mirror of
https://github.com/godotengine/godot.git
synced 2024-11-24 13:12:42 +00:00
1067 lines
42 KiB
C++
1067 lines
42 KiB
C++
/**************************************************************************/
|
|
/* nav_mesh_generator_2d.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifdef CLIPPER2_ENABLED
|
|
|
|
#include "nav_mesh_generator_2d.h"
|
|
|
|
#include "core/config/project_settings.h"
|
|
#include "scene/2d/mesh_instance_2d.h"
|
|
#include "scene/2d/multimesh_instance_2d.h"
|
|
#include "scene/2d/navigation_obstacle_2d.h"
|
|
#include "scene/2d/physics/static_body_2d.h"
|
|
#include "scene/2d/polygon_2d.h"
|
|
#include "scene/2d/tile_map.h"
|
|
#include "scene/resources/2d/capsule_shape_2d.h"
|
|
#include "scene/resources/2d/circle_shape_2d.h"
|
|
#include "scene/resources/2d/concave_polygon_shape_2d.h"
|
|
#include "scene/resources/2d/convex_polygon_shape_2d.h"
|
|
#include "scene/resources/2d/navigation_mesh_source_geometry_data_2d.h"
|
|
#include "scene/resources/2d/navigation_polygon.h"
|
|
#include "scene/resources/2d/rectangle_shape_2d.h"
|
|
|
|
#include "thirdparty/clipper2/include/clipper2/clipper.h"
|
|
#include "thirdparty/misc/polypartition.h"
|
|
|
|
NavMeshGenerator2D *NavMeshGenerator2D::singleton = nullptr;
|
|
Mutex NavMeshGenerator2D::baking_navmesh_mutex;
|
|
Mutex NavMeshGenerator2D::generator_task_mutex;
|
|
RWLock NavMeshGenerator2D::generator_rid_rwlock;
|
|
bool NavMeshGenerator2D::use_threads = true;
|
|
bool NavMeshGenerator2D::baking_use_multiple_threads = true;
|
|
bool NavMeshGenerator2D::baking_use_high_priority_threads = true;
|
|
HashSet<Ref<NavigationPolygon>> NavMeshGenerator2D::baking_navmeshes;
|
|
HashMap<WorkerThreadPool::TaskID, NavMeshGenerator2D::NavMeshGeneratorTask2D *> NavMeshGenerator2D::generator_tasks;
|
|
RID_Owner<NavMeshGenerator2D::NavMeshGeometryParser2D> NavMeshGenerator2D::generator_parser_owner;
|
|
LocalVector<NavMeshGenerator2D::NavMeshGeometryParser2D *> NavMeshGenerator2D::generator_parsers;
|
|
|
|
NavMeshGenerator2D *NavMeshGenerator2D::get_singleton() {
|
|
return singleton;
|
|
}
|
|
|
|
NavMeshGenerator2D::NavMeshGenerator2D() {
|
|
ERR_FAIL_COND(singleton != nullptr);
|
|
singleton = this;
|
|
|
|
baking_use_multiple_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_multiple_threads");
|
|
baking_use_high_priority_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_high_priority_threads");
|
|
|
|
// Using threads might cause problems on certain exports or with the Editor on certain devices.
|
|
// This is the main switch to turn threaded navmesh baking off should the need arise.
|
|
use_threads = baking_use_multiple_threads;
|
|
}
|
|
|
|
NavMeshGenerator2D::~NavMeshGenerator2D() {
|
|
cleanup();
|
|
}
|
|
|
|
void NavMeshGenerator2D::sync() {
|
|
if (generator_tasks.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
|
|
{
|
|
MutexLock generator_task_lock(generator_task_mutex);
|
|
|
|
LocalVector<WorkerThreadPool::TaskID> finished_task_ids;
|
|
|
|
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
|
|
if (WorkerThreadPool::get_singleton()->is_task_completed(E.key)) {
|
|
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
|
|
finished_task_ids.push_back(E.key);
|
|
|
|
NavMeshGeneratorTask2D *generator_task = E.value;
|
|
DEV_ASSERT(generator_task->status == NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED);
|
|
|
|
baking_navmeshes.erase(generator_task->navigation_mesh);
|
|
if (generator_task->callback.is_valid()) {
|
|
generator_emit_callback(generator_task->callback);
|
|
}
|
|
memdelete(generator_task);
|
|
}
|
|
}
|
|
|
|
for (WorkerThreadPool::TaskID finished_task_id : finished_task_ids) {
|
|
generator_tasks.erase(finished_task_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::cleanup() {
|
|
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
|
|
{
|
|
MutexLock generator_task_lock(generator_task_mutex);
|
|
|
|
baking_navmeshes.clear();
|
|
|
|
for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
|
|
WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
|
|
NavMeshGeneratorTask2D *generator_task = E.value;
|
|
memdelete(generator_task);
|
|
}
|
|
generator_tasks.clear();
|
|
|
|
generator_rid_rwlock.write_lock();
|
|
for (NavMeshGeometryParser2D *parser : generator_parsers) {
|
|
generator_parser_owner.free(parser->self);
|
|
}
|
|
generator_parsers.clear();
|
|
generator_rid_rwlock.write_unlock();
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::finish() {
|
|
cleanup();
|
|
}
|
|
|
|
void NavMeshGenerator2D::parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!Thread::is_main_thread());
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_NULL(p_root_node);
|
|
ERR_FAIL_COND(!p_root_node->is_inside_tree());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
generator_parse_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_root_node);
|
|
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
|
|
p_navigation_mesh->clear();
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (is_baking(p_navigation_mesh)) {
|
|
ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
|
|
}
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.insert(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
generator_bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data);
|
|
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.erase(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::bake_from_source_geometry_data_async(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
|
|
ERR_FAIL_COND(!p_navigation_mesh.is_valid());
|
|
ERR_FAIL_COND(!p_source_geometry_data.is_valid());
|
|
|
|
if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
|
|
p_navigation_mesh->clear();
|
|
if (p_callback.is_valid()) {
|
|
generator_emit_callback(p_callback);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!use_threads) {
|
|
bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_callback);
|
|
return;
|
|
}
|
|
|
|
if (is_baking(p_navigation_mesh)) {
|
|
ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
|
|
}
|
|
baking_navmesh_mutex.lock();
|
|
baking_navmeshes.insert(p_navigation_mesh);
|
|
baking_navmesh_mutex.unlock();
|
|
|
|
MutexLock generator_task_lock(generator_task_mutex);
|
|
NavMeshGeneratorTask2D *generator_task = memnew(NavMeshGeneratorTask2D);
|
|
generator_task->navigation_mesh = p_navigation_mesh;
|
|
generator_task->source_geometry_data = p_source_geometry_data;
|
|
generator_task->callback = p_callback;
|
|
generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_STARTED;
|
|
generator_task->thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMeshGenerator2D::generator_thread_bake, generator_task, NavMeshGenerator2D::baking_use_high_priority_threads, "NavMeshGeneratorBake2D");
|
|
generator_tasks.insert(generator_task->thread_task_id, generator_task);
|
|
}
|
|
|
|
bool NavMeshGenerator2D::is_baking(Ref<NavigationPolygon> p_navigation_polygon) {
|
|
MutexLock baking_navmesh_lock(baking_navmesh_mutex);
|
|
return baking_navmeshes.has(p_navigation_polygon);
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_thread_bake(void *p_arg) {
|
|
NavMeshGeneratorTask2D *generator_task = static_cast<NavMeshGeneratorTask2D *>(p_arg);
|
|
|
|
generator_bake_from_source_geometry_data(generator_task->navigation_mesh, generator_task->source_geometry_data);
|
|
|
|
generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED;
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_geometry_node(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node, bool p_recurse_children) {
|
|
generator_parse_meshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_multimeshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_polygon2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_staticbody2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
generator_parse_navigationobstacle_node(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
|
|
generator_rid_rwlock.read_lock();
|
|
for (const NavMeshGeometryParser2D *parser : generator_parsers) {
|
|
if (!parser->callback.is_valid()) {
|
|
continue;
|
|
}
|
|
parser->callback.call(p_navigation_mesh, p_source_geometry_data, p_node);
|
|
}
|
|
generator_rid_rwlock.read_unlock();
|
|
|
|
if (p_recurse_children) {
|
|
for (int i = 0; i < p_node->get_child_count(); i++) {
|
|
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, p_node->get_child(i), p_recurse_children);
|
|
}
|
|
} else if (Object::cast_to<TileMap>(p_node)) {
|
|
// Special case for TileMap, so that internal layer get parsed even if p_recurse_children is false.
|
|
for (int i = 0; i < p_node->get_child_count(); i++) {
|
|
TileMapLayer *tile_map_layer = Object::cast_to<TileMapLayer>(p_node->get_child(i));
|
|
if (tile_map_layer && tile_map_layer->get_index_in_tile_map() >= 0) {
|
|
generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, tile_map_layer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_meshinstance2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
MeshInstance2D *mesh_instance = Object::cast_to<MeshInstance2D>(p_node);
|
|
|
|
if (mesh_instance == nullptr) {
|
|
return;
|
|
}
|
|
|
|
NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
|
|
if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
|
|
return;
|
|
}
|
|
|
|
Ref<Mesh> mesh = mesh_instance->get_mesh();
|
|
if (!mesh.is_valid()) {
|
|
return;
|
|
}
|
|
|
|
const Transform2D mesh_instance_xform = p_source_geometry_data->root_node_transform * mesh_instance->get_global_transform();
|
|
|
|
using namespace Clipper2Lib;
|
|
|
|
PathsD subject_paths, dummy_clip_paths;
|
|
|
|
for (int i = 0; i < mesh->get_surface_count(); i++) {
|
|
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
|
|
continue;
|
|
}
|
|
|
|
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) {
|
|
continue;
|
|
}
|
|
|
|
PathD subject_path;
|
|
|
|
int index_count = 0;
|
|
if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
index_count = mesh->surface_get_array_index_len(i);
|
|
} else {
|
|
index_count = mesh->surface_get_array_len(i);
|
|
}
|
|
|
|
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
|
|
|
|
Array a = mesh->surface_get_arrays(i);
|
|
|
|
Vector<Vector2> mesh_vertices = a[Mesh::ARRAY_VERTEX];
|
|
|
|
if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
|
|
for (int vertex_index : mesh_indices) {
|
|
const Vector2 &vertex = mesh_vertices[vertex_index];
|
|
const PointD &point = PointD(vertex.x, vertex.y);
|
|
subject_path.push_back(point);
|
|
}
|
|
} else {
|
|
for (const Vector2 &vertex : mesh_vertices) {
|
|
const PointD &point = PointD(vertex.x, vertex.y);
|
|
subject_path.push_back(point);
|
|
}
|
|
}
|
|
subject_paths.push_back(subject_path);
|
|
}
|
|
|
|
PathsD path_solution;
|
|
|
|
path_solution = Union(subject_paths, dummy_clip_paths, FillRule::NonZero);
|
|
|
|
//path_solution = RamerDouglasPeucker(path_solution, 0.025);
|
|
|
|
Vector<Vector<Vector2>> polypaths;
|
|
|
|
for (const PathD &scaled_path : path_solution) {
|
|
Vector<Vector2> shape_outline;
|
|
for (const PointD &scaled_point : scaled_path) {
|
|
shape_outline.push_back(Point2(static_cast<real_t>(scaled_point.x), static_cast<real_t>(scaled_point.y)));
|
|
}
|
|
|
|
for (int i = 0; i < shape_outline.size(); i++) {
|
|
shape_outline.write[i] = mesh_instance_xform.xform(shape_outline[i]);
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_multimeshinstance2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
MultiMeshInstance2D *multimesh_instance = Object::cast_to<MultiMeshInstance2D>(p_node);
|
|
|
|
if (multimesh_instance == nullptr) {
|
|
return;
|
|
}
|
|
|
|
NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
|
|
return;
|
|
}
|
|
|
|
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
|
|
if (!(multimesh.is_valid() && multimesh->get_transform_format() == MultiMesh::TRANSFORM_2D)) {
|
|
return;
|
|
}
|
|
|
|
Ref<Mesh> mesh = multimesh->get_mesh();
|
|
if (!mesh.is_valid()) {
|
|
return;
|
|
}
|
|
|
|
using namespace Clipper2Lib;
|
|
|
|
PathsD mesh_subject_paths, dummy_clip_paths;
|
|
|
|
for (int i = 0; i < mesh->get_surface_count(); i++) {
|
|
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
|
|
continue;
|
|
}
|
|
|
|
if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) {
|
|
continue;
|
|
}
|
|
|
|
PathD subject_path;
|
|
|
|
int index_count = 0;
|
|
if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
index_count = mesh->surface_get_array_index_len(i);
|
|
} else {
|
|
index_count = mesh->surface_get_array_len(i);
|
|
}
|
|
|
|
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
|
|
|
|
Array a = mesh->surface_get_arrays(i);
|
|
|
|
Vector<Vector2> mesh_vertices = a[Mesh::ARRAY_VERTEX];
|
|
|
|
if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
|
|
for (int vertex_index : mesh_indices) {
|
|
const Vector2 &vertex = mesh_vertices[vertex_index];
|
|
const PointD &point = PointD(vertex.x, vertex.y);
|
|
subject_path.push_back(point);
|
|
}
|
|
} else {
|
|
for (const Vector2 &vertex : mesh_vertices) {
|
|
const PointD &point = PointD(vertex.x, vertex.y);
|
|
subject_path.push_back(point);
|
|
}
|
|
}
|
|
mesh_subject_paths.push_back(subject_path);
|
|
}
|
|
|
|
PathsD mesh_path_solution = Union(mesh_subject_paths, dummy_clip_paths, FillRule::NonZero);
|
|
|
|
//path_solution = RamerDouglasPeucker(path_solution, 0.025);
|
|
|
|
int multimesh_instance_count = multimesh->get_visible_instance_count();
|
|
if (multimesh_instance_count == -1) {
|
|
multimesh_instance_count = multimesh->get_instance_count();
|
|
}
|
|
|
|
const Transform2D multimesh_instance_xform = p_source_geometry_data->root_node_transform * multimesh_instance->get_global_transform();
|
|
|
|
for (int i = 0; i < multimesh_instance_count; i++) {
|
|
const Transform2D multimesh_instance_mesh_instance_xform = multimesh_instance_xform * multimesh->get_instance_transform_2d(i);
|
|
|
|
for (const PathD &mesh_path : mesh_path_solution) {
|
|
Vector<Vector2> shape_outline;
|
|
|
|
for (const PointD &mesh_path_point : mesh_path) {
|
|
shape_outline.push_back(Point2(static_cast<real_t>(mesh_path_point.x), static_cast<real_t>(mesh_path_point.y)));
|
|
}
|
|
|
|
for (int j = 0; j < shape_outline.size(); j++) {
|
|
shape_outline.write[j] = multimesh_instance_mesh_instance_xform.xform(shape_outline[j]);
|
|
}
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_polygon2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
Polygon2D *polygon_2d = Object::cast_to<Polygon2D>(p_node);
|
|
|
|
if (polygon_2d == nullptr) {
|
|
return;
|
|
}
|
|
|
|
NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
|
|
if (parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) {
|
|
const Transform2D polygon_2d_xform = p_source_geometry_data->root_node_transform * polygon_2d->get_global_transform();
|
|
|
|
Vector<Vector2> shape_outline = polygon_2d->get_polygon();
|
|
for (int i = 0; i < shape_outline.size(); i++) {
|
|
shape_outline.write[i] = polygon_2d_xform.xform(shape_outline[i]);
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_staticbody2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
StaticBody2D *static_body = Object::cast_to<StaticBody2D>(p_node);
|
|
|
|
if (static_body == nullptr) {
|
|
return;
|
|
}
|
|
|
|
NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
|
|
return;
|
|
}
|
|
|
|
uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask();
|
|
if (!(static_body->get_collision_layer() & parsed_collision_mask)) {
|
|
return;
|
|
}
|
|
|
|
List<uint32_t> shape_owners;
|
|
static_body->get_shape_owners(&shape_owners);
|
|
|
|
for (uint32_t shape_owner : shape_owners) {
|
|
if (static_body->is_shape_owner_disabled(shape_owner)) {
|
|
continue;
|
|
}
|
|
|
|
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
|
|
|
|
for (int shape_index = 0; shape_index < shape_count; shape_index++) {
|
|
Ref<Shape2D> s = static_body->shape_owner_get_shape(shape_owner, shape_index);
|
|
|
|
if (s.is_null()) {
|
|
continue;
|
|
}
|
|
|
|
const Transform2D static_body_xform = p_source_geometry_data->root_node_transform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
|
|
|
|
RectangleShape2D *rectangle_shape = Object::cast_to<RectangleShape2D>(*s);
|
|
if (rectangle_shape) {
|
|
Vector<Vector2> shape_outline;
|
|
|
|
const Vector2 &rectangle_size = rectangle_shape->get_size();
|
|
|
|
shape_outline.resize(5);
|
|
shape_outline.write[0] = static_body_xform.xform(-rectangle_size * 0.5);
|
|
shape_outline.write[1] = static_body_xform.xform(Vector2(rectangle_size.x, -rectangle_size.y) * 0.5);
|
|
shape_outline.write[2] = static_body_xform.xform(rectangle_size * 0.5);
|
|
shape_outline.write[3] = static_body_xform.xform(Vector2(-rectangle_size.x, rectangle_size.y) * 0.5);
|
|
shape_outline.write[4] = static_body_xform.xform(-rectangle_size * 0.5);
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
|
|
CapsuleShape2D *capsule_shape = Object::cast_to<CapsuleShape2D>(*s);
|
|
if (capsule_shape) {
|
|
const real_t capsule_height = capsule_shape->get_height();
|
|
const real_t capsule_radius = capsule_shape->get_radius();
|
|
|
|
Vector<Vector2> shape_outline;
|
|
const real_t turn_step = Math_TAU / 12.0;
|
|
shape_outline.resize(14);
|
|
int shape_outline_inx = 0;
|
|
for (int i = 0; i < 12; i++) {
|
|
Vector2 ofs = Vector2(0, (i > 3 && i <= 9) ? -capsule_height * 0.5 + capsule_radius : capsule_height * 0.5 - capsule_radius);
|
|
|
|
shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius + ofs);
|
|
shape_outline_inx += 1;
|
|
if (i == 3 || i == 9) {
|
|
shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius - ofs);
|
|
shape_outline_inx += 1;
|
|
}
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
|
|
CircleShape2D *circle_shape = Object::cast_to<CircleShape2D>(*s);
|
|
if (circle_shape) {
|
|
const real_t circle_radius = circle_shape->get_radius();
|
|
|
|
Vector<Vector2> shape_outline;
|
|
int circle_edge_count = 12;
|
|
shape_outline.resize(circle_edge_count);
|
|
|
|
const real_t turn_step = Math_TAU / real_t(circle_edge_count);
|
|
for (int i = 0; i < circle_edge_count; i++) {
|
|
shape_outline.write[i] = static_body_xform.xform(Vector2(Math::cos(i * turn_step), Math::sin(i * turn_step)) * circle_radius);
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
|
|
ConcavePolygonShape2D *concave_polygon_shape = Object::cast_to<ConcavePolygonShape2D>(*s);
|
|
if (concave_polygon_shape) {
|
|
Vector<Vector2> shape_outline = concave_polygon_shape->get_segments();
|
|
|
|
for (int i = 0; i < shape_outline.size(); i++) {
|
|
shape_outline.write[i] = static_body_xform.xform(shape_outline[i]);
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
|
|
ConvexPolygonShape2D *convex_polygon_shape = Object::cast_to<ConvexPolygonShape2D>(*s);
|
|
if (convex_polygon_shape) {
|
|
Vector<Vector2> shape_outline = convex_polygon_shape->get_points();
|
|
|
|
for (int i = 0; i < shape_outline.size(); i++) {
|
|
shape_outline.write[i] = static_body_xform.xform(shape_outline[i]);
|
|
}
|
|
|
|
p_source_geometry_data->add_obstruction_outline(shape_outline);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_tile_map_layer_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
TileMapLayer *tile_map_layer = Object::cast_to<TileMapLayer>(p_node);
|
|
if (tile_map_layer == nullptr) {
|
|
return;
|
|
}
|
|
|
|
Ref<TileSet> tile_set = tile_map_layer->get_tile_set();
|
|
if (!tile_set.is_valid()) {
|
|
return;
|
|
}
|
|
|
|
int physics_layers_count = tile_set->get_physics_layers_count();
|
|
int navigation_layers_count = tile_set->get_navigation_layers_count();
|
|
if (physics_layers_count <= 0 && navigation_layers_count <= 0) {
|
|
return;
|
|
}
|
|
|
|
NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask();
|
|
|
|
const Transform2D tilemap_xform = p_source_geometry_data->root_node_transform * tile_map_layer->get_global_transform();
|
|
|
|
TypedArray<Vector2i> used_cells = tile_map_layer->get_used_cells();
|
|
for (int used_cell_index = 0; used_cell_index < used_cells.size(); used_cell_index++) {
|
|
const Vector2i &cell = used_cells[used_cell_index];
|
|
|
|
const TileData *tile_data = tile_map_layer->get_cell_tile_data(cell);
|
|
if (tile_data == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
// Transform flags.
|
|
const int alternative_id = tile_map_layer->get_cell_alternative_tile(cell);
|
|
bool flip_h = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_H);
|
|
bool flip_v = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_V);
|
|
bool transpose = (alternative_id & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
|
|
|
|
Transform2D tile_transform;
|
|
tile_transform.set_origin(tile_map_layer->map_to_local(cell));
|
|
|
|
const Transform2D tile_transform_offset = tilemap_xform * tile_transform;
|
|
|
|
// Parse traversable polygons.
|
|
for (int navigation_layer = 0; navigation_layer < navigation_layers_count; navigation_layer++) {
|
|
Ref<NavigationPolygon> navigation_polygon = tile_data->get_navigation_polygon(navigation_layer, flip_h, flip_v, transpose);
|
|
if (navigation_polygon.is_valid()) {
|
|
for (int outline_index = 0; outline_index < navigation_polygon->get_outline_count(); outline_index++) {
|
|
const Vector<Vector2> &navigation_polygon_outline = navigation_polygon->get_outline(outline_index);
|
|
if (navigation_polygon_outline.is_empty()) {
|
|
continue;
|
|
}
|
|
|
|
Vector<Vector2> traversable_outline;
|
|
traversable_outline.resize(navigation_polygon_outline.size());
|
|
|
|
const Vector2 *navigation_polygon_outline_ptr = navigation_polygon_outline.ptr();
|
|
Vector2 *traversable_outline_ptrw = traversable_outline.ptrw();
|
|
|
|
for (int traversable_outline_index = 0; traversable_outline_index < traversable_outline.size(); traversable_outline_index++) {
|
|
traversable_outline_ptrw[traversable_outline_index] = tile_transform_offset.xform(navigation_polygon_outline_ptr[traversable_outline_index]);
|
|
}
|
|
|
|
p_source_geometry_data->_add_traversable_outline(traversable_outline);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse obstacles.
|
|
for (int physics_layer = 0; physics_layer < physics_layers_count; physics_layer++) {
|
|
if ((parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) &&
|
|
(tile_set->get_physics_layer_collision_layer(physics_layer) & parsed_collision_mask)) {
|
|
for (int collision_polygon_index = 0; collision_polygon_index < tile_data->get_collision_polygons_count(physics_layer); collision_polygon_index++) {
|
|
PackedVector2Array collision_polygon_points = tile_data->get_collision_polygon_points(physics_layer, collision_polygon_index);
|
|
if (collision_polygon_points.is_empty()) {
|
|
continue;
|
|
}
|
|
|
|
if (flip_h || flip_v || transpose) {
|
|
collision_polygon_points = TileData::get_transformed_vertices(collision_polygon_points, flip_h, flip_v, transpose);
|
|
}
|
|
|
|
Vector<Vector2> obstruction_outline;
|
|
obstruction_outline.resize(collision_polygon_points.size());
|
|
|
|
const Vector2 *collision_polygon_points_ptr = collision_polygon_points.ptr();
|
|
Vector2 *obstruction_outline_ptrw = obstruction_outline.ptrw();
|
|
|
|
for (int obstruction_outline_index = 0; obstruction_outline_index < obstruction_outline.size(); obstruction_outline_index++) {
|
|
obstruction_outline_ptrw[obstruction_outline_index] = tile_transform_offset.xform(collision_polygon_points_ptr[obstruction_outline_index]);
|
|
}
|
|
|
|
p_source_geometry_data->_add_obstruction_outline(obstruction_outline);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_navigationobstacle_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
|
|
NavigationObstacle2D *obstacle = Object::cast_to<NavigationObstacle2D>(p_node);
|
|
if (obstacle == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (!obstacle->get_affect_navigation_mesh()) {
|
|
return;
|
|
}
|
|
|
|
const Vector2 safe_scale = obstacle->get_global_scale().abs().maxf(0.001);
|
|
const float obstacle_radius = obstacle->get_radius();
|
|
|
|
if (obstacle_radius > 0.0) {
|
|
// Radius defined obstacle should be uniformly scaled from obstacle basis max scale axis.
|
|
const float scaling_max_value = safe_scale[safe_scale.max_axis_index()];
|
|
const Vector2 uniform_max_scale = Vector2(scaling_max_value, scaling_max_value);
|
|
const Transform2D obstacle_circle_transform = p_source_geometry_data->root_node_transform * Transform2D(obstacle->get_global_rotation(), uniform_max_scale, 0.0, obstacle->get_global_position());
|
|
|
|
Vector<Vector2> obstruction_circle_vertices;
|
|
|
|
// The point of this is that the moving obstacle can make a simple hole in the navigation mesh and affect the pathfinding.
|
|
// Without, navigation paths can go directly through the middle of the obstacle and conflict with the avoidance to get agents stuck.
|
|
// No place for excessive "round" detail here. Every additional edge adds a high cost for something that needs to be quick, not pretty.
|
|
static const int circle_points = 12;
|
|
|
|
obstruction_circle_vertices.resize(circle_points);
|
|
Vector2 *circle_vertices_ptrw = obstruction_circle_vertices.ptrw();
|
|
const real_t circle_point_step = Math_TAU / circle_points;
|
|
|
|
for (int i = 0; i < circle_points; i++) {
|
|
const float angle = i * circle_point_step;
|
|
circle_vertices_ptrw[i] = obstacle_circle_transform.xform(Vector2(Math::cos(angle) * obstacle_radius, Math::sin(angle) * obstacle_radius));
|
|
}
|
|
|
|
p_source_geometry_data->add_projected_obstruction(obstruction_circle_vertices, obstacle->get_carve_navigation_mesh());
|
|
}
|
|
|
|
// Obstacles are projected to the xz-plane, so only rotation around the y-axis can be taken into account.
|
|
const Transform2D node_xform = p_source_geometry_data->root_node_transform * obstacle->get_global_transform();
|
|
|
|
const Vector<Vector2> &obstacle_vertices = obstacle->get_vertices();
|
|
|
|
if (obstacle_vertices.is_empty()) {
|
|
return;
|
|
}
|
|
|
|
Vector<Vector2> obstruction_shape_vertices;
|
|
obstruction_shape_vertices.resize(obstacle_vertices.size());
|
|
|
|
const Vector2 *obstacle_vertices_ptr = obstacle_vertices.ptr();
|
|
Vector2 *obstruction_shape_vertices_ptrw = obstruction_shape_vertices.ptrw();
|
|
|
|
for (int i = 0; i < obstacle_vertices.size(); i++) {
|
|
obstruction_shape_vertices_ptrw[i] = node_xform.xform(obstacle_vertices_ptr[i]);
|
|
}
|
|
p_source_geometry_data->add_projected_obstruction(obstruction_shape_vertices, obstacle->get_carve_navigation_mesh());
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node) {
|
|
List<Node *> parse_nodes;
|
|
|
|
if (p_navigation_mesh->get_source_geometry_mode() == NavigationPolygon::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
|
|
parse_nodes.push_back(p_root_node);
|
|
} else {
|
|
p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_geometry_group_name(), &parse_nodes);
|
|
}
|
|
|
|
Transform2D root_node_transform = Transform2D();
|
|
if (Object::cast_to<Node2D>(p_root_node)) {
|
|
root_node_transform = Object::cast_to<Node2D>(p_root_node)->get_global_transform().affine_inverse();
|
|
}
|
|
|
|
p_source_geometry_data->clear();
|
|
p_source_geometry_data->root_node_transform = root_node_transform;
|
|
|
|
bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationPolygon::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
|
|
|
|
for (Node *E : parse_nodes) {
|
|
generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, E, recurse_children);
|
|
}
|
|
}
|
|
|
|
static void generator_recursive_process_polytree_items(List<TPPLPoly> &p_tppl_in_polygon, const Clipper2Lib::PolyPathD *p_polypath_item) {
|
|
using namespace Clipper2Lib;
|
|
|
|
TPPLPoly tp;
|
|
int size = p_polypath_item->Polygon().size();
|
|
tp.Init(size);
|
|
|
|
int j = 0;
|
|
for (const PointD &polypath_point : p_polypath_item->Polygon()) {
|
|
tp[j] = Vector2(static_cast<real_t>(polypath_point.x), static_cast<real_t>(polypath_point.y));
|
|
++j;
|
|
}
|
|
|
|
if (p_polypath_item->IsHole()) {
|
|
tp.SetOrientation(TPPL_ORIENTATION_CW);
|
|
tp.SetHole(true);
|
|
} else {
|
|
tp.SetOrientation(TPPL_ORIENTATION_CCW);
|
|
}
|
|
p_tppl_in_polygon.push_back(tp);
|
|
|
|
for (size_t i = 0; i < p_polypath_item->Count(); i++) {
|
|
const PolyPathD *polypath_item = p_polypath_item->Child(i);
|
|
generator_recursive_process_polytree_items(p_tppl_in_polygon, polypath_item);
|
|
}
|
|
}
|
|
|
|
bool NavMeshGenerator2D::generator_emit_callback(const Callable &p_callback) {
|
|
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
|
|
|
|
Callable::CallError ce;
|
|
Variant result;
|
|
p_callback.callp(nullptr, 0, result, ce);
|
|
|
|
return ce.error == Callable::CallError::CALL_OK;
|
|
}
|
|
|
|
RID NavMeshGenerator2D::source_geometry_parser_create() {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
RID rid = generator_parser_owner.make_rid();
|
|
|
|
NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(rid);
|
|
parser->self = rid;
|
|
|
|
generator_parsers.push_back(parser);
|
|
|
|
return rid;
|
|
}
|
|
|
|
void NavMeshGenerator2D::source_geometry_parser_set_callback(RID p_parser, const Callable &p_callback) {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_parser);
|
|
ERR_FAIL_NULL(parser);
|
|
|
|
parser->callback = p_callback;
|
|
}
|
|
|
|
bool NavMeshGenerator2D::owns(RID p_object) {
|
|
RWLockRead read_lock(generator_rid_rwlock);
|
|
return generator_parser_owner.owns(p_object);
|
|
}
|
|
|
|
void NavMeshGenerator2D::free(RID p_object) {
|
|
RWLockWrite write_lock(generator_rid_rwlock);
|
|
|
|
if (generator_parser_owner.owns(p_object)) {
|
|
NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_object);
|
|
|
|
generator_parsers.erase(parser);
|
|
|
|
generator_parser_owner.free(p_object);
|
|
} else {
|
|
ERR_PRINT("Attempted to free a NavMeshGenerator2D RID that did not exist (or was already freed).");
|
|
}
|
|
}
|
|
|
|
void NavMeshGenerator2D::generator_bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data) {
|
|
if (p_navigation_mesh.is_null() || p_source_geometry_data.is_null()) {
|
|
return;
|
|
}
|
|
|
|
using namespace Clipper2Lib;
|
|
PathsD traversable_polygon_paths;
|
|
PathsD obstruction_polygon_paths;
|
|
bool empty_projected_obstructions = true;
|
|
{
|
|
RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
|
|
|
|
const Vector<Vector<Vector2>> &traversable_outlines = p_source_geometry_data->traversable_outlines;
|
|
int outline_count = p_navigation_mesh->get_outline_count();
|
|
|
|
if (outline_count == 0 && (!p_source_geometry_data->has_data() || (traversable_outlines.is_empty()))) {
|
|
return;
|
|
}
|
|
|
|
const Vector<Vector<Vector2>> &obstruction_outlines = p_source_geometry_data->obstruction_outlines;
|
|
const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
|
|
|
|
traversable_polygon_paths.reserve(outline_count + traversable_outlines.size());
|
|
obstruction_polygon_paths.reserve(obstruction_outlines.size());
|
|
|
|
for (int i = 0; i < outline_count; i++) {
|
|
const Vector<Vector2> &traversable_outline = p_navigation_mesh->get_outline(i);
|
|
PathD subject_path;
|
|
subject_path.reserve(traversable_outline.size());
|
|
for (const Vector2 &traversable_point : traversable_outline) {
|
|
subject_path.emplace_back(traversable_point.x, traversable_point.y);
|
|
}
|
|
traversable_polygon_paths.push_back(std::move(subject_path));
|
|
}
|
|
|
|
for (const Vector<Vector2> &traversable_outline : traversable_outlines) {
|
|
PathD subject_path;
|
|
subject_path.reserve(traversable_outline.size());
|
|
for (const Vector2 &traversable_point : traversable_outline) {
|
|
subject_path.emplace_back(traversable_point.x, traversable_point.y);
|
|
}
|
|
traversable_polygon_paths.push_back(std::move(subject_path));
|
|
}
|
|
|
|
empty_projected_obstructions = projected_obstructions.is_empty();
|
|
if (!empty_projected_obstructions) {
|
|
for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
|
|
if (projected_obstruction.carve) {
|
|
continue;
|
|
}
|
|
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
|
|
continue;
|
|
}
|
|
|
|
PathD clip_path;
|
|
clip_path.reserve(projected_obstruction.vertices.size() / 2);
|
|
for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
|
|
clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
|
|
}
|
|
if (!IsPositive(clip_path)) {
|
|
std::reverse(clip_path.begin(), clip_path.end());
|
|
}
|
|
obstruction_polygon_paths.push_back(std::move(clip_path));
|
|
}
|
|
}
|
|
|
|
for (const Vector<Vector2> &obstruction_outline : obstruction_outlines) {
|
|
PathD clip_path;
|
|
clip_path.reserve(obstruction_outline.size());
|
|
for (const Vector2 &obstruction_point : obstruction_outline) {
|
|
clip_path.emplace_back(obstruction_point.x, obstruction_point.y);
|
|
}
|
|
obstruction_polygon_paths.push_back(std::move(clip_path));
|
|
}
|
|
}
|
|
|
|
Rect2 baking_rect = p_navigation_mesh->get_baking_rect();
|
|
if (baking_rect.has_area()) {
|
|
Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
|
|
|
|
const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x;
|
|
const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y;
|
|
const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x;
|
|
const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y;
|
|
|
|
RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
|
|
|
|
traversable_polygon_paths = RectClip(clipper_rect, traversable_polygon_paths);
|
|
obstruction_polygon_paths = RectClip(clipper_rect, obstruction_polygon_paths);
|
|
}
|
|
|
|
// first merge all traversable polygons according to user specified fill rule
|
|
PathsD dummy_clip_path;
|
|
traversable_polygon_paths = Union(traversable_polygon_paths, dummy_clip_path, FillRule::NonZero);
|
|
// merge all obstruction polygons, don't allow holes for what is considered "solid" 2D geometry
|
|
obstruction_polygon_paths = Union(obstruction_polygon_paths, dummy_clip_path, FillRule::NonZero);
|
|
|
|
PathsD path_solution = Difference(traversable_polygon_paths, obstruction_polygon_paths, FillRule::NonZero);
|
|
|
|
real_t agent_radius_offset = p_navigation_mesh->get_agent_radius();
|
|
if (agent_radius_offset > 0.0) {
|
|
path_solution = InflatePaths(path_solution, -agent_radius_offset, JoinType::Miter, EndType::Polygon);
|
|
}
|
|
|
|
// Apply obstructions that are not affected by agent radius, the ones with carve enabled.
|
|
if (!empty_projected_obstructions) {
|
|
RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
|
|
const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
|
|
obstruction_polygon_paths.resize(0);
|
|
for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
|
|
if (!projected_obstruction.carve) {
|
|
continue;
|
|
}
|
|
if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
|
|
continue;
|
|
}
|
|
|
|
PathD clip_path;
|
|
clip_path.reserve(projected_obstruction.vertices.size() / 2);
|
|
for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
|
|
clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
|
|
}
|
|
if (!IsPositive(clip_path)) {
|
|
std::reverse(clip_path.begin(), clip_path.end());
|
|
}
|
|
obstruction_polygon_paths.push_back(std::move(clip_path));
|
|
}
|
|
if (obstruction_polygon_paths.size() > 0) {
|
|
path_solution = Difference(path_solution, obstruction_polygon_paths, FillRule::NonZero);
|
|
}
|
|
}
|
|
|
|
//path_solution = RamerDouglasPeucker(path_solution, 0.025); //
|
|
|
|
real_t border_size = p_navigation_mesh->get_border_size();
|
|
if (baking_rect.has_area() && border_size > 0.0) {
|
|
Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
|
|
|
|
const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x + border_size;
|
|
const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y + border_size;
|
|
const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x - border_size;
|
|
const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y - border_size;
|
|
|
|
RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
|
|
|
|
path_solution = RectClip(clipper_rect, path_solution);
|
|
}
|
|
|
|
if (path_solution.size() == 0) {
|
|
p_navigation_mesh->clear();
|
|
return;
|
|
}
|
|
|
|
ClipType clipper_cliptype = ClipType::Union;
|
|
|
|
List<TPPLPoly> tppl_in_polygon, tppl_out_polygon;
|
|
|
|
PolyTreeD polytree;
|
|
ClipperD clipper_D;
|
|
|
|
clipper_D.AddSubject(path_solution);
|
|
clipper_D.Execute(clipper_cliptype, FillRule::NonZero, polytree);
|
|
|
|
for (size_t i = 0; i < polytree.Count(); i++) {
|
|
const PolyPathD *polypath_item = polytree[i];
|
|
generator_recursive_process_polytree_items(tppl_in_polygon, polypath_item);
|
|
}
|
|
|
|
TPPLPartition tpart;
|
|
|
|
NavigationPolygon::SamplePartitionType sample_partition_type = p_navigation_mesh->get_sample_partition_type();
|
|
|
|
switch (sample_partition_type) {
|
|
case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_CONVEX_PARTITION:
|
|
if (tpart.ConvexPartition_HM(&tppl_in_polygon, &tppl_out_polygon) == 0) {
|
|
ERR_PRINT("NavigationPolygon polygon convex partition failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
|
|
p_navigation_mesh->set_vertices(Vector<Vector2>());
|
|
p_navigation_mesh->clear_polygons();
|
|
return;
|
|
}
|
|
break;
|
|
case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_TRIANGULATE:
|
|
if (tpart.Triangulate_EC(&tppl_in_polygon, &tppl_out_polygon) == 0) {
|
|
ERR_PRINT("NavigationPolygon polygon triangulation failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
|
|
p_navigation_mesh->set_vertices(Vector<Vector2>());
|
|
p_navigation_mesh->clear_polygons();
|
|
return;
|
|
}
|
|
break;
|
|
default: {
|
|
ERR_PRINT("NavigationPolygon polygon partitioning failed. Unrecognized partition type.");
|
|
p_navigation_mesh->set_vertices(Vector<Vector2>());
|
|
p_navigation_mesh->clear_polygons();
|
|
return;
|
|
}
|
|
}
|
|
|
|
Vector<Vector2> new_vertices;
|
|
Vector<Vector<int>> new_polygons;
|
|
|
|
HashMap<Vector2, int> points;
|
|
for (List<TPPLPoly>::Element *I = tppl_out_polygon.front(); I; I = I->next()) {
|
|
TPPLPoly &tp = I->get();
|
|
|
|
Vector<int> new_polygon;
|
|
|
|
for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
|
|
HashMap<Vector2, int>::Iterator E = points.find(tp[i]);
|
|
if (!E) {
|
|
E = points.insert(tp[i], new_vertices.size());
|
|
new_vertices.push_back(tp[i]);
|
|
}
|
|
new_polygon.push_back(E->value);
|
|
}
|
|
|
|
new_polygons.push_back(new_polygon);
|
|
}
|
|
|
|
p_navigation_mesh->set_data(new_vertices, new_polygons);
|
|
}
|
|
|
|
#endif // CLIPPER2_ENABLED
|