mirror of
https://github.com/godotengine/godot.git
synced 2024-11-22 20:23:53 +00:00
Merge pull request #83284 from DarioSamo/lightmapper-grid-clusters
Optimize lightmapper using triangle clusters on the acceleration structure.
This commit is contained in:
commit
db493ede00
@ -124,7 +124,7 @@ void LightmapperRD::add_probe(const Vector3 &p_position) {
|
||||
probe_positions.push_back(probe);
|
||||
}
|
||||
|
||||
void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size) {
|
||||
void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &p_triangles_sort, uint32_t p_grid_size) {
|
||||
int half_size = p_size / 2;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
@ -159,13 +159,69 @@ void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Ve
|
||||
TriangleSort ts;
|
||||
ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size);
|
||||
ts.triangle_index = p_triangle_index;
|
||||
triangles.push_back(ts);
|
||||
ts.triangle_aabb.position = p_points[0];
|
||||
ts.triangle_aabb.size = Vector3();
|
||||
ts.triangle_aabb.expand_to(p_points[1]);
|
||||
ts.triangle_aabb.expand_to(p_points[2]);
|
||||
p_triangles_sort.push_back(ts);
|
||||
} else {
|
||||
_plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, triangles, p_grid_size);
|
||||
_plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, p_triangles_sort, p_grid_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void LightmapperRD::_sort_triangle_clusters(uint32_t p_cluster_size, uint32_t p_cluster_index, uint32_t p_index_start, uint32_t p_count, LocalVector<TriangleSort> &p_triangle_sort, LocalVector<ClusterAABB> &p_cluster_aabb) {
|
||||
if (p_count == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute AABB for all triangles in the range.
|
||||
SortArray<TriangleSort, TriangleSortAxis<0>> triangle_sorter_x;
|
||||
SortArray<TriangleSort, TriangleSortAxis<1>> triangle_sorter_y;
|
||||
SortArray<TriangleSort, TriangleSortAxis<2>> triangle_sorter_z;
|
||||
AABB cluster_aabb = p_triangle_sort[p_index_start].triangle_aabb;
|
||||
for (uint32_t i = 1; i < p_count; i++) {
|
||||
cluster_aabb.merge_with(p_triangle_sort[p_index_start + i].triangle_aabb);
|
||||
}
|
||||
|
||||
if (p_count > p_cluster_size) {
|
||||
int longest_axis_index = cluster_aabb.get_longest_axis_index();
|
||||
switch (longest_axis_index) {
|
||||
case 0:
|
||||
triangle_sorter_x.sort(&p_triangle_sort[p_index_start], p_count);
|
||||
break;
|
||||
case 1:
|
||||
triangle_sorter_y.sort(&p_triangle_sort[p_index_start], p_count);
|
||||
break;
|
||||
case 2:
|
||||
triangle_sorter_z.sort(&p_triangle_sort[p_index_start], p_count);
|
||||
break;
|
||||
default:
|
||||
DEV_ASSERT(false && "Invalid axis returned by AABB.");
|
||||
break;
|
||||
}
|
||||
|
||||
uint32_t left_cluster_count = next_power_of_2(p_count / 2);
|
||||
left_cluster_count = MAX(left_cluster_count, p_cluster_size);
|
||||
left_cluster_count = MIN(left_cluster_count, p_count);
|
||||
_sort_triangle_clusters(p_cluster_size, p_cluster_index, p_index_start, left_cluster_count, p_triangle_sort, p_cluster_aabb);
|
||||
|
||||
if (left_cluster_count < p_count) {
|
||||
uint32_t cluster_index_right = p_cluster_index + (left_cluster_count / p_cluster_size);
|
||||
_sort_triangle_clusters(p_cluster_size, cluster_index_right, p_index_start + left_cluster_count, p_count - left_cluster_count, p_triangle_sort, p_cluster_aabb);
|
||||
}
|
||||
} else {
|
||||
ClusterAABB &aabb = p_cluster_aabb[p_cluster_index];
|
||||
Vector3 aabb_end = cluster_aabb.get_end();
|
||||
aabb.min_bounds[0] = cluster_aabb.position.x;
|
||||
aabb.min_bounds[1] = cluster_aabb.position.y;
|
||||
aabb.min_bounds[2] = cluster_aabb.position.z;
|
||||
aabb.max_bounds[0] = aabb_end.x;
|
||||
aabb.max_bounds[1] = aabb_end.y;
|
||||
aabb.max_bounds[2] = aabb_end.z;
|
||||
}
|
||||
}
|
||||
|
||||
Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata) {
|
||||
Vector<Size2i> sizes;
|
||||
|
||||
@ -281,7 +337,7 @@ Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_
|
||||
return BAKE_OK;
|
||||
}
|
||||
|
||||
void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector<Probe> &p_probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) {
|
||||
void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, uint32_t p_cluster_size, Vector<Probe> &p_probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &r_triangle_indices_buffer, RID &r_cluster_indices_buffer, RID &r_cluster_aabbs_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) {
|
||||
HashMap<Vertex, uint32_t, VertexHash> vertex_map;
|
||||
|
||||
//fill triangles array and vertex array
|
||||
@ -433,31 +489,70 @@ void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i
|
||||
//sort it
|
||||
triangle_sort.sort();
|
||||
|
||||
LocalVector<uint32_t> cluster_indices;
|
||||
LocalVector<ClusterAABB> cluster_aabbs;
|
||||
Vector<uint32_t> triangle_indices;
|
||||
triangle_indices.resize(triangle_sort.size());
|
||||
Vector<uint32_t> grid_indices;
|
||||
grid_indices.resize(grid_size * grid_size * grid_size * 2);
|
||||
memset(grid_indices.ptrw(), 0, grid_indices.size() * sizeof(uint32_t));
|
||||
Vector<bool> solid;
|
||||
solid.resize(grid_size * grid_size * grid_size);
|
||||
memset(solid.ptrw(), 0, solid.size() * sizeof(bool));
|
||||
|
||||
{
|
||||
uint32_t *tiw = triangle_indices.ptrw();
|
||||
// Fill grid with cell indices.
|
||||
uint32_t last_cell = 0xFFFFFFFF;
|
||||
uint32_t *giw = grid_indices.ptrw();
|
||||
bool *solidw = solid.ptrw();
|
||||
uint32_t cluster_count = 0;
|
||||
uint32_t solid_cell_count = 0;
|
||||
for (uint32_t i = 0; i < triangle_sort.size(); i++) {
|
||||
uint32_t cell = triangle_sort[i].cell_index;
|
||||
if (cell != last_cell) {
|
||||
//cell changed, update pointer to indices
|
||||
giw[cell * 2 + 1] = i;
|
||||
solidw[cell] = true;
|
||||
giw[cell * 2 + 1] = solid_cell_count;
|
||||
solid_cell_count++;
|
||||
}
|
||||
tiw[i] = triangle_sort[i].triangle_index;
|
||||
giw[cell * 2]++; //update counter
|
||||
|
||||
if ((giw[cell * 2] % p_cluster_size) == 0) {
|
||||
// Add an extra cluster every time the triangle counter reaches a multiple of the cluster size.
|
||||
cluster_count++;
|
||||
}
|
||||
|
||||
giw[cell * 2]++;
|
||||
last_cell = cell;
|
||||
}
|
||||
|
||||
// Build fixed-size triangle clusters for all the cells to speed up the traversal. A cell can hold multiple clusters that each contain a fixed
|
||||
// amount of triangles and an AABB. The tracer will check against the AABBs first to know whether it needs to visit the cell's triangles.
|
||||
//
|
||||
// The building algorithm will divide the triangles recursively contained inside each cell, sorting by the longest axis of the AABB on each step.
|
||||
//
|
||||
// - If the amount of triangles is less or equal to the cluster size, the AABB will be stored and the algorithm stops.
|
||||
//
|
||||
// - The division by two is increased to the next power of two of half the amount of triangles (with cluster size as the minimum value) to
|
||||
// ensure the first half always fills the cluster.
|
||||
|
||||
cluster_indices.resize(solid_cell_count * 2);
|
||||
cluster_aabbs.resize(cluster_count);
|
||||
|
||||
uint32_t i = 0;
|
||||
uint32_t cluster_index = 0;
|
||||
uint32_t solid_cell_index = 0;
|
||||
uint32_t *tiw = triangle_indices.ptrw();
|
||||
while (i < triangle_sort.size()) {
|
||||
cluster_indices[solid_cell_index * 2] = cluster_index;
|
||||
cluster_indices[solid_cell_index * 2 + 1] = i;
|
||||
|
||||
uint32_t cell = triangle_sort[i].cell_index;
|
||||
uint32_t triangle_count = giw[cell * 2];
|
||||
uint32_t cell_cluster_count = (triangle_count + p_cluster_size - 1) / p_cluster_size;
|
||||
_sort_triangle_clusters(p_cluster_size, cluster_index, i, triangle_count, triangle_sort, cluster_aabbs);
|
||||
|
||||
for (uint32_t j = 0; j < triangle_count; j++) {
|
||||
tiw[i + j] = triangle_sort[i + j].triangle_index;
|
||||
}
|
||||
|
||||
i += triangle_count;
|
||||
cluster_index += cell_cluster_count;
|
||||
solid_cell_index++;
|
||||
}
|
||||
}
|
||||
#if 0
|
||||
for (int i = 0; i < grid_size; i++) {
|
||||
@ -507,7 +602,13 @@ void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i
|
||||
triangle_buffer = rd->storage_buffer_create(tb.size(), tb);
|
||||
|
||||
Vector<uint8_t> tib = triangle_indices.to_byte_array();
|
||||
triangle_cell_indices_buffer = rd->storage_buffer_create(tib.size(), tib);
|
||||
r_triangle_indices_buffer = rd->storage_buffer_create(tib.size(), tib);
|
||||
|
||||
Vector<uint8_t> cib = cluster_indices.to_byte_array();
|
||||
r_cluster_indices_buffer = rd->storage_buffer_create(cib.size(), cib);
|
||||
|
||||
Vector<uint8_t> cab = cluster_aabbs.to_byte_array();
|
||||
r_cluster_aabbs_buffer = rd->storage_buffer_create(cab.size(), cab);
|
||||
|
||||
Vector<uint8_t> lb = lights.to_byte_array();
|
||||
if (lb.size() == 0) {
|
||||
@ -1020,24 +1121,29 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
RID vertex_buffer;
|
||||
RID triangle_buffer;
|
||||
RID lights_buffer;
|
||||
RID triangle_cell_indices_buffer;
|
||||
RID triangle_indices_buffer;
|
||||
RID cluster_indices_buffer;
|
||||
RID cluster_aabbs_buffer;
|
||||
RID grid_texture;
|
||||
RID seams_buffer;
|
||||
RID probe_positions_buffer;
|
||||
|
||||
Vector<int> slice_seam_count;
|
||||
|
||||
#define FREE_BUFFERS \
|
||||
rd->free(bake_parameters_buffer); \
|
||||
rd->free(vertex_buffer); \
|
||||
rd->free(triangle_buffer); \
|
||||
rd->free(lights_buffer); \
|
||||
rd->free(triangle_cell_indices_buffer); \
|
||||
rd->free(grid_texture); \
|
||||
rd->free(seams_buffer); \
|
||||
#define FREE_BUFFERS \
|
||||
rd->free(bake_parameters_buffer); \
|
||||
rd->free(vertex_buffer); \
|
||||
rd->free(triangle_buffer); \
|
||||
rd->free(lights_buffer); \
|
||||
rd->free(triangle_indices_buffer); \
|
||||
rd->free(cluster_indices_buffer); \
|
||||
rd->free(cluster_aabbs_buffer); \
|
||||
rd->free(grid_texture); \
|
||||
rd->free(seams_buffer); \
|
||||
rd->free(probe_positions_buffer);
|
||||
|
||||
_create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, lights_buffer, triangle_cell_indices_buffer, probe_positions_buffer, grid_texture, seams_buffer, p_step_function, p_bake_userdata);
|
||||
const uint32_t cluster_size = 16;
|
||||
_create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, cluster_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, lights_buffer, triangle_indices_buffer, cluster_indices_buffer, cluster_aabbs_buffer, probe_positions_buffer, grid_texture, seams_buffer, p_step_function, p_bake_userdata);
|
||||
|
||||
// Create global bake parameters buffer.
|
||||
BakeParameters bake_parameters;
|
||||
@ -1133,7 +1239,7 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
RD::Uniform u;
|
||||
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
|
||||
u.binding = 3;
|
||||
u.append_id(triangle_cell_indices_buffer);
|
||||
u.append_id(triangle_indices_buffer);
|
||||
base_uniforms.push_back(u);
|
||||
}
|
||||
{
|
||||
@ -1185,6 +1291,20 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
u.append_id(sampler);
|
||||
base_uniforms.push_back(u);
|
||||
}
|
||||
{
|
||||
RD::Uniform u;
|
||||
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
|
||||
u.binding = 11;
|
||||
u.append_id(cluster_indices_buffer);
|
||||
base_uniforms.push_back(u);
|
||||
}
|
||||
{
|
||||
RD::Uniform u;
|
||||
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
|
||||
u.binding = 12;
|
||||
u.append_id(cluster_aabbs_buffer);
|
||||
base_uniforms.push_back(u);
|
||||
}
|
||||
}
|
||||
|
||||
RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0);
|
||||
@ -1230,6 +1350,8 @@ LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_d
|
||||
|
||||
Ref<RDShaderFile> compute_shader;
|
||||
String defines = "";
|
||||
defines += "\n#define CLUSTER_SIZE " + uitos(cluster_size) + "\n";
|
||||
|
||||
if (p_bake_sh) {
|
||||
defines += "\n#define USE_SH_LIGHTMAPS\n";
|
||||
}
|
||||
|
@ -192,6 +192,13 @@ class LightmapperRD : public Lightmapper {
|
||||
}
|
||||
};
|
||||
|
||||
struct ClusterAABB {
|
||||
float min_bounds[3];
|
||||
float pad0 = 0.0f;
|
||||
float max_bounds[3];
|
||||
float pad1 = 0.0f;
|
||||
};
|
||||
|
||||
Vector<MeshInstance> mesh_instances;
|
||||
|
||||
Vector<Light> lights;
|
||||
@ -199,12 +206,22 @@ class LightmapperRD : public Lightmapper {
|
||||
struct TriangleSort {
|
||||
uint32_t cell_index = 0;
|
||||
uint32_t triangle_index = 0;
|
||||
AABB triangle_aabb;
|
||||
|
||||
bool operator<(const TriangleSort &p_triangle_sort) const {
|
||||
return cell_index < p_triangle_sort.cell_index; //sorting by triangle index in this case makes no sense
|
||||
}
|
||||
};
|
||||
|
||||
template <int T>
|
||||
struct TriangleSortAxis {
|
||||
bool operator()(const TriangleSort &p_a, const TriangleSort &p_b) const {
|
||||
return p_a.triangle_aabb.get_center()[T] < p_b.triangle_aabb.get_center()[T];
|
||||
}
|
||||
};
|
||||
|
||||
void _plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &triangles, uint32_t p_grid_size);
|
||||
void _sort_triangle_clusters(uint32_t p_cluster_size, uint32_t p_cluster_index, uint32_t p_index_start, uint32_t p_count, LocalVector<TriangleSort> &p_triangle_sort, LocalVector<ClusterAABB> &p_cluster_aabb);
|
||||
|
||||
struct RasterPushConstant {
|
||||
float atlas_size[2] = {};
|
||||
@ -250,7 +267,7 @@ class LightmapperRD : public Lightmapper {
|
||||
};
|
||||
|
||||
BakeError _blit_meshes_into_atlas(int p_max_texture_size, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata);
|
||||
void _create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &triangle_cell_indices_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata);
|
||||
void _create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, uint32_t p_cluster_size, Vector<Probe> &probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &r_triangle_indices_buffer, RID &r_cluster_indices_buffer, RID &r_cluster_aabbs_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata);
|
||||
void _raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform);
|
||||
|
||||
BakeError _dilate(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices);
|
||||
|
@ -42,15 +42,22 @@ struct Triangle {
|
||||
uint pad1;
|
||||
};
|
||||
|
||||
struct ClusterAABB {
|
||||
vec3 min_bounds;
|
||||
uint pad0;
|
||||
vec3 max_bounds;
|
||||
uint pad1;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 2, std430) restrict readonly buffer Triangles {
|
||||
Triangle data[];
|
||||
}
|
||||
triangles;
|
||||
|
||||
layout(set = 0, binding = 3, std430) restrict readonly buffer GridIndices {
|
||||
layout(set = 0, binding = 3, std430) restrict readonly buffer TriangleIndices {
|
||||
uint data[];
|
||||
}
|
||||
grid_indices;
|
||||
triangle_indices;
|
||||
|
||||
#define LIGHT_TYPE_DIRECTIONAL 0
|
||||
#define LIGHT_TYPE_OMNI 1
|
||||
@ -104,6 +111,16 @@ layout(set = 0, binding = 9) uniform texture2DArray emission_tex;
|
||||
|
||||
layout(set = 0, binding = 10) uniform sampler linear_sampler;
|
||||
|
||||
layout(set = 0, binding = 11, std430) restrict readonly buffer ClusterIndices {
|
||||
uint data[];
|
||||
}
|
||||
cluster_indices;
|
||||
|
||||
layout(set = 0, binding = 12, std430) restrict readonly buffer ClusterAABBs {
|
||||
ClusterAABB data[];
|
||||
}
|
||||
cluster_aabbs;
|
||||
|
||||
// Fragment action constants
|
||||
const uint FA_NONE = 0;
|
||||
const uint FA_SMOOTHEN_POSITION = 1;
|
||||
|
@ -119,6 +119,17 @@ const uint RAY_FRONT = 1;
|
||||
const uint RAY_BACK = 2;
|
||||
const uint RAY_ANY = 3;
|
||||
|
||||
bool ray_box_test(vec3 p_from, vec3 p_inv_dir, vec3 p_box_min, vec3 p_box_max) {
|
||||
vec3 t0 = (p_box_min - p_from) * p_inv_dir;
|
||||
vec3 t1 = (p_box_max - p_from) * p_inv_dir;
|
||||
vec3 tmin = min(t0, t1), tmax = max(t0, t1);
|
||||
return max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z));
|
||||
}
|
||||
|
||||
#if CLUSTER_SIZE > 32
|
||||
#define CLUSTER_TRIANGLE_ITERATION
|
||||
#endif
|
||||
|
||||
uint trace_ray(vec3 p_from, vec3 p_to, bool p_any_hit, out float r_distance, out vec3 r_normal, out uint r_triangle, out vec3 r_barycentric) {
|
||||
// World coordinates.
|
||||
vec3 rel = p_to - p_from;
|
||||
@ -142,60 +153,106 @@ uint trace_ray(vec3 p_from, vec3 p_to, bool p_any_hit, out float r_distance, out
|
||||
uint iters = 0;
|
||||
while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(bake_params.grid_size))) && (iters < 1000)) {
|
||||
uvec2 cell_data = texelFetch(usampler3D(grid, linear_sampler), icell, 0).xy;
|
||||
if (cell_data.x > 0) { //triangles here
|
||||
uint triangle_count = cell_data.x;
|
||||
if (triangle_count > 0) {
|
||||
uint hit = RAY_MISS;
|
||||
float best_distance = 1e20;
|
||||
|
||||
for (uint i = 0; i < cell_data.x; i++) {
|
||||
uint tidx = grid_indices.data[cell_data.y + i];
|
||||
|
||||
// Ray-Box test.
|
||||
Triangle triangle = triangles.data[tidx];
|
||||
vec3 t0 = (triangle.min_bounds - p_from) * inv_dir;
|
||||
vec3 t1 = (triangle.max_bounds - p_from) * inv_dir;
|
||||
vec3 tmin = min(t0, t1), tmax = max(t0, t1);
|
||||
|
||||
if (max(tmin.x, max(tmin.y, tmin.z)) > min(tmax.x, min(tmax.y, tmax.z))) {
|
||||
continue; // Ray-Box test failed.
|
||||
}
|
||||
|
||||
// Prepare triangle vertices.
|
||||
vec3 vtx0 = vertices.data[triangle.indices.x].position;
|
||||
vec3 vtx1 = vertices.data[triangle.indices.y].position;
|
||||
vec3 vtx2 = vertices.data[triangle.indices.z].position;
|
||||
vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
|
||||
bool backface = dot(normal, dir) >= 0.0;
|
||||
float distance;
|
||||
vec3 barycentric;
|
||||
if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
|
||||
if (p_any_hit) {
|
||||
// Return early if any hit was requested.
|
||||
return RAY_ANY;
|
||||
}
|
||||
|
||||
vec3 position = p_from + dir * distance;
|
||||
vec3 hit_cell = (position - bake_params.to_cell_offset) * bake_params.to_cell_size;
|
||||
if (icell != ivec3(hit_cell)) {
|
||||
// It's possible for the ray to hit a triangle in a position outside the bounds of the cell
|
||||
// if it's large enough to cover multiple ones. The hit must be ignored if this is the case.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!backface) {
|
||||
// The case of meshes having both a front and back face in the same plane is more common than expected.
|
||||
// If this is a front-face, bias it closer to the ray origin, so it always wins over the back-face.
|
||||
distance = max(bake_params.bias, distance - bake_params.bias);
|
||||
}
|
||||
|
||||
if (distance < best_distance) {
|
||||
hit = backface ? RAY_BACK : RAY_FRONT;
|
||||
best_distance = distance;
|
||||
r_distance = distance;
|
||||
r_normal = normal;
|
||||
r_triangle = tidx;
|
||||
r_barycentric = barycentric;
|
||||
uint cluster_start = cluster_indices.data[cell_data.y * 2];
|
||||
uint cell_triangle_start = cluster_indices.data[cell_data.y * 2 + 1];
|
||||
uint cluster_count = (triangle_count + CLUSTER_SIZE - 1) / CLUSTER_SIZE;
|
||||
uint cluster_base_index = 0;
|
||||
while (cluster_base_index < cluster_count) {
|
||||
// To minimize divergence, all Ray-AABB tests on the clusters contained in the cell are performed
|
||||
// before checking against the triangles. We do this 32 clusters at a time and store the intersected
|
||||
// clusters on each bit of the 32-bit integer.
|
||||
uint cluster_test_count = min(32, cluster_count - cluster_base_index);
|
||||
uint cluster_hits = 0;
|
||||
for (uint i = 0; i < cluster_test_count; i++) {
|
||||
uint cluster_index = cluster_start + cluster_base_index + i;
|
||||
ClusterAABB cluster_aabb = cluster_aabbs.data[cluster_index];
|
||||
if (ray_box_test(p_from, inv_dir, cluster_aabb.min_bounds, cluster_aabb.max_bounds)) {
|
||||
cluster_hits |= (1 << i);
|
||||
}
|
||||
}
|
||||
|
||||
// Check the triangles in any of the clusters that were intersected by toggling off the bits in the
|
||||
// 32-bit integer counter until no bits are left.
|
||||
while (cluster_hits > 0) {
|
||||
uint cluster_index = findLSB(cluster_hits);
|
||||
cluster_hits &= ~(1 << cluster_index);
|
||||
cluster_index += cluster_base_index;
|
||||
|
||||
// Do the same divergence execution trick with triangles as well.
|
||||
uint triangle_base_index = 0;
|
||||
#ifdef CLUSTER_TRIANGLE_ITERATION
|
||||
while (triangle_base_index < triangle_count)
|
||||
#endif
|
||||
{
|
||||
uint triangle_start_index = cell_triangle_start + cluster_index * CLUSTER_SIZE + triangle_base_index;
|
||||
uint triangle_test_count = min(CLUSTER_SIZE, triangle_count - triangle_base_index);
|
||||
uint triangle_hits = 0;
|
||||
for (uint i = 0; i < triangle_test_count; i++) {
|
||||
uint triangle_index = triangle_indices.data[triangle_start_index + i];
|
||||
if (ray_box_test(p_from, inv_dir, triangles.data[triangle_index].min_bounds, triangles.data[triangle_index].max_bounds)) {
|
||||
triangle_hits |= (1 << i);
|
||||
}
|
||||
}
|
||||
|
||||
while (triangle_hits > 0) {
|
||||
uint cluster_triangle_index = findLSB(triangle_hits);
|
||||
triangle_hits &= ~(1 << cluster_triangle_index);
|
||||
cluster_triangle_index += triangle_start_index;
|
||||
|
||||
uint triangle_index = triangle_indices.data[cluster_triangle_index];
|
||||
Triangle triangle = triangles.data[triangle_index];
|
||||
|
||||
// Gather the triangle vertex positions.
|
||||
vec3 vtx0 = vertices.data[triangle.indices.x].position;
|
||||
vec3 vtx1 = vertices.data[triangle.indices.y].position;
|
||||
vec3 vtx2 = vertices.data[triangle.indices.z].position;
|
||||
vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
|
||||
bool backface = dot(normal, dir) >= 0.0;
|
||||
float distance;
|
||||
vec3 barycentric;
|
||||
if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
|
||||
if (p_any_hit) {
|
||||
// Return early if any hit was requested.
|
||||
return RAY_ANY;
|
||||
}
|
||||
|
||||
vec3 position = p_from + dir * distance;
|
||||
vec3 hit_cell = (position - bake_params.to_cell_offset) * bake_params.to_cell_size;
|
||||
if (icell != ivec3(hit_cell)) {
|
||||
// It's possible for the ray to hit a triangle in a position outside the bounds of the cell
|
||||
// if it's large enough to cover multiple ones. The hit must be ignored if this is the case.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!backface) {
|
||||
// The case of meshes having both a front and back face in the same plane is more common than
|
||||
// expected, so if this is a front-face, bias it closer to the ray origin, so it always wins
|
||||
// over the back-face.
|
||||
distance = max(bake_params.bias, distance - bake_params.bias);
|
||||
}
|
||||
|
||||
if (distance < best_distance) {
|
||||
hit = backface ? RAY_BACK : RAY_FRONT;
|
||||
best_distance = distance;
|
||||
r_distance = distance;
|
||||
r_normal = normal;
|
||||
r_triangle = triangle_index;
|
||||
r_barycentric = barycentric;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CLUSTER_TRIANGLE_ITERATION
|
||||
triangle_base_index += CLUSTER_SIZE;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
cluster_base_index += 32;
|
||||
}
|
||||
|
||||
if (hit != RAY_MISS) {
|
||||
|
Loading…
Reference in New Issue
Block a user