/**************************************************************************/ /* a_star_grid_2d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "a_star_grid_2d.h" #include "a_star_grid_2d.compat.inc" #include "core/variant/typed_array.h" static real_t heuristic_euclidean(const Vector2i &p_from, const Vector2i &p_to) { real_t dx = (real_t)ABS(p_to.x - p_from.x); real_t dy = (real_t)ABS(p_to.y - p_from.y); return (real_t)Math::sqrt(dx * dx + dy * dy); } static real_t heuristic_manhattan(const Vector2i &p_from, const Vector2i &p_to) { real_t dx = (real_t)ABS(p_to.x - p_from.x); real_t dy = (real_t)ABS(p_to.y - p_from.y); return dx + dy; } static real_t heuristic_octile(const Vector2i &p_from, const Vector2i &p_to) { real_t dx = (real_t)ABS(p_to.x - p_from.x); real_t dy = (real_t)ABS(p_to.y - p_from.y); real_t F = Math_SQRT2 - 1; return (dx < dy) ? F * dx + dy : F * dy + dx; } static real_t heuristic_chebyshev(const Vector2i &p_from, const Vector2i &p_to) { real_t dx = (real_t)ABS(p_to.x - p_from.x); real_t dy = (real_t)ABS(p_to.y - p_from.y); return MAX(dx, dy); } static real_t (*heuristics[AStarGrid2D::HEURISTIC_MAX])(const Vector2i &, const Vector2i &) = { heuristic_euclidean, heuristic_manhattan, heuristic_octile, heuristic_chebyshev }; void AStarGrid2D::set_region(const Rect2i &p_region) { ERR_FAIL_COND(p_region.size.x < 0 || p_region.size.y < 0); if (p_region != region) { region = p_region; dirty = true; } } Rect2i AStarGrid2D::get_region() const { return region; } void AStarGrid2D::set_size(const Size2i &p_size) { WARN_DEPRECATED_MSG(R"(The "size" property is deprecated, use "region" instead.)"); ERR_FAIL_COND(p_size.x < 0 || p_size.y < 0); if (p_size != region.size) { region.size = p_size; dirty = true; } } Size2i AStarGrid2D::get_size() const { return region.size; } void AStarGrid2D::set_offset(const Vector2 &p_offset) { if (!offset.is_equal_approx(p_offset)) { offset = p_offset; dirty = true; } } Vector2 AStarGrid2D::get_offset() const { return offset; } void AStarGrid2D::set_cell_size(const Size2 &p_cell_size) { if (!cell_size.is_equal_approx(p_cell_size)) { cell_size = p_cell_size; dirty = true; } } Size2 AStarGrid2D::get_cell_size() const { return cell_size; } void AStarGrid2D::set_cell_shape(CellShape p_cell_shape) { if (cell_shape == p_cell_shape) { return; } ERR_FAIL_INDEX(p_cell_shape, CellShape::CELL_SHAPE_MAX); cell_shape = p_cell_shape; dirty = true; } AStarGrid2D::CellShape AStarGrid2D::get_cell_shape() const { return cell_shape; } void AStarGrid2D::update() { if (!dirty) { return; } points.clear(); const int32_t end_x = region.get_end().x; const int32_t end_y = region.get_end().y; const Vector2 half_cell_size = cell_size / 2; for (int32_t y = region.position.y; y < end_y; y++) { LocalVector line; for (int32_t x = region.position.x; x < end_x; x++) { Vector2 v = offset; switch (cell_shape) { case CELL_SHAPE_ISOMETRIC_RIGHT: v += half_cell_size + Vector2(x + y, y - x) * half_cell_size; break; case CELL_SHAPE_ISOMETRIC_DOWN: v += half_cell_size + Vector2(x - y, x + y) * half_cell_size; break; case CELL_SHAPE_SQUARE: v += Vector2(x, y) * cell_size; break; default: break; } line.push_back(Point(Vector2i(x, y), v)); } points.push_back(line); } dirty = false; } bool AStarGrid2D::is_in_bounds(int32_t p_x, int32_t p_y) const { return region.has_point(Vector2i(p_x, p_y)); } bool AStarGrid2D::is_in_boundsv(const Vector2i &p_id) const { return region.has_point(p_id); } bool AStarGrid2D::is_dirty() const { return dirty; } void AStarGrid2D::set_jumping_enabled(bool p_enabled) { jumping_enabled = p_enabled; } bool AStarGrid2D::is_jumping_enabled() const { return jumping_enabled; } void AStarGrid2D::set_diagonal_mode(DiagonalMode p_diagonal_mode) { ERR_FAIL_INDEX((int)p_diagonal_mode, (int)DIAGONAL_MODE_MAX); diagonal_mode = p_diagonal_mode; } AStarGrid2D::DiagonalMode AStarGrid2D::get_diagonal_mode() const { return diagonal_mode; } void AStarGrid2D::set_default_compute_heuristic(Heuristic p_heuristic) { ERR_FAIL_INDEX((int)p_heuristic, (int)HEURISTIC_MAX); default_compute_heuristic = p_heuristic; } AStarGrid2D::Heuristic AStarGrid2D::get_default_compute_heuristic() const { return default_compute_heuristic; } void AStarGrid2D::set_default_estimate_heuristic(Heuristic p_heuristic) { ERR_FAIL_INDEX((int)p_heuristic, (int)HEURISTIC_MAX); default_estimate_heuristic = p_heuristic; } AStarGrid2D::Heuristic AStarGrid2D::get_default_estimate_heuristic() const { return default_estimate_heuristic; } void AStarGrid2D::set_point_solid(const Vector2i &p_id, bool p_solid) { ERR_FAIL_COND_MSG(dirty, "Grid is not initialized. Call the update method."); ERR_FAIL_COND_MSG(!is_in_boundsv(p_id), vformat("Can't set if point is disabled. Point %s out of bounds %s.", p_id, region)); _get_point_unchecked(p_id)->solid = p_solid; } bool AStarGrid2D::is_point_solid(const Vector2i &p_id) const { ERR_FAIL_COND_V_MSG(dirty, false, "Grid is not initialized. Call the update method."); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_id), false, vformat("Can't get if point is disabled. Point %s out of bounds %s.", p_id, region)); return _get_point_unchecked(p_id)->solid; } void AStarGrid2D::set_point_weight_scale(const Vector2i &p_id, real_t p_weight_scale) { ERR_FAIL_COND_MSG(dirty, "Grid is not initialized. Call the update method."); ERR_FAIL_COND_MSG(!is_in_boundsv(p_id), vformat("Can't set point's weight scale. Point %s out of bounds %s.", p_id, region)); ERR_FAIL_COND_MSG(p_weight_scale < 0.0, vformat("Can't set point's weight scale less than 0.0: %f.", p_weight_scale)); _get_point_unchecked(p_id)->weight_scale = p_weight_scale; } real_t AStarGrid2D::get_point_weight_scale(const Vector2i &p_id) const { ERR_FAIL_COND_V_MSG(dirty, 0, "Grid is not initialized. Call the update method."); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_id), 0, vformat("Can't get point's weight scale. Point %s out of bounds %s.", p_id, region)); return _get_point_unchecked(p_id)->weight_scale; } void AStarGrid2D::fill_solid_region(const Rect2i &p_region, bool p_solid) { ERR_FAIL_COND_MSG(dirty, "Grid is not initialized. Call the update method."); const Rect2i safe_region = p_region.intersection(region); const int32_t end_x = safe_region.get_end().x; const int32_t end_y = safe_region.get_end().y; for (int32_t y = safe_region.position.y; y < end_y; y++) { for (int32_t x = safe_region.position.x; x < end_x; x++) { _get_point_unchecked(x, y)->solid = p_solid; } } } void AStarGrid2D::fill_weight_scale_region(const Rect2i &p_region, real_t p_weight_scale) { ERR_FAIL_COND_MSG(dirty, "Grid is not initialized. Call the update method."); ERR_FAIL_COND_MSG(p_weight_scale < 0.0, vformat("Can't set point's weight scale less than 0.0: %f.", p_weight_scale)); const Rect2i safe_region = p_region.intersection(region); const int32_t end_x = safe_region.get_end().x; const int32_t end_y = safe_region.get_end().y; for (int32_t y = safe_region.position.y; y < end_y; y++) { for (int32_t x = safe_region.position.x; x < end_x; x++) { _get_point_unchecked(x, y)->weight_scale = p_weight_scale; } } } AStarGrid2D::Point *AStarGrid2D::_jump(Point *p_from, Point *p_to) { if (!p_to || p_to->solid) { return nullptr; } if (p_to == end) { return p_to; } int32_t from_x = p_from->id.x; int32_t from_y = p_from->id.y; int32_t to_x = p_to->id.x; int32_t to_y = p_to->id.y; int32_t dx = to_x - from_x; int32_t dy = to_y - from_y; if (diagonal_mode == DIAGONAL_MODE_ALWAYS || diagonal_mode == DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE) { if (dx != 0 && dy != 0) { if ((_is_walkable(to_x - dx, to_y + dy) && !_is_walkable(to_x - dx, to_y)) || (_is_walkable(to_x + dx, to_y - dy) && !_is_walkable(to_x, to_y - dy))) { return p_to; } if (_jump(p_to, _get_point(to_x + dx, to_y)) != nullptr) { return p_to; } if (_jump(p_to, _get_point(to_x, to_y + dy)) != nullptr) { return p_to; } } else { if (dx != 0) { if ((_is_walkable(to_x + dx, to_y + 1) && !_is_walkable(to_x, to_y + 1)) || (_is_walkable(to_x + dx, to_y - 1) && !_is_walkable(to_x, to_y - 1))) { return p_to; } } else { if ((_is_walkable(to_x + 1, to_y + dy) && !_is_walkable(to_x + 1, to_y)) || (_is_walkable(to_x - 1, to_y + dy) && !_is_walkable(to_x - 1, to_y))) { return p_to; } } } if (_is_walkable(to_x + dx, to_y + dy) && (diagonal_mode == DIAGONAL_MODE_ALWAYS || (_is_walkable(to_x + dx, to_y) || _is_walkable(to_x, to_y + dy)))) { return _jump(p_to, _get_point(to_x + dx, to_y + dy)); } } else if (diagonal_mode == DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES) { if (dx != 0 && dy != 0) { if ((_is_walkable(to_x + dx, to_y + dy) && !_is_walkable(to_x, to_y + dy)) || !_is_walkable(to_x + dx, to_y)) { return p_to; } if (_jump(p_to, _get_point(to_x + dx, to_y)) != nullptr) { return p_to; } if (_jump(p_to, _get_point(to_x, to_y + dy)) != nullptr) { return p_to; } } else { if (dx != 0) { if ((_is_walkable(to_x, to_y + 1) && !_is_walkable(to_x - dx, to_y + 1)) || (_is_walkable(to_x, to_y - 1) && !_is_walkable(to_x - dx, to_y - 1))) { return p_to; } } else { if ((_is_walkable(to_x + 1, to_y) && !_is_walkable(to_x + 1, to_y - dy)) || (_is_walkable(to_x - 1, to_y) && !_is_walkable(to_x - 1, to_y - dy))) { return p_to; } } } if (_is_walkable(to_x + dx, to_y + dy) && _is_walkable(to_x + dx, to_y) && _is_walkable(to_x, to_y + dy)) { return _jump(p_to, _get_point(to_x + dx, to_y + dy)); } } else { // DIAGONAL_MODE_NEVER if (dx != 0) { if ((_is_walkable(to_x, to_y - 1) && !_is_walkable(to_x - dx, to_y - 1)) || (_is_walkable(to_x, to_y + 1) && !_is_walkable(to_x - dx, to_y + 1))) { return p_to; } } else if (dy != 0) { if ((_is_walkable(to_x - 1, to_y) && !_is_walkable(to_x - 1, to_y - dy)) || (_is_walkable(to_x + 1, to_y) && !_is_walkable(to_x + 1, to_y - dy))) { return p_to; } if (_jump(p_to, _get_point(to_x + 1, to_y)) != nullptr) { return p_to; } if (_jump(p_to, _get_point(to_x - 1, to_y)) != nullptr) { return p_to; } } return _jump(p_to, _get_point(to_x + dx, to_y + dy)); } return nullptr; } void AStarGrid2D::_get_nbors(Point *p_point, LocalVector &r_nbors) { bool ts0 = false, td0 = false, ts1 = false, td1 = false, ts2 = false, td2 = false, ts3 = false, td3 = false; Point *left = nullptr; Point *right = nullptr; Point *top = nullptr; Point *bottom = nullptr; Point *top_left = nullptr; Point *top_right = nullptr; Point *bottom_left = nullptr; Point *bottom_right = nullptr; { bool has_left = false; bool has_right = false; if (p_point->id.x - 1 >= region.position.x) { left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y); has_left = true; } if (p_point->id.x + 1 < region.position.x + region.size.width) { right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y); has_right = true; } if (p_point->id.y - 1 >= region.position.y) { top = _get_point_unchecked(p_point->id.x, p_point->id.y - 1); if (has_left) { top_left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y - 1); } if (has_right) { top_right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y - 1); } } if (p_point->id.y + 1 < region.position.y + region.size.height) { bottom = _get_point_unchecked(p_point->id.x, p_point->id.y + 1); if (has_left) { bottom_left = _get_point_unchecked(p_point->id.x - 1, p_point->id.y + 1); } if (has_right) { bottom_right = _get_point_unchecked(p_point->id.x + 1, p_point->id.y + 1); } } } if (top && !top->solid) { r_nbors.push_back(top); ts0 = true; } if (right && !right->solid) { r_nbors.push_back(right); ts1 = true; } if (bottom && !bottom->solid) { r_nbors.push_back(bottom); ts2 = true; } if (left && !left->solid) { r_nbors.push_back(left); ts3 = true; } switch (diagonal_mode) { case DIAGONAL_MODE_ALWAYS: { td0 = true; td1 = true; td2 = true; td3 = true; } break; case DIAGONAL_MODE_NEVER: { } break; case DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE: { td0 = ts3 || ts0; td1 = ts0 || ts1; td2 = ts1 || ts2; td3 = ts2 || ts3; } break; case DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES: { td0 = ts3 && ts0; td1 = ts0 && ts1; td2 = ts1 && ts2; td3 = ts2 && ts3; } break; default: break; } if (td0 && (top_left && !top_left->solid)) { r_nbors.push_back(top_left); } if (td1 && (top_right && !top_right->solid)) { r_nbors.push_back(top_right); } if (td2 && (bottom_right && !bottom_right->solid)) { r_nbors.push_back(bottom_right); } if (td3 && (bottom_left && !bottom_left->solid)) { r_nbors.push_back(bottom_left); } } bool AStarGrid2D::_solve(Point *p_begin_point, Point *p_end_point) { last_closest_point = nullptr; pass++; if (p_end_point->solid) { return false; } bool found_route = false; LocalVector open_list; SortArray sorter; p_begin_point->g_score = 0; p_begin_point->f_score = _estimate_cost(p_begin_point->id, p_end_point->id); p_begin_point->abs_g_score = 0; p_begin_point->abs_f_score = _estimate_cost(p_begin_point->id, p_end_point->id); open_list.push_back(p_begin_point); end = p_end_point; while (!open_list.is_empty()) { Point *p = open_list[0]; // The currently processed point. // Find point closer to end_point, or same distance to end_point but closer to begin_point. if (last_closest_point == nullptr || last_closest_point->abs_f_score > p->abs_f_score || (last_closest_point->abs_f_score >= p->abs_f_score && last_closest_point->abs_g_score > p->abs_g_score)) { last_closest_point = p; } if (p == p_end_point) { found_route = true; break; } sorter.pop_heap(0, open_list.size(), open_list.ptr()); // Remove the current point from the open list. open_list.remove_at(open_list.size() - 1); p->closed_pass = pass; // Mark the point as closed. LocalVector nbors; _get_nbors(p, nbors); for (Point *e : nbors) { real_t weight_scale = 1.0; if (jumping_enabled) { // TODO: Make it works with weight_scale. e = _jump(p, e); if (!e || e->closed_pass == pass) { continue; } } else { if (e->solid || e->closed_pass == pass) { continue; } weight_scale = e->weight_scale; } real_t tentative_g_score = p->g_score + _compute_cost(p->id, e->id) * weight_scale; bool new_point = false; if (e->open_pass != pass) { // The point wasn't inside the open list. e->open_pass = pass; open_list.push_back(e); new_point = true; } else if (tentative_g_score >= e->g_score) { // The new path is worse than the previous. continue; } e->prev_point = p; e->g_score = tentative_g_score; e->f_score = e->g_score + _estimate_cost(e->id, p_end_point->id); e->abs_g_score = tentative_g_score; e->abs_f_score = e->f_score - e->g_score; if (new_point) { // The position of the new points is already known. sorter.push_heap(0, open_list.size() - 1, 0, e, open_list.ptr()); } else { sorter.push_heap(0, open_list.find(e), 0, e, open_list.ptr()); } } } return found_route; } real_t AStarGrid2D::_estimate_cost(const Vector2i &p_from_id, const Vector2i &p_to_id) { real_t scost; if (GDVIRTUAL_CALL(_estimate_cost, p_from_id, p_to_id, scost)) { return scost; } return heuristics[default_estimate_heuristic](p_from_id, p_to_id); } real_t AStarGrid2D::_compute_cost(const Vector2i &p_from_id, const Vector2i &p_to_id) { real_t scost; if (GDVIRTUAL_CALL(_compute_cost, p_from_id, p_to_id, scost)) { return scost; } return heuristics[default_compute_heuristic](p_from_id, p_to_id); } void AStarGrid2D::clear() { points.clear(); region = Rect2i(); } Vector2 AStarGrid2D::get_point_position(const Vector2i &p_id) const { ERR_FAIL_COND_V_MSG(dirty, Vector2(), "Grid is not initialized. Call the update method."); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_id), Vector2(), vformat("Can't get point's position. Point %s out of bounds %s.", p_id, region)); return _get_point_unchecked(p_id)->pos; } Vector AStarGrid2D::get_point_path(const Vector2i &p_from_id, const Vector2i &p_to_id, bool p_allow_partial_path) { ERR_FAIL_COND_V_MSG(dirty, Vector(), "Grid is not initialized. Call the update method."); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_from_id), Vector(), vformat("Can't get id path. Point %s out of bounds %s.", p_from_id, region)); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_to_id), Vector(), vformat("Can't get id path. Point %s out of bounds %s.", p_to_id, region)); Point *a = _get_point(p_from_id.x, p_from_id.y); Point *b = _get_point(p_to_id.x, p_to_id.y); if (a == b) { Vector ret; ret.push_back(a->pos); return ret; } Point *begin_point = a; Point *end_point = b; bool found_route = _solve(begin_point, end_point); if (!found_route) { if (!p_allow_partial_path || last_closest_point == nullptr) { return Vector(); } // Use closest point instead. end_point = last_closest_point; } Point *p = end_point; int32_t pc = 1; while (p != begin_point) { pc++; p = p->prev_point; } Vector path; path.resize(pc); { Vector2 *w = path.ptrw(); p = end_point; int32_t idx = pc - 1; while (p != begin_point) { w[idx--] = p->pos; p = p->prev_point; } w[0] = p->pos; } return path; } TypedArray AStarGrid2D::get_id_path(const Vector2i &p_from_id, const Vector2i &p_to_id, bool p_allow_partial_path) { ERR_FAIL_COND_V_MSG(dirty, TypedArray(), "Grid is not initialized. Call the update method."); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_from_id), TypedArray(), vformat("Can't get id path. Point %s out of bounds %s.", p_from_id, region)); ERR_FAIL_COND_V_MSG(!is_in_boundsv(p_to_id), TypedArray(), vformat("Can't get id path. Point %s out of bounds %s.", p_to_id, region)); Point *a = _get_point(p_from_id.x, p_from_id.y); Point *b = _get_point(p_to_id.x, p_to_id.y); if (a == b) { TypedArray ret; ret.push_back(a->id); return ret; } Point *begin_point = a; Point *end_point = b; bool found_route = _solve(begin_point, end_point); if (!found_route) { if (!p_allow_partial_path || last_closest_point == nullptr) { return TypedArray(); } // Use closest point instead. end_point = last_closest_point; } Point *p = end_point; int32_t pc = 1; while (p != begin_point) { pc++; p = p->prev_point; } TypedArray path; path.resize(pc); { p = end_point; int32_t idx = pc - 1; while (p != begin_point) { path[idx--] = p->id; p = p->prev_point; } path[0] = p->id; } return path; } void AStarGrid2D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_region", "region"), &AStarGrid2D::set_region); ClassDB::bind_method(D_METHOD("get_region"), &AStarGrid2D::get_region); ClassDB::bind_method(D_METHOD("set_size", "size"), &AStarGrid2D::set_size); ClassDB::bind_method(D_METHOD("get_size"), &AStarGrid2D::get_size); ClassDB::bind_method(D_METHOD("set_offset", "offset"), &AStarGrid2D::set_offset); ClassDB::bind_method(D_METHOD("get_offset"), &AStarGrid2D::get_offset); ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &AStarGrid2D::set_cell_size); ClassDB::bind_method(D_METHOD("get_cell_size"), &AStarGrid2D::get_cell_size); ClassDB::bind_method(D_METHOD("set_cell_shape", "cell_shape"), &AStarGrid2D::set_cell_shape); ClassDB::bind_method(D_METHOD("get_cell_shape"), &AStarGrid2D::get_cell_shape); ClassDB::bind_method(D_METHOD("is_in_bounds", "x", "y"), &AStarGrid2D::is_in_bounds); ClassDB::bind_method(D_METHOD("is_in_boundsv", "id"), &AStarGrid2D::is_in_boundsv); ClassDB::bind_method(D_METHOD("is_dirty"), &AStarGrid2D::is_dirty); ClassDB::bind_method(D_METHOD("update"), &AStarGrid2D::update); ClassDB::bind_method(D_METHOD("set_jumping_enabled", "enabled"), &AStarGrid2D::set_jumping_enabled); ClassDB::bind_method(D_METHOD("is_jumping_enabled"), &AStarGrid2D::is_jumping_enabled); ClassDB::bind_method(D_METHOD("set_diagonal_mode", "mode"), &AStarGrid2D::set_diagonal_mode); ClassDB::bind_method(D_METHOD("get_diagonal_mode"), &AStarGrid2D::get_diagonal_mode); ClassDB::bind_method(D_METHOD("set_default_compute_heuristic", "heuristic"), &AStarGrid2D::set_default_compute_heuristic); ClassDB::bind_method(D_METHOD("get_default_compute_heuristic"), &AStarGrid2D::get_default_compute_heuristic); ClassDB::bind_method(D_METHOD("set_default_estimate_heuristic", "heuristic"), &AStarGrid2D::set_default_estimate_heuristic); ClassDB::bind_method(D_METHOD("get_default_estimate_heuristic"), &AStarGrid2D::get_default_estimate_heuristic); ClassDB::bind_method(D_METHOD("set_point_solid", "id", "solid"), &AStarGrid2D::set_point_solid, DEFVAL(true)); ClassDB::bind_method(D_METHOD("is_point_solid", "id"), &AStarGrid2D::is_point_solid); ClassDB::bind_method(D_METHOD("set_point_weight_scale", "id", "weight_scale"), &AStarGrid2D::set_point_weight_scale); ClassDB::bind_method(D_METHOD("get_point_weight_scale", "id"), &AStarGrid2D::get_point_weight_scale); ClassDB::bind_method(D_METHOD("fill_solid_region", "region", "solid"), &AStarGrid2D::fill_solid_region, DEFVAL(true)); ClassDB::bind_method(D_METHOD("fill_weight_scale_region", "region", "weight_scale"), &AStarGrid2D::fill_weight_scale_region); ClassDB::bind_method(D_METHOD("clear"), &AStarGrid2D::clear); ClassDB::bind_method(D_METHOD("get_point_position", "id"), &AStarGrid2D::get_point_position); ClassDB::bind_method(D_METHOD("get_point_path", "from_id", "to_id", "allow_partial_path"), &AStarGrid2D::get_point_path, DEFVAL(false)); ClassDB::bind_method(D_METHOD("get_id_path", "from_id", "to_id", "allow_partial_path"), &AStarGrid2D::get_id_path, DEFVAL(false)); GDVIRTUAL_BIND(_estimate_cost, "from_id", "to_id") GDVIRTUAL_BIND(_compute_cost, "from_id", "to_id") ADD_PROPERTY(PropertyInfo(Variant::RECT2I, "region"), "set_region", "get_region"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "size"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "offset"), "set_offset", "get_offset"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "cell_size"), "set_cell_size", "get_cell_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "cell_shape", PROPERTY_HINT_ENUM, "Square,IsometricRight,IsometricDown"), "set_cell_shape", "get_cell_shape"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "jumping_enabled"), "set_jumping_enabled", "is_jumping_enabled"); ADD_PROPERTY(PropertyInfo(Variant::INT, "default_compute_heuristic", PROPERTY_HINT_ENUM, "Euclidean,Manhattan,Octile,Chebyshev"), "set_default_compute_heuristic", "get_default_compute_heuristic"); ADD_PROPERTY(PropertyInfo(Variant::INT, "default_estimate_heuristic", PROPERTY_HINT_ENUM, "Euclidean,Manhattan,Octile,Chebyshev"), "set_default_estimate_heuristic", "get_default_estimate_heuristic"); ADD_PROPERTY(PropertyInfo(Variant::INT, "diagonal_mode", PROPERTY_HINT_ENUM, "Never,Always,At Least One Walkable,Only If No Obstacles"), "set_diagonal_mode", "get_diagonal_mode"); BIND_ENUM_CONSTANT(HEURISTIC_EUCLIDEAN); BIND_ENUM_CONSTANT(HEURISTIC_MANHATTAN); BIND_ENUM_CONSTANT(HEURISTIC_OCTILE); BIND_ENUM_CONSTANT(HEURISTIC_CHEBYSHEV); BIND_ENUM_CONSTANT(HEURISTIC_MAX); BIND_ENUM_CONSTANT(DIAGONAL_MODE_ALWAYS); BIND_ENUM_CONSTANT(DIAGONAL_MODE_NEVER); BIND_ENUM_CONSTANT(DIAGONAL_MODE_AT_LEAST_ONE_WALKABLE); BIND_ENUM_CONSTANT(DIAGONAL_MODE_ONLY_IF_NO_OBSTACLES); BIND_ENUM_CONSTANT(DIAGONAL_MODE_MAX); BIND_ENUM_CONSTANT(CELL_SHAPE_SQUARE); BIND_ENUM_CONSTANT(CELL_SHAPE_ISOMETRIC_RIGHT); BIND_ENUM_CONSTANT(CELL_SHAPE_ISOMETRIC_DOWN); BIND_ENUM_CONSTANT(CELL_SHAPE_MAX); }