mirror of
https://github.com/godotengine/godot.git
synced 2024-12-03 17:42:12 +00:00
25b2f1780a
This applies our existing style guide, and adds a new rule to that style guide for modular components such as platform ports and modules: Includes from the platform port or module ("local" includes) should be listed first in their own block using relative paths, before Godot's "core" includes which use "absolute" (project folder relative) paths, and finally thirdparty includes. Includes in `#ifdef`s come after their relevant section, i.e. the overall structure is: - Local includes * Conditional local includes - Core includes * Conditional core includes - Thirdparty includes * Conditional thirdparty includes
638 lines
33 KiB
C++
638 lines
33 KiB
C++
/**************************************************************************/
|
|
/* test_fastnoise_lite.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_FASTNOISE_LITE_H
|
|
#define TEST_FASTNOISE_LITE_H
|
|
|
|
#include "../fastnoise_lite.h"
|
|
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestFastNoiseLite {
|
|
|
|
// Uitility functions for finding differences in noise generation
|
|
|
|
bool all_equal_approx(const Vector<real_t> &p_values_1, const Vector<real_t> &p_values_2) {
|
|
ERR_FAIL_COND_V_MSG(p_values_1.size() != p_values_2.size(), false, "Arrays must be the same size. This is a error in the test code.");
|
|
|
|
for (int i = 0; i < p_values_1.size(); i++) {
|
|
if (!Math::is_equal_approx(p_values_1[i], p_values_2[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Vector<Pair<size_t, size_t>> find_approx_equal_vec_pairs(std::initializer_list<Vector<real_t>> inputs) {
|
|
Vector<Vector<real_t>> p_array = Vector<Vector<real_t>>(inputs);
|
|
|
|
Vector<Pair<size_t, size_t>> result;
|
|
for (int i = 0; i < p_array.size(); i++) {
|
|
for (int j = i + 1; j < p_array.size(); j++) {
|
|
if (all_equal_approx(p_array[i], p_array[j])) {
|
|
result.push_back(Pair<size_t, size_t>(i, j));
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(...) \
|
|
{ \
|
|
Vector<Pair<size_t, size_t>> equal_pairs = find_approx_equal_vec_pairs({ __VA_ARGS__ }); \
|
|
for (Pair<size_t, size_t> p : equal_pairs) { \
|
|
MESSAGE("Argument with index ", p.first, " is approximately equal to argument with index ", p.second); \
|
|
} \
|
|
CHECK_MESSAGE(equal_pairs.size() == 0, "All arguments should be pairwise distinct."); \
|
|
}
|
|
|
|
Vector<real_t> get_noise_samples_1d(const FastNoiseLite &p_noise, size_t p_count = 32) {
|
|
Vector<real_t> result;
|
|
result.resize(p_count);
|
|
for (size_t i = 0; i < p_count; i++) {
|
|
result.write[i] = p_noise.get_noise_1d(i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Vector<real_t> get_noise_samples_2d(const FastNoiseLite &p_noise, size_t p_count = 32) {
|
|
Vector<real_t> result;
|
|
result.resize(p_count);
|
|
for (size_t i = 0; i < p_count; i++) {
|
|
result.write[i] = p_noise.get_noise_2d(i, i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Vector<real_t> get_noise_samples_3d(const FastNoiseLite &p_noise, size_t p_count = 32) {
|
|
Vector<real_t> result;
|
|
result.resize(p_count);
|
|
for (size_t i = 0; i < p_count; i++) {
|
|
result.write[i] = p_noise.get_noise_3d(i, i, i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// The following test suite is rather for testing the wrapper code than the actual noise generation.
|
|
|
|
TEST_CASE("[FastNoiseLite] Getter and setter") {
|
|
FastNoiseLite noise;
|
|
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX_SMOOTH);
|
|
CHECK(noise.get_noise_type() == FastNoiseLite::NoiseType::TYPE_SIMPLEX_SMOOTH);
|
|
|
|
noise.set_seed(123);
|
|
CHECK(noise.get_seed() == 123);
|
|
|
|
noise.set_frequency(0.123);
|
|
CHECK(noise.get_frequency() == doctest::Approx(0.123));
|
|
|
|
noise.set_offset(Vector3(1, 2, 3));
|
|
CHECK(noise.get_offset() == Vector3(1, 2, 3));
|
|
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_PING_PONG);
|
|
CHECK(noise.get_fractal_type() == FastNoiseLite::FractalType::FRACTAL_PING_PONG);
|
|
|
|
noise.set_fractal_octaves(2);
|
|
CHECK(noise.get_fractal_octaves() == 2);
|
|
|
|
noise.set_fractal_lacunarity(1.123);
|
|
CHECK(noise.get_fractal_lacunarity() == doctest::Approx(1.123));
|
|
|
|
noise.set_fractal_gain(0.123);
|
|
CHECK(noise.get_fractal_gain() == doctest::Approx(0.123));
|
|
|
|
noise.set_fractal_weighted_strength(0.123);
|
|
CHECK(noise.get_fractal_weighted_strength() == doctest::Approx(0.123));
|
|
|
|
noise.set_fractal_ping_pong_strength(0.123);
|
|
CHECK(noise.get_fractal_ping_pong_strength() == doctest::Approx(0.123));
|
|
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_MANHATTAN);
|
|
CHECK(noise.get_cellular_distance_function() == FastNoiseLite::CellularDistanceFunction::DISTANCE_MANHATTAN);
|
|
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_SUB);
|
|
CHECK(noise.get_cellular_return_type() == FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_SUB);
|
|
|
|
noise.set_cellular_jitter(0.123);
|
|
CHECK(noise.get_cellular_jitter() == doctest::Approx(0.123));
|
|
|
|
noise.set_domain_warp_enabled(true);
|
|
CHECK(noise.is_domain_warp_enabled() == true);
|
|
noise.set_domain_warp_enabled(false);
|
|
CHECK(noise.is_domain_warp_enabled() == false);
|
|
|
|
noise.set_domain_warp_type(FastNoiseLite::DomainWarpType::DOMAIN_WARP_SIMPLEX_REDUCED);
|
|
CHECK(noise.get_domain_warp_type() == FastNoiseLite::DomainWarpType::DOMAIN_WARP_SIMPLEX_REDUCED);
|
|
|
|
noise.set_domain_warp_amplitude(0.123);
|
|
CHECK(noise.get_domain_warp_amplitude() == doctest::Approx(0.123));
|
|
|
|
noise.set_domain_warp_frequency(0.123);
|
|
CHECK(noise.get_domain_warp_frequency() == doctest::Approx(0.123));
|
|
|
|
noise.set_domain_warp_fractal_type(FastNoiseLite::DomainWarpFractalType::DOMAIN_WARP_FRACTAL_INDEPENDENT);
|
|
CHECK(noise.get_domain_warp_fractal_type() == FastNoiseLite::DomainWarpFractalType::DOMAIN_WARP_FRACTAL_INDEPENDENT);
|
|
|
|
noise.set_domain_warp_fractal_octaves(2);
|
|
CHECK(noise.get_domain_warp_fractal_octaves() == 2);
|
|
|
|
noise.set_domain_warp_fractal_lacunarity(1.123);
|
|
CHECK(noise.get_domain_warp_fractal_lacunarity() == doctest::Approx(1.123));
|
|
|
|
noise.set_domain_warp_fractal_gain(0.123);
|
|
CHECK(noise.get_domain_warp_fractal_gain() == doctest::Approx(0.123));
|
|
}
|
|
|
|
TEST_CASE("[FastNoiseLite] Basic noise generation") {
|
|
FastNoiseLite noise;
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_NONE);
|
|
noise.set_seed(123);
|
|
noise.set_offset(Vector3(10, 10, 10));
|
|
|
|
// 1D noise will be checked just in the cases where there's the possibility of
|
|
// finding a bug/regression in the wrapper function.
|
|
// (since it uses FastNoise's 2D noise generator with the Y coordinate set to 0).
|
|
|
|
SUBCASE("Determinacy of noise generation (all noise types)") {
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX_SMOOTH);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_CELLULAR);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_PERLIN);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_VALUE);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_VALUE_CUBIC);
|
|
CHECK(noise.get_noise_2d(0, 0) == doctest::Approx(noise.get_noise_2d(0, 0)));
|
|
CHECK(noise.get_noise_3d(0, 0, 0) == doctest::Approx(noise.get_noise_3d(0, 0, 0)));
|
|
}
|
|
|
|
SUBCASE("Different seeds should produce different noise") {
|
|
noise.set_seed(456);
|
|
Vector<real_t> noise_seed_1_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_seed_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_seed_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_seed(123);
|
|
Vector<real_t> noise_seed_2_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_seed_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_seed_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(noise_seed_1_1d, noise_seed_2_1d));
|
|
CHECK_FALSE(all_equal_approx(noise_seed_1_2d, noise_seed_2_2d));
|
|
CHECK_FALSE(all_equal_approx(noise_seed_1_3d, noise_seed_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different frequencies should produce different noise") {
|
|
noise.set_frequency(0.1);
|
|
Vector<real_t> noise_frequency_1_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_frequency_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_frequency_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_frequency(1.0);
|
|
Vector<real_t> noise_frequency_2_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_frequency_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_frequency_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(noise_frequency_1_1d, noise_frequency_2_1d));
|
|
CHECK_FALSE(all_equal_approx(noise_frequency_1_2d, noise_frequency_2_2d));
|
|
CHECK_FALSE(all_equal_approx(noise_frequency_1_3d, noise_frequency_2_3d));
|
|
}
|
|
|
|
SUBCASE("Noise should be offset by the offset parameter") {
|
|
noise.set_offset(Vector3(1, 2, 3));
|
|
Vector<real_t> noise_offset_1_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_offset_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_offset_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_offset(Vector3(4, 5, 6));
|
|
Vector<real_t> noise_offset_2_1d = get_noise_samples_1d(noise);
|
|
Vector<real_t> noise_offset_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_offset_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(noise_offset_1_1d, noise_offset_2_1d));
|
|
CHECK_FALSE(all_equal_approx(noise_offset_1_2d, noise_offset_2_2d));
|
|
CHECK_FALSE(all_equal_approx(noise_offset_1_3d, noise_offset_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different noise types should produce different noise") {
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX);
|
|
Vector<real_t> noise_type_simplex_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_simplex_3d = get_noise_samples_3d(noise);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX_SMOOTH);
|
|
Vector<real_t> noise_type_simplex_smooth_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_simplex_smooth_3d = get_noise_samples_3d(noise);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_CELLULAR);
|
|
Vector<real_t> noise_type_cellular_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_cellular_3d = get_noise_samples_3d(noise);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_PERLIN);
|
|
Vector<real_t> noise_type_perlin_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_perlin_3d = get_noise_samples_3d(noise);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_VALUE);
|
|
Vector<real_t> noise_type_value_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_value_3d = get_noise_samples_3d(noise);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_VALUE_CUBIC);
|
|
Vector<real_t> noise_type_value_cubic_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> noise_type_value_cubic_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(noise_type_simplex_2d,
|
|
noise_type_simplex_smooth_2d,
|
|
noise_type_cellular_2d,
|
|
noise_type_perlin_2d,
|
|
noise_type_value_2d,
|
|
noise_type_value_cubic_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(noise_type_simplex_3d,
|
|
noise_type_simplex_smooth_3d,
|
|
noise_type_cellular_3d,
|
|
noise_type_perlin_3d,
|
|
noise_type_value_3d,
|
|
noise_type_value_cubic_3d);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[FastNoiseLite] Fractal noise") {
|
|
FastNoiseLite noise;
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX);
|
|
noise.set_offset(Vector3(10, 10, 10));
|
|
noise.set_frequency(0.01);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_FBM);
|
|
noise.set_fractal_octaves(4);
|
|
noise.set_fractal_lacunarity(2.0);
|
|
noise.set_fractal_gain(0.5);
|
|
noise.set_fractal_weighted_strength(0.5);
|
|
noise.set_fractal_ping_pong_strength(2.0);
|
|
|
|
SUBCASE("Different fractal types should produce different results") {
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_NONE);
|
|
Vector<real_t> fractal_type_none_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_type_none_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_FBM);
|
|
Vector<real_t> fractal_type_fbm_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_type_fbm_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_RIDGED);
|
|
Vector<real_t> fractal_type_ridged_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_type_ridged_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_PING_PONG);
|
|
Vector<real_t> fractal_type_ping_pong_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_type_ping_pong_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(fractal_type_none_2d,
|
|
fractal_type_fbm_2d,
|
|
fractal_type_ridged_2d,
|
|
fractal_type_ping_pong_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(fractal_type_none_3d,
|
|
fractal_type_fbm_3d,
|
|
fractal_type_ridged_3d,
|
|
fractal_type_ping_pong_3d);
|
|
}
|
|
|
|
SUBCASE("Different octaves should produce different results") {
|
|
noise.set_fractal_octaves(1.0);
|
|
Vector<real_t> fractal_octaves_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_octaves_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_octaves(8.0);
|
|
Vector<real_t> fractal_octaves_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_octaves_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(fractal_octaves_1_2d, fractal_octaves_2_2d));
|
|
CHECK_FALSE(all_equal_approx(fractal_octaves_1_3d, fractal_octaves_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different lacunarity should produce different results") {
|
|
noise.set_fractal_lacunarity(1.0);
|
|
Vector<real_t> fractal_lacunarity_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_lacunarity_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_lacunarity(2.0);
|
|
Vector<real_t> fractal_lacunarity_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_lacunarity_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(fractal_lacunarity_1_2d, fractal_lacunarity_2_2d));
|
|
CHECK_FALSE(all_equal_approx(fractal_lacunarity_1_3d, fractal_lacunarity_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different gain should produce different results") {
|
|
noise.set_fractal_gain(0.5);
|
|
Vector<real_t> fractal_gain_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_gain_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_gain(0.75);
|
|
Vector<real_t> fractal_gain_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_gain_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(fractal_gain_1_2d, fractal_gain_2_2d));
|
|
CHECK_FALSE(all_equal_approx(fractal_gain_1_3d, fractal_gain_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different weights should produce different results") {
|
|
noise.set_fractal_weighted_strength(0.5);
|
|
Vector<real_t> fractal_weighted_strength_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_weighted_strength_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_weighted_strength(0.75);
|
|
Vector<real_t> fractal_weighted_strength_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_weighted_strength_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(fractal_weighted_strength_1_2d, fractal_weighted_strength_2_2d));
|
|
CHECK_FALSE(all_equal_approx(fractal_weighted_strength_1_3d, fractal_weighted_strength_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different ping pong strength should produce different results") {
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_PING_PONG);
|
|
noise.set_fractal_ping_pong_strength(0.5);
|
|
Vector<real_t> fractal_ping_pong_strength_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_ping_pong_strength_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_fractal_ping_pong_strength(0.75);
|
|
Vector<real_t> fractal_ping_pong_strength_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> fractal_ping_pong_strength_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(fractal_ping_pong_strength_1_2d, fractal_ping_pong_strength_2_2d));
|
|
CHECK_FALSE(all_equal_approx(fractal_ping_pong_strength_1_3d, fractal_ping_pong_strength_2_3d));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[FastNoiseLite] Cellular noise") {
|
|
FastNoiseLite noise;
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_NONE);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_CELLULAR);
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_EUCLIDEAN);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE);
|
|
noise.set_frequency(1.0);
|
|
|
|
SUBCASE("Different distance functions should produce different results") {
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_EUCLIDEAN);
|
|
Vector<real_t> cellular_distance_function_euclidean_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_distance_function_euclidean_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_EUCLIDEAN_SQUARED);
|
|
Vector<real_t> cellular_distance_function_euclidean_squared_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_distance_function_euclidean_squared_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_MANHATTAN);
|
|
Vector<real_t> cellular_distance_function_manhattan_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_distance_function_manhattan_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_HYBRID);
|
|
Vector<real_t> cellular_distance_function_hybrid_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_distance_function_hybrid_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(cellular_distance_function_euclidean_2d,
|
|
cellular_distance_function_euclidean_squared_2d,
|
|
cellular_distance_function_manhattan_2d,
|
|
cellular_distance_function_hybrid_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(cellular_distance_function_euclidean_3d,
|
|
cellular_distance_function_euclidean_squared_3d,
|
|
cellular_distance_function_manhattan_3d,
|
|
cellular_distance_function_hybrid_3d);
|
|
}
|
|
|
|
SUBCASE("Different return function types should produce different results") {
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_CELL_VALUE);
|
|
Vector<real_t> cellular_return_type_cell_value_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_cell_value_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE);
|
|
Vector<real_t> cellular_return_type_distance_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2);
|
|
Vector<real_t> cellular_return_type_distance2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance2_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_ADD);
|
|
Vector<real_t> cellular_return_type_distance2_add_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance2_add_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_SUB);
|
|
Vector<real_t> cellular_return_type_distance2_sub_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance2_sub_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_MUL);
|
|
Vector<real_t> cellular_return_type_distance2_mul_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance2_mul_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_return_type(FastNoiseLite::CellularReturnType::RETURN_DISTANCE2_DIV);
|
|
Vector<real_t> cellular_return_type_distance2_div_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_return_type_distance2_div_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(cellular_return_type_cell_value_2d,
|
|
cellular_return_type_distance_2d,
|
|
cellular_return_type_distance2_2d,
|
|
cellular_return_type_distance2_add_2d,
|
|
cellular_return_type_distance2_sub_2d,
|
|
cellular_return_type_distance2_mul_2d,
|
|
cellular_return_type_distance2_div_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(cellular_return_type_cell_value_3d,
|
|
cellular_return_type_distance_3d,
|
|
cellular_return_type_distance2_3d,
|
|
cellular_return_type_distance2_add_3d,
|
|
cellular_return_type_distance2_sub_3d,
|
|
cellular_return_type_distance2_mul_3d,
|
|
cellular_return_type_distance2_div_3d);
|
|
}
|
|
|
|
SUBCASE("Different cellular jitter should produce different results") {
|
|
noise.set_cellular_jitter(0.0);
|
|
Vector<real_t> cellular_jitter_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_jitter_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_cellular_jitter(0.5);
|
|
Vector<real_t> cellular_jitter_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> cellular_jitter_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(cellular_jitter_1_2d, cellular_jitter_2_2d));
|
|
CHECK_FALSE(all_equal_approx(cellular_jitter_1_3d, cellular_jitter_2_3d));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[FastNoiseLite] Domain warp") {
|
|
FastNoiseLite noise;
|
|
noise.set_frequency(1.0);
|
|
noise.set_domain_warp_amplitude(200.0);
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_SIMPLEX);
|
|
noise.set_domain_warp_enabled(true);
|
|
|
|
SUBCASE("Different domain warp types should produce different results") {
|
|
noise.set_domain_warp_type(FastNoiseLite::DomainWarpType::DOMAIN_WARP_SIMPLEX);
|
|
Vector<real_t> domain_warp_type_simplex_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_type_simplex_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_type(FastNoiseLite::DomainWarpType::DOMAIN_WARP_SIMPLEX_REDUCED);
|
|
Vector<real_t> domain_warp_type_simplex_reduced_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_type_simplex_reduced_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_type(FastNoiseLite::DomainWarpType::DOMAIN_WARP_BASIC_GRID);
|
|
Vector<real_t> domain_warp_type_basic_grid_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_type_basic_grid_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(domain_warp_type_simplex_2d,
|
|
domain_warp_type_simplex_reduced_2d,
|
|
domain_warp_type_basic_grid_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(domain_warp_type_simplex_3d,
|
|
domain_warp_type_simplex_reduced_3d,
|
|
domain_warp_type_basic_grid_3d);
|
|
}
|
|
|
|
SUBCASE("Different domain warp amplitude should produce different results") {
|
|
noise.set_domain_warp_amplitude(0.0);
|
|
Vector<real_t> domain_warp_amplitude_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_amplitude_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_amplitude(100.0);
|
|
Vector<real_t> domain_warp_amplitude_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_amplitude_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(domain_warp_amplitude_1_2d, domain_warp_amplitude_2_2d));
|
|
CHECK_FALSE(all_equal_approx(domain_warp_amplitude_1_3d, domain_warp_amplitude_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different domain warp frequency should produce different results") {
|
|
noise.set_domain_warp_frequency(0.1);
|
|
Vector<real_t> domain_warp_frequency_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_frequency_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_frequency(2.0);
|
|
Vector<real_t> domain_warp_frequency_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_frequency_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(domain_warp_frequency_1_2d, domain_warp_frequency_2_2d));
|
|
CHECK_FALSE(all_equal_approx(domain_warp_frequency_1_3d, domain_warp_frequency_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different domain warp fractal type should produce different results") {
|
|
noise.set_domain_warp_fractal_type(FastNoiseLite::DomainWarpFractalType::DOMAIN_WARP_FRACTAL_NONE);
|
|
Vector<real_t> domain_warp_fractal_type_none_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_type_none_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_fractal_type(FastNoiseLite::DomainWarpFractalType::DOMAIN_WARP_FRACTAL_PROGRESSIVE);
|
|
Vector<real_t> domain_warp_fractal_type_progressive_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_type_progressive_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_fractal_type(FastNoiseLite::DomainWarpFractalType::DOMAIN_WARP_FRACTAL_INDEPENDENT);
|
|
Vector<real_t> domain_warp_fractal_type_independent_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_type_independent_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(domain_warp_fractal_type_none_2d,
|
|
domain_warp_fractal_type_progressive_2d,
|
|
domain_warp_fractal_type_independent_2d);
|
|
|
|
CHECK_ARGS_APPROX_PAIRWISE_DISTINCT_VECS(domain_warp_fractal_type_none_3d,
|
|
domain_warp_fractal_type_progressive_3d,
|
|
domain_warp_fractal_type_independent_3d);
|
|
}
|
|
|
|
SUBCASE("Different domain warp fractal octaves should produce different results") {
|
|
noise.set_domain_warp_fractal_octaves(1);
|
|
Vector<real_t> domain_warp_fractal_octaves_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_octaves_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_fractal_octaves(6);
|
|
Vector<real_t> domain_warp_fractal_octaves_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_octaves_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_octaves_1_2d, domain_warp_fractal_octaves_2_2d));
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_octaves_1_3d, domain_warp_fractal_octaves_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different domain warp fractal lacunarity should produce different results") {
|
|
noise.set_domain_warp_fractal_lacunarity(0.5);
|
|
Vector<real_t> domain_warp_fractal_lacunarity_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_lacunarity_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_fractal_lacunarity(5.0);
|
|
Vector<real_t> domain_warp_fractal_lacunarity_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_lacunarity_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_lacunarity_1_2d, domain_warp_fractal_lacunarity_2_2d));
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_lacunarity_1_3d, domain_warp_fractal_lacunarity_2_3d));
|
|
}
|
|
|
|
SUBCASE("Different domain warp fractal gain should produce different results") {
|
|
noise.set_domain_warp_fractal_gain(0.1);
|
|
Vector<real_t> domain_warp_fractal_gain_1_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_gain_1_3d = get_noise_samples_3d(noise);
|
|
noise.set_domain_warp_fractal_gain(0.9);
|
|
Vector<real_t> domain_warp_fractal_gain_2_2d = get_noise_samples_2d(noise);
|
|
Vector<real_t> domain_warp_fractal_gain_2_3d = get_noise_samples_3d(noise);
|
|
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_gain_1_2d, domain_warp_fractal_gain_2_2d));
|
|
CHECK_FALSE(all_equal_approx(domain_warp_fractal_gain_1_3d, domain_warp_fractal_gain_2_3d));
|
|
}
|
|
}
|
|
|
|
// Raw image data for the reference images used in the regression tests.
|
|
// Generated with the following code:
|
|
// for (int y = 0; y < img->get_data().size(); y++) {
|
|
// printf("0x%x,", img->get_data()[y]);
|
|
// }
|
|
|
|
const Vector<uint8_t> ref_img_1_data = { 0xff, 0xe6, 0xd2, 0xc2, 0xb7, 0xb4, 0xb4, 0xb7, 0xc2, 0xd2, 0xe6, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcb, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x65, 0x82, 0xa1, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x32, 0x50, 0x72, 0x94, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x33, 0x50, 0x72, 0x94, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x66, 0x82, 0xa1, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcc };
|
|
const Vector<uint8_t> ref_img_2_data = { 0xff, 0xe6, 0xd2, 0xc2, 0xb7, 0xb4, 0xb4, 0xb7, 0xc2, 0xd2, 0xe6, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcb, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x65, 0x82, 0xa1, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x32, 0x50, 0x72, 0x94, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x33, 0x50, 0x72, 0x94, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x66, 0x82, 0xa1, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcc };
|
|
const Vector<uint8_t> ref_img_3_data = { 0xff, 0xe6, 0xd2, 0xc2, 0xb7, 0xb4, 0xb4, 0xb7, 0xc2, 0xd2, 0xe6, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcb, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x65, 0x82, 0xa1, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x32, 0x50, 0x72, 0x94, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb4, 0x90, 0x6c, 0x48, 0x24, 0x0, 0x0, 0x24, 0x48, 0x6c, 0x90, 0xb7, 0x94, 0x72, 0x50, 0x32, 0x24, 0x24, 0x33, 0x50, 0x72, 0x94, 0xc2, 0xa1, 0x82, 0x65, 0x50, 0x48, 0x48, 0x50, 0x66, 0x82, 0xa1, 0xd2, 0xb4, 0x99, 0x82, 0x72, 0x6c, 0x6c, 0x72, 0x82, 0x99, 0xb4, 0xe6, 0xcb, 0xb4, 0xa1, 0x94, 0x90, 0x90, 0x94, 0xa1, 0xb4, 0xcc };
|
|
|
|
// Utiliy function to compare two images pixel by pixel (for easy debugging of regressions)
|
|
void compare_image_with_reference(const Ref<Image> &p_img, const Ref<Image> &p_reference_img) {
|
|
for (int y = 0; y < p_img->get_height(); y++) {
|
|
for (int x = 0; x < p_img->get_width(); x++) {
|
|
CHECK(p_img->get_pixel(x, y) == p_reference_img->get_pixel(x, y));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("[FastNoiseLite] Generating seamless 2D images (11x11px) and compare to reference images") {
|
|
FastNoiseLite noise;
|
|
noise.set_noise_type(FastNoiseLite::NoiseType::TYPE_CELLULAR);
|
|
noise.set_fractal_type(FastNoiseLite::FractalType::FRACTAL_NONE);
|
|
noise.set_cellular_distance_function(FastNoiseLite::CellularDistanceFunction::DISTANCE_EUCLIDEAN);
|
|
noise.set_frequency(0.1);
|
|
noise.set_cellular_jitter(0.0);
|
|
|
|
SUBCASE("Blend skirt 0.0") {
|
|
Ref<Image> img = noise.get_seamless_image(11, 11, false, false, 0.0);
|
|
|
|
Ref<Image> ref_img_1 = memnew(Image);
|
|
ref_img_1->set_data(11, 11, false, Image::FORMAT_L8, ref_img_1_data);
|
|
|
|
compare_image_with_reference(img, ref_img_1);
|
|
}
|
|
|
|
SUBCASE("Blend skirt 0.1") {
|
|
Ref<Image> img = noise.get_seamless_image(11, 11, false, false, 0.1);
|
|
|
|
Ref<Image> ref_img_2 = memnew(Image);
|
|
ref_img_2->set_data(11, 11, false, Image::FORMAT_L8, ref_img_2_data);
|
|
|
|
compare_image_with_reference(img, ref_img_2);
|
|
}
|
|
|
|
SUBCASE("Blend skirt 1.0") {
|
|
Ref<Image> img = noise.get_seamless_image(11, 11, false, false, 0.1);
|
|
|
|
Ref<Image> ref_img_3 = memnew(Image);
|
|
ref_img_3->set_data(11, 11, false, Image::FORMAT_L8, ref_img_3_data);
|
|
|
|
compare_image_with_reference(img, ref_img_3);
|
|
}
|
|
}
|
|
|
|
} //namespace TestFastNoiseLite
|
|
|
|
#endif // TEST_FASTNOISE_LITE_H
|