mirror of
https://github.com/godotengine/godot.git
synced 2024-11-24 21:22:48 +00:00
0d350e7108
- Set clang-format `Standard` rule to `c++20`
351 lines
10 KiB
C++
351 lines
10 KiB
C++
/**************************************************************************/
|
|
/* geometry_2d.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "geometry_2d.h"
|
|
|
|
#include "thirdparty/clipper2/include/clipper2/clipper.h"
|
|
#include "thirdparty/misc/polypartition.h"
|
|
#define STB_RECT_PACK_IMPLEMENTATION
|
|
#include "thirdparty/misc/stb_rect_pack.h"
|
|
|
|
const int clipper_precision = 5; // Based on CMP_EPSILON.
|
|
const double clipper_scale = Math::pow(10.0, clipper_precision);
|
|
|
|
Vector<Vector<Vector2>> Geometry2D::decompose_polygon_in_convex(const Vector<Point2> &polygon) {
|
|
Vector<Vector<Vector2>> decomp;
|
|
List<TPPLPoly> in_poly, out_poly;
|
|
|
|
TPPLPoly inp;
|
|
inp.Init(polygon.size());
|
|
for (int i = 0; i < polygon.size(); i++) {
|
|
inp.GetPoint(i) = polygon[i];
|
|
}
|
|
inp.SetOrientation(TPPL_ORIENTATION_CCW);
|
|
in_poly.push_back(inp);
|
|
TPPLPartition tpart;
|
|
if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
|
|
ERR_PRINT("Convex decomposing failed!");
|
|
return decomp;
|
|
}
|
|
|
|
decomp.resize(out_poly.size());
|
|
int idx = 0;
|
|
for (List<TPPLPoly>::Element *I = out_poly.front(); I; I = I->next()) {
|
|
TPPLPoly &tp = I->get();
|
|
|
|
decomp.write[idx].resize(tp.GetNumPoints());
|
|
|
|
for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
|
|
decomp.write[idx].write[i] = tp.GetPoint(i);
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
return decomp;
|
|
}
|
|
|
|
struct _AtlasWorkRect {
|
|
Size2i s;
|
|
Point2i p;
|
|
int idx = 0;
|
|
_FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; }
|
|
};
|
|
|
|
struct _AtlasWorkRectResult {
|
|
Vector<_AtlasWorkRect> result;
|
|
int max_w = 0;
|
|
int max_h = 0;
|
|
};
|
|
|
|
void Geometry2D::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
|
|
// Super simple, almost brute force scanline stacking fitter.
|
|
// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
|
|
// resulting atlas is somehow square. This is necessary because video cards have limits
|
|
// on texture size (usually 2048 or 4096), so the squarer a texture, the more the chances
|
|
// that it will work in every hardware.
|
|
// For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
|
|
// 256x8192 atlas (won't work anywhere).
|
|
|
|
ERR_FAIL_COND(p_rects.is_empty());
|
|
for (int i = 0; i < p_rects.size(); i++) {
|
|
ERR_FAIL_COND(p_rects[i].width <= 0);
|
|
ERR_FAIL_COND(p_rects[i].height <= 0);
|
|
}
|
|
|
|
Vector<_AtlasWorkRect> wrects;
|
|
wrects.resize(p_rects.size());
|
|
for (int i = 0; i < p_rects.size(); i++) {
|
|
wrects.write[i].s = p_rects[i];
|
|
wrects.write[i].idx = i;
|
|
}
|
|
wrects.sort();
|
|
int widest = wrects[0].s.width;
|
|
|
|
Vector<_AtlasWorkRectResult> results;
|
|
|
|
for (int i = 0; i <= 12; i++) {
|
|
int w = 1 << i;
|
|
int max_h = 0;
|
|
int max_w = 0;
|
|
if (w < widest) {
|
|
continue;
|
|
}
|
|
|
|
Vector<int> hmax;
|
|
hmax.resize(w);
|
|
for (int j = 0; j < w; j++) {
|
|
hmax.write[j] = 0;
|
|
}
|
|
|
|
// Place them.
|
|
int ofs = 0;
|
|
int limit_h = 0;
|
|
for (int j = 0; j < wrects.size(); j++) {
|
|
if (ofs + wrects[j].s.width > w) {
|
|
ofs = 0;
|
|
}
|
|
|
|
int from_y = 0;
|
|
for (int k = 0; k < wrects[j].s.width; k++) {
|
|
if (hmax[ofs + k] > from_y) {
|
|
from_y = hmax[ofs + k];
|
|
}
|
|
}
|
|
|
|
wrects.write[j].p.x = ofs;
|
|
wrects.write[j].p.y = from_y;
|
|
int end_h = from_y + wrects[j].s.height;
|
|
int end_w = ofs + wrects[j].s.width;
|
|
if (ofs == 0) {
|
|
limit_h = end_h;
|
|
}
|
|
|
|
for (int k = 0; k < wrects[j].s.width; k++) {
|
|
hmax.write[ofs + k] = end_h;
|
|
}
|
|
|
|
if (end_h > max_h) {
|
|
max_h = end_h;
|
|
}
|
|
|
|
if (end_w > max_w) {
|
|
max_w = end_w;
|
|
}
|
|
|
|
if (ofs == 0 || end_h > limit_h) { // While h limit not reached, keep stacking.
|
|
ofs += wrects[j].s.width;
|
|
}
|
|
}
|
|
|
|
_AtlasWorkRectResult result;
|
|
result.result = wrects;
|
|
result.max_h = max_h;
|
|
result.max_w = max_w;
|
|
results.push_back(result);
|
|
}
|
|
|
|
// Find the result with the best aspect ratio.
|
|
|
|
int best = -1;
|
|
real_t best_aspect = 1e20;
|
|
|
|
for (int i = 0; i < results.size(); i++) {
|
|
real_t h = next_power_of_2(results[i].max_h);
|
|
real_t w = next_power_of_2(results[i].max_w);
|
|
real_t aspect = h > w ? h / w : w / h;
|
|
if (aspect < best_aspect) {
|
|
best = i;
|
|
best_aspect = aspect;
|
|
}
|
|
}
|
|
|
|
r_result.resize(p_rects.size());
|
|
|
|
for (int i = 0; i < p_rects.size(); i++) {
|
|
r_result.write[results[best].result[i].idx] = results[best].result[i].p;
|
|
}
|
|
|
|
r_size = Size2(results[best].max_w, results[best].max_h);
|
|
}
|
|
|
|
Vector<Vector<Point2>> Geometry2D::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
|
|
using namespace Clipper2Lib;
|
|
|
|
ClipType op = ClipType::Union;
|
|
|
|
switch (p_op) {
|
|
case OPERATION_UNION:
|
|
op = ClipType::Union;
|
|
break;
|
|
case OPERATION_DIFFERENCE:
|
|
op = ClipType::Difference;
|
|
break;
|
|
case OPERATION_INTERSECTION:
|
|
op = ClipType::Intersection;
|
|
break;
|
|
case OPERATION_XOR:
|
|
op = ClipType::Xor;
|
|
break;
|
|
}
|
|
|
|
PathD path_a(p_polypath_a.size());
|
|
for (int i = 0; i != p_polypath_a.size(); ++i) {
|
|
path_a[i] = PointD(p_polypath_a[i].x, p_polypath_a[i].y);
|
|
}
|
|
PathD path_b(p_polypath_b.size());
|
|
for (int i = 0; i != p_polypath_b.size(); ++i) {
|
|
path_b[i] = PointD(p_polypath_b[i].x, p_polypath_b[i].y);
|
|
}
|
|
|
|
ClipperD clp(clipper_precision); // Scale points up internally to attain the desired precision.
|
|
clp.PreserveCollinear(false); // Remove redundant vertices.
|
|
if (is_a_open) {
|
|
clp.AddOpenSubject({ path_a });
|
|
} else {
|
|
clp.AddSubject({ path_a });
|
|
}
|
|
clp.AddClip({ path_b });
|
|
|
|
PathsD paths;
|
|
|
|
if (is_a_open) {
|
|
PolyTreeD tree; // Needed to populate polylines.
|
|
clp.Execute(op, FillRule::EvenOdd, tree, paths);
|
|
} else {
|
|
clp.Execute(op, FillRule::EvenOdd, paths); // Works on closed polygons only.
|
|
}
|
|
|
|
Vector<Vector<Point2>> polypaths;
|
|
for (PathsD::size_type i = 0; i < paths.size(); ++i) {
|
|
const PathD &path = paths[i];
|
|
|
|
Vector<Vector2> polypath;
|
|
for (PathsD::size_type j = 0; j < path.size(); ++j) {
|
|
polypath.push_back(Point2(static_cast<real_t>(path[j].x), static_cast<real_t>(path[j].y)));
|
|
}
|
|
polypaths.push_back(polypath);
|
|
}
|
|
return polypaths;
|
|
}
|
|
|
|
Vector<Vector<Point2>> Geometry2D::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
|
using namespace Clipper2Lib;
|
|
|
|
JoinType jt = JoinType::Square;
|
|
|
|
switch (p_join_type) {
|
|
case JOIN_SQUARE:
|
|
jt = JoinType::Square;
|
|
break;
|
|
case JOIN_ROUND:
|
|
jt = JoinType::Round;
|
|
break;
|
|
case JOIN_MITER:
|
|
jt = JoinType::Miter;
|
|
break;
|
|
}
|
|
|
|
EndType et = EndType::Polygon;
|
|
|
|
switch (p_end_type) {
|
|
case END_POLYGON:
|
|
et = EndType::Polygon;
|
|
break;
|
|
case END_JOINED:
|
|
et = EndType::Joined;
|
|
break;
|
|
case END_BUTT:
|
|
et = EndType::Butt;
|
|
break;
|
|
case END_SQUARE:
|
|
et = EndType::Square;
|
|
break;
|
|
case END_ROUND:
|
|
et = EndType::Round;
|
|
break;
|
|
}
|
|
|
|
PathD polypath(p_polypath.size());
|
|
for (int i = 0; i != p_polypath.size(); ++i) {
|
|
polypath[i] = PointD(p_polypath[i].x, p_polypath[i].y);
|
|
}
|
|
|
|
// Inflate/deflate.
|
|
PathsD paths = InflatePaths({ polypath }, p_delta, jt, et, 2.0, clipper_precision, 0.25 * clipper_scale);
|
|
// Here the points are scaled up internally and
|
|
// the arc_tolerance is scaled accordingly
|
|
// to attain the desired precision.
|
|
|
|
Vector<Vector<Point2>> polypaths;
|
|
for (PathsD::size_type i = 0; i < paths.size(); ++i) {
|
|
const PathD &path = paths[i];
|
|
|
|
Vector<Vector2> polypath2;
|
|
for (PathsD::size_type j = 0; j < path.size(); ++j) {
|
|
polypath2.push_back(Point2(static_cast<real_t>(path[j].x), static_cast<real_t>(path[j].y)));
|
|
}
|
|
polypaths.push_back(polypath2);
|
|
}
|
|
return polypaths;
|
|
}
|
|
|
|
Vector<Vector3i> Geometry2D::partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
|
|
Vector<stbrp_node> nodes;
|
|
nodes.resize(p_atlas_size.width);
|
|
memset(nodes.ptrw(), 0, sizeof(stbrp_node) * nodes.size());
|
|
|
|
stbrp_context context;
|
|
stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
|
|
|
|
Vector<stbrp_rect> rects;
|
|
rects.resize(p_sizes.size());
|
|
|
|
for (int i = 0; i < p_sizes.size(); i++) {
|
|
rects.write[i].id = i;
|
|
rects.write[i].w = p_sizes[i].width;
|
|
rects.write[i].h = p_sizes[i].height;
|
|
rects.write[i].x = 0;
|
|
rects.write[i].y = 0;
|
|
rects.write[i].was_packed = 0;
|
|
}
|
|
|
|
stbrp_pack_rects(&context, rects.ptrw(), rects.size());
|
|
|
|
Vector<Vector3i> ret;
|
|
ret.resize(p_sizes.size());
|
|
|
|
for (int i = 0; i < p_sizes.size(); i++) {
|
|
ret.write[rects[i].id] = Vector3i(rects[i].x, rects[i].y, rects[i].was_packed != 0 ? 1 : 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|