
|
int i = 0;
|
|
ok = ok && path[i++] == ABCX::A;
|
|
ok = ok && path[i++] == ABCX::B;
|
|
ok = ok && path[i++] == ABCX::C;
|
|
return ok;
|
|
}
|
|
|
|
bool test_abcx() {
|
|
ABCX abcx;
|
|
PoolVector<int> path = abcx.get_id_path(ABCX::X, ABCX::C);
|
|
bool ok = path.size() == 4;
|
|
int i = 0;
|
|
ok = ok && path[i++] == ABCX::X;
|
|
ok = ok && path[i++] == ABCX::A;
|
|
ok = ok && path[i++] == ABCX::B;
|
|
ok = ok && path[i++] == ABCX::C;
|
|
return ok;
|
|
}
|
|
|
|
bool test_add_remove() {
|
|
AStar a;
|
|
bool ok = true;
|
|
|
|
// Manual tests
|
|
a.add_point(1, Vector3(0, 0, 0));
|
|
a.add_point(2, Vector3(0, 1, 0));
|
|
a.add_point(3, Vector3(1, 1, 0));
|
|
a.add_point(4, Vector3(2, 0, 0));
|
|
a.connect_points(1, 2, true);
|
|
a.connect_points(1, 3, true);
|
|
a.connect_points(1, 4, false);
|
|
|
|
ok = ok && (a.are_points_connected(2, 1));
|
|
ok = ok && (a.are_points_connected(4, 1));
|
|
ok = ok && (a.are_points_connected(2, 1, false));
|
|
ok = ok && (a.are_points_connected(4, 1, false) == false);
|
|
|
|
a.disconnect_points(1, 2, true);
|
|
ok = ok && (a.get_point_connections(1).size() == 2); // 3, 4
|
|
ok = ok && (a.get_point_connections(2).size() == 0);
|
|
|
|
a.disconnect_points(4, 1, false);
|
|
ok = ok && (a.get_point_connections(1).size() == 2); // 3, 4
|
|
ok = ok && (a.get_point_connections(4).size() == 0);
|
|
|
|
a.disconnect_points(4, 1, true);
|
|
ok = ok && (a.get_point_connections(1).size() == 1); // 3
|
|
ok = ok && (a.get_point_connections(4).size() == 0);
|
|
|
|
a.connect_points(2, 3, false);
|
|
ok = ok && (a.get_point_connections(2).size() == 1); // 3
|
|
ok = ok && (a.get_point_connections(3).size() == 1); // 1
|
|
|
|
a.connect_points(2, 3, true);
|
|
ok = ok && (a.get_point_connections(2).size() == 1); // 3
|
|
ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2
|
|
|
|
a.disconnect_points(2, 3, false);
|
|
ok = ok && (a.get_point_connections(2).size() == 0);
|
|
ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2
|
|
|
|
a.connect_points(4, 3, true);
|
|
ok = ok && (a.get_point_connections(3).size() == 3); // 1, 2, 4
|
|
ok = ok && (a.get_point_connections(4).size() == 1); // 3
|
|
|
|
a.disconnect_points(3, 4, false);
|
|
ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2
|
|
ok = ok && (a.get_point_connections(4).size() == 1); // 3
|
|
|
|
a.remove_point(3);
|
|
ok = ok && (a.get_point_connections(1).size() == 0);
|
|
ok = ok && (a.get_point_connections(2).size() == 0);
|
|
ok = ok && (a.get_point_connections(4).size() == 0);
|
|
|
|
a.add_point(0, Vector3(0, -1, 0));
|
|
a.add_point(3, Vector3(2, 1, 0));
|
|
// 0: (0, -1)
|
|
// 1: (0, 0)
|
|
// 2: (0, 1)
|
|
// 3: (2, 1)
|
|
// 4: (2, 0)
|
|
|
|
// Tests for get_closest_position_in_segment
|
|
a.connect_points(2, 3);
|
|
ok = ok && (a.get_closest_position_in_segment(Vector3(0.5, 0.5, 0)) == Vector3(0.5, 1, 0));
|
|
|
|
a.connect_points(3, 4);
|
|
a.connect_points(0, 3);
|
|
a.connect_points(1, 4);
|
|
a.disconnect_points(1, 4, false);
|
|
a.disconnect_points(4, 3, false);
|
|
a.disconnect_points(3, 4, false);
|
|
// Remaining edges: <2, 3>, <0, 3>, <1, 4> (directed)
|
|
ok = ok && (a.get_closest_position_in_segment(Vector3(2, 0.5, 0)) == Vector3(1.75, 0.75, 0));
|
|
ok = ok && (a.get_closest_position_in_segment(Vector3(-1, 0.2, 0)) == Vector3(0, 0, 0));
|
|
ok = ok && (a.get_closest_position_in_segment(Vector3(3, 2, 0)) == Vector3(2, 1, 0));
|
|
|
|
Math::seed(0);
|
|
|
|
// Random tests for connectivity checks
|
|
for (int i = 0; i < 20000; i++) {
|
|
int u = Math::rand() % 5;
|
|
int v = Math::rand() % 4;
|
|
if (u == v) {
|
|
v = 4;
|
|
}
|
|
if (Math::rand() % 2 == 1) {
|
|
// Add a (possibly existing) directed edge and confirm connectivity
|
|
a.connect_points(u, v, false);
|
|
ok = ok && (a.are_points_connected(u, v, false));
|
|
} else {
|
|
// Remove a (possibly nonexistent) directed edge and confirm disconnectivity
|
|
a.disconnect_points(u, v, false);
|
|
ok = ok && (a.are_points_connected(u, v, false) == false);
|
|
}
|
|
}
|
|
|
|
// Random tests for point removal
|
|
for (int i = 0; i < 20000; i++) {
|
|
a.clear();
|
|
for (int j = 0; j < 5; j++) {
|
|
a.add_point(j, Vector3(0, 0, 0));
|
|
}
|
|
|
|
// Add or remove random edges
|
|
for (int j = 0; j < 10; j++) {
|
|
int u = Math::rand() % 5;
|
|
int v = Math::rand() % 4;
|
|
if (u == v) {
|
|
v = 4;
|
|
}
|
|
if (Math::rand() % 2 == 1) {
|
|
a.connect_points(u, v, false);
|
|
} else {
|
|
a.disconnect_points(u, v, false);
|
|
}
|
|
}
|
|
|
|
// Remove point 0
|
|
a.remove_point(0);
|
|
// White box: this will check all edges remaining in the segments set
|
|
for (int j = 1; j < 5; j++) {
|
|
ok = ok && (a.are_points_connected(0, j, true) == false);
|
|
}
|
|
}
|
|
|
|
// It's been great work, cheers \(^ ^)/
|
|
return ok;
|
|
}
|
|
|
|
bool test_solutions() {
|
|
// Random stress tests with Floyd-Warshall
|
|
|
|
const int N = 30;
|
|
Math::seed(0);
|
|
|
|
for (int test = 0; test < 1000; test++) {
|
|
AStar a;
|
|
Vector3 p[N];
|
|
bool adj[N][N] = { { false } };
|
|
|
|
// Assign initial coordinates
|
|
for (int u = 0; u < N; u++) {
|
|
p[u].x = Math::rand() % 100;
|
|
p[u].y = Math::rand() % 100;
|
|
p[u].z = Math::rand() % 100;
|
|
a.add_point(u, p[u]);
|
|
}
|
|
|
|
// Generate a random sequence of operations
|
|
for (int i = 0; i < 1000; i++) {
|
|
// Pick two different vertices
|
|
int u, v;
|
|
u = Math::rand() % N;
|
|
v = Math::rand() % (N - 1);
|
|
if (u == v) {
|
|
v = N - 1;
|
|
}
|
|
|
|
// Pick a random operation
|
|
int op = Math::rand();
|
|
switch (op % 9) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
// Add edge (u, v); possibly bidirectional
|
|
a.connect_points(u, v, op % 2);
|
|
adj[u][v] = true;
|
|
if (op % 2) {
|
|
adj[v][u] = true;
|
|
}
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
// Remove edge (u, v); possibly bidirectional
|
|
a.disconnect_points(u, v, op % 2);
|
|
adj[u][v] = false;
|
|
if (op % 2) {
|
|
adj[v][u] = false;
|
|
}
|
|
break;
|
|
case 8:
|
|
// Remove point u and add it back; clears adjacent edges and changes coordinates
|
|
a.remove_point(u);
|
|
p[u].x = Math::rand() % 100;
|
|
p[u].y = Math::rand() % 100;
|
|
p[u].z = Math::rand() % 100;
|
|
a.add_point(u, p[u]);
|
|
for (v = 0; v < N; v++) {
|
|
adj[u][v] = adj[v][u] = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Floyd-Warshall
|
|
float d[N][N];
|
|
for (int u = 0; u < N; u++) {
|
|
for (int v = 0; v < N; v++) {
|
|
d[u][v] = (u == v || adj[u][v]) ? p[u].distance_to(p[v]) : INFINITY;
|
|
}
|
|
}
|
|
|
|
for (int w = 0; w < N; w++) {
|
|
for (int u = 0; u < N; u++) {
|
|
for (int v = 0; v < N; v++) {
|
|
if (d[u][v] > d[u][w] + d[w][v]) {
|
|
d[u][v] = d[u][w] + d[w][v];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Display statistics
|
|
int count = 0;
|
|
for (int u = 0; u < N; u++) {
|
|
for (int v = 0; v < N; v++) {
|
|
if (adj[u][v]) {
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
printf("Test #%4d: %3d edges, ", test + 1, count);
|
|
count = 0;
|
|
for (int u = 0; u < N; u++) {
|
|
for (int v = 0; v < N; v++) {
|
|
if (!Math::is_inf(d[u][v])) {
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
printf("%3d/%d pairs of reachable points\n", count - N, N * (N - 1));
|
|
|
|
// Check A*'s output
|
|
bool match = true;
|
|
for (int u = 0; u < N; u++) {
|
|
for (int v = 0; v < N; v++) {
|
|
if (u != v) {
|
|
PoolVector<int> route = a.get_id_path(u, v);
|
|
if (!Math::is_inf(d[u][v])) {
|
|
// Reachable
|
|
if (route.size() == 0) {
|
|
printf("From %d to %d: A* did not find a path\n", u, v);
|
|
match = false;
|
|
goto exit;
|
|
}
|
|
float astar_dist = 0;
|
|
for (int i = 1; i < route.size(); i++) {
|
|
if (!adj[route[i - 1]][route[i]]) {
|
|
printf("From %d to %d: edge (%d, %d) does not exist\n",
|
|
u, v, route[i - 1], route[i]);
|
|
match = false;
|
|
goto exit;
|
|
}
|
|
astar_dist += p[route[i - 1]].distance_to(p[route[i]]);
|
|
}
|
|
if (!Math::is_equal_approx(astar_dist, d[u][v])) {
|
|
printf("From %d to %d: Floyd-Warshall gives %.6f, A* gives %.6f\n",
|
|
u, v, d[u][v], astar_dist);
|
|
match = false;
|
|
goto exit;
|
|
}
|
|
} else {
|
|
// Unreachable
|
|
if (route.size() > 0) {
|
|
printf("From %d to %d: A* somehow found a nonexistent path\n", u, v);
|
|
match = false;
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
exit:
|
|
if (!match) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*TestFunc)();
|
|
|
|
TestFunc test_funcs[] = {
|
|
test_abc,
|
|
test_abcx,
|
|
test_add_remove,
|
|
test_solutions,
|
|
nullptr
|
|
};
|
|
|
|
MainLoop *test() {
|
|
int count = 0;
|
|
int passed = 0;
|
|
|
|
while (true) {
|
|
if (!test_funcs[count]) {
|
|
break;
|
|
}
|
|
bool pass = test_funcs[count]();
|
|
if (pass) {
|
|
passed++;
|
|
}
|
|
OS::get_singleton()->print("\t%s\n", pass ? "PASS" : "FAILED");
|
|
|
|
count++;
|
|
}
|
|
OS::get_singleton()->print("\n");
|
|
OS::get_singleton()->print("Passed %i of %i tests\n", passed, count);
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace TestAStar
|