/**************************************************************************/ /* vector3.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "vector3.h" #include "core/math/basis.h" #include "core/math/vector2.h" #include "core/math/vector3i.h" #include "core/string/ustring.h" void Vector3::rotate(const Vector3 &p_axis, real_t p_angle) { *this = Basis(p_axis, p_angle).xform(*this); } Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_angle) const { Vector3 r = *this; r.rotate(p_axis, p_angle); return r; } Vector3 Vector3::clamp(const Vector3 &p_min, const Vector3 &p_max) const { return Vector3( CLAMP(x, p_min.x, p_max.x), CLAMP(y, p_min.y, p_max.y), CLAMP(z, p_min.z, p_max.z)); } Vector3 Vector3::clampf(real_t p_min, real_t p_max) const { return Vector3( CLAMP(x, p_min, p_max), CLAMP(y, p_min, p_max), CLAMP(z, p_min, p_max)); } void Vector3::snap(const Vector3 &p_step) { x = Math::snapped(x, p_step.x); y = Math::snapped(y, p_step.y); z = Math::snapped(z, p_step.z); } Vector3 Vector3::snapped(const Vector3 &p_step) const { Vector3 v = *this; v.snap(p_step); return v; } void Vector3::snapf(real_t p_step) { x = Math::snapped(x, p_step); y = Math::snapped(y, p_step); z = Math::snapped(z, p_step); } Vector3 Vector3::snappedf(real_t p_step) const { Vector3 v = *this; v.snapf(p_step); return v; } Vector3 Vector3::limit_length(real_t p_len) const { const real_t l = length(); Vector3 v = *this; if (l > 0 && p_len < l) { v /= l; v *= p_len; } return v; } Vector3 Vector3::move_toward(const Vector3 &p_to, real_t p_delta) const { Vector3 v = *this; Vector3 vd = p_to - v; real_t len = vd.length(); return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta; } Vector2 Vector3::octahedron_encode() const { Vector3 n = *this; n /= Math::abs(n.x) + Math::abs(n.y) + Math::abs(n.z); Vector2 o; if (n.z >= 0.0f) { o.x = n.x; o.y = n.y; } else { o.x = (1.0f - Math::abs(n.y)) * (n.x >= 0.0f ? 1.0f : -1.0f); o.y = (1.0f - Math::abs(n.x)) * (n.y >= 0.0f ? 1.0f : -1.0f); } o.x = o.x * 0.5f + 0.5f; o.y = o.y * 0.5f + 0.5f; return o; } Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) { Vector2 f(p_oct.x * 2.0f - 1.0f, p_oct.y * 2.0f - 1.0f); Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); const real_t t = CLAMP(-n.z, 0.0f, 1.0f); n.x += n.x >= 0 ? -t : t; n.y += n.y >= 0 ? -t : t; return n.normalized(); } Vector2 Vector3::octahedron_tangent_encode(float p_sign) const { const real_t bias = 1.0f / (real_t)32767.0f; Vector2 res = octahedron_encode(); res.y = MAX(res.y, bias); res.y = res.y * 0.5f + 0.5f; res.y = p_sign >= 0.0f ? res.y : 1 - res.y; return res; } Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *r_sign) { Vector2 oct_compressed = p_oct; oct_compressed.y = oct_compressed.y * 2 - 1; *r_sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f; oct_compressed.y = Math::abs(oct_compressed.y); Vector3 res = Vector3::octahedron_decode(oct_compressed); return res; } Basis Vector3::outer(const Vector3 &p_with) const { Basis basis; basis.rows[0] = Vector3(x * p_with.x, x * p_with.y, x * p_with.z); basis.rows[1] = Vector3(y * p_with.x, y * p_with.y, y * p_with.z); basis.rows[2] = Vector3(z * p_with.x, z * p_with.y, z * p_with.z); return basis; } bool Vector3::is_equal_approx(const Vector3 &p_v) const { return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z); } bool Vector3::is_zero_approx() const { return Math::is_zero_approx(x) && Math::is_zero_approx(y) && Math::is_zero_approx(z); } bool Vector3::is_finite() const { return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z); } Vector3::operator String() const { return "(" + String::num_real(x, true) + ", " + String::num_real(y, true) + ", " + String::num_real(z, true) + ")"; } Vector3::operator Vector3i() const { return Vector3i(x, y, z); }