|
|
|
@ -43,24 +43,15 @@ void WorkerThreadPool::Task::free_template_userdata() {
|
|
|
|
|
|
|
|
|
|
WorkerThreadPool *WorkerThreadPool::singleton = nullptr;
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_process_task_queue() {
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
Task *task = task_queue.first()->self();
|
|
|
|
|
task_queue.remove(task_queue.first());
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
_process_task(task);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_process_task(Task *p_task) {
|
|
|
|
|
bool low_priority = p_task->low_priority;
|
|
|
|
|
int pool_thread_index = -1;
|
|
|
|
|
Task *prev_low_prio_task = nullptr; // In case this is recursively called.
|
|
|
|
|
int pool_thread_index = thread_ids[Thread::get_caller_id()];
|
|
|
|
|
ThreadData &curr_thread = threads[pool_thread_index];
|
|
|
|
|
Task *prev_task = nullptr; // In case this is recursively called.
|
|
|
|
|
bool safe_for_nodes_backup = is_current_thread_safe_for_nodes();
|
|
|
|
|
|
|
|
|
|
if (!use_native_low_priority_threads) {
|
|
|
|
|
{
|
|
|
|
|
// Tasks must start with this unset. They are free to set-and-forget otherwise.
|
|
|
|
|
set_current_thread_safe_for_nodes(false);
|
|
|
|
|
pool_thread_index = thread_ids[Thread::get_caller_id()];
|
|
|
|
|
ThreadData &curr_thread = threads[pool_thread_index];
|
|
|
|
|
// Since the WorkerThreadPool is started before the script server,
|
|
|
|
|
// its pre-created threads can't have ScriptServer::thread_enter() called on them early.
|
|
|
|
|
// Therefore, we do it late at the first opportunity, so in case the task
|
|
|
|
@ -71,13 +62,8 @@ void WorkerThreadPool::_process_task(Task *p_task) {
|
|
|
|
|
}
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
p_task->pool_thread_index = pool_thread_index;
|
|
|
|
|
if (low_priority) {
|
|
|
|
|
low_priority_tasks_running++;
|
|
|
|
|
prev_low_prio_task = curr_thread.current_low_prio_task;
|
|
|
|
|
curr_thread.current_low_prio_task = p_task;
|
|
|
|
|
} else {
|
|
|
|
|
curr_thread.current_low_prio_task = nullptr;
|
|
|
|
|
}
|
|
|
|
|
prev_task = curr_thread.current_task;
|
|
|
|
|
curr_thread.current_task = p_task;
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -111,33 +97,24 @@ void WorkerThreadPool::_process_task(Task *p_task) {
|
|
|
|
|
memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it.
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (low_priority && use_native_low_priority_threads) {
|
|
|
|
|
p_task->completed = true;
|
|
|
|
|
p_task->done_semaphore.post();
|
|
|
|
|
if (do_post) {
|
|
|
|
|
p_task->group->completed.set_to(true);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (do_post) {
|
|
|
|
|
p_task->group->done_semaphore.post();
|
|
|
|
|
p_task->group->completed.set_to(true);
|
|
|
|
|
}
|
|
|
|
|
uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
|
|
|
|
|
uint32_t finished_users = p_task->group->finished.increment();
|
|
|
|
|
|
|
|
|
|
if (finished_users == max_users) {
|
|
|
|
|
// Get rid of the group, because nobody else is using it.
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
group_allocator.free(p_task->group);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// For groups, tasks get rid of themselves.
|
|
|
|
|
if (do_post) {
|
|
|
|
|
p_task->group->done_semaphore.post();
|
|
|
|
|
p_task->group->completed.set_to(true);
|
|
|
|
|
}
|
|
|
|
|
uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
|
|
|
|
|
uint32_t finished_users = p_task->group->finished.increment();
|
|
|
|
|
|
|
|
|
|
if (finished_users == max_users) {
|
|
|
|
|
// Get rid of the group, because nobody else is using it.
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
task_allocator.free(p_task);
|
|
|
|
|
group_allocator.free(p_task->group);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// For groups, tasks get rid of themselves.
|
|
|
|
|
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
task_allocator.free(p_task);
|
|
|
|
|
} else {
|
|
|
|
|
if (p_task->native_func) {
|
|
|
|
|
p_task->native_func(p_task->native_func_userdata);
|
|
|
|
@ -150,88 +127,162 @@ void WorkerThreadPool::_process_task(Task *p_task) {
|
|
|
|
|
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
p_task->completed = true;
|
|
|
|
|
for (uint8_t i = 0; i < p_task->waiting; i++) {
|
|
|
|
|
p_task->done_semaphore.post();
|
|
|
|
|
p_task->pool_thread_index = -1;
|
|
|
|
|
if (p_task->waiting_user) {
|
|
|
|
|
p_task->done_semaphore.post(p_task->waiting_user);
|
|
|
|
|
}
|
|
|
|
|
if (!use_native_low_priority_threads) {
|
|
|
|
|
p_task->pool_thread_index = -1;
|
|
|
|
|
// Let awaiters know.
|
|
|
|
|
for (uint32_t i = 0; i < threads.size(); i++) {
|
|
|
|
|
if (threads[i].awaited_task == p_task) {
|
|
|
|
|
threads[i].cond_var.notify_one();
|
|
|
|
|
threads[i].signaled = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
task_mutex.unlock(); // Keep mutex down to here since on unlock the task may be freed.
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Task may have been freed by now (all callers notified).
|
|
|
|
|
p_task = nullptr;
|
|
|
|
|
|
|
|
|
|
if (!use_native_low_priority_threads) {
|
|
|
|
|
bool post = false;
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
ThreadData &curr_thread = threads[pool_thread_index];
|
|
|
|
|
curr_thread.current_low_prio_task = prev_low_prio_task;
|
|
|
|
|
if (low_priority) {
|
|
|
|
|
{
|
|
|
|
|
curr_thread.current_task = prev_task;
|
|
|
|
|
if (p_task->low_priority) {
|
|
|
|
|
low_priority_threads_used--;
|
|
|
|
|
low_priority_tasks_running--;
|
|
|
|
|
// A low prioriry task was freed, so see if we can move a pending one to the high priority queue.
|
|
|
|
|
if (_try_promote_low_priority_task()) {
|
|
|
|
|
post = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (low_priority_tasks_awaiting_others == low_priority_tasks_running) {
|
|
|
|
|
_prevent_low_prio_saturation_deadlock();
|
|
|
|
|
if (_try_promote_low_priority_task()) {
|
|
|
|
|
if (prev_task) { // Otherwise, this thread will catch it.
|
|
|
|
|
_notify_threads(&curr_thread, 1, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
if (post) {
|
|
|
|
|
task_available_semaphore.post();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
set_current_thread_safe_for_nodes(safe_for_nodes_backup);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_thread_function(void *p_user) {
|
|
|
|
|
ThreadData *thread_data = (ThreadData *)p_user;
|
|
|
|
|
while (true) {
|
|
|
|
|
singleton->task_available_semaphore.wait();
|
|
|
|
|
if (singleton->exit_threads) {
|
|
|
|
|
break;
|
|
|
|
|
Task *task_to_process = nullptr;
|
|
|
|
|
{
|
|
|
|
|
MutexLock lock(singleton->task_mutex);
|
|
|
|
|
if (singleton->exit_threads) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
thread_data->signaled = false;
|
|
|
|
|
|
|
|
|
|
if (singleton->task_queue.first()) {
|
|
|
|
|
task_to_process = singleton->task_queue.first()->self();
|
|
|
|
|
singleton->task_queue.remove(singleton->task_queue.first());
|
|
|
|
|
} else {
|
|
|
|
|
thread_data->cond_var.wait(lock);
|
|
|
|
|
DEV_ASSERT(singleton->exit_threads || thread_data->signaled);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (task_to_process) {
|
|
|
|
|
singleton->_process_task(task_to_process);
|
|
|
|
|
}
|
|
|
|
|
singleton->_process_task_queue();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_native_low_priority_thread_function(void *p_user) {
|
|
|
|
|
Task *task = (Task *)p_user;
|
|
|
|
|
singleton->_process_task(task);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_post_task(Task *p_task, bool p_high_priority) {
|
|
|
|
|
void WorkerThreadPool::_post_tasks_and_unlock(Task **p_tasks, uint32_t p_count, bool p_high_priority) {
|
|
|
|
|
// Fall back to processing on the calling thread if there are no worker threads.
|
|
|
|
|
// Separated into its own variable to make it easier to extend this logic
|
|
|
|
|
// in custom builds.
|
|
|
|
|
bool process_on_calling_thread = threads.size() == 0;
|
|
|
|
|
if (process_on_calling_thread) {
|
|
|
|
|
_process_task(p_task);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
for (uint32_t i = 0; i < p_count; i++) {
|
|
|
|
|
_process_task(p_tasks[i]);
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
p_task->low_priority = !p_high_priority;
|
|
|
|
|
if (!p_high_priority && use_native_low_priority_threads) {
|
|
|
|
|
p_task->low_priority_thread = native_thread_allocator.alloc();
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
uint32_t to_process = 0;
|
|
|
|
|
uint32_t to_promote = 0;
|
|
|
|
|
|
|
|
|
|
if (p_task->group) {
|
|
|
|
|
p_task->group->low_priority_native_tasks.push_back(p_task);
|
|
|
|
|
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
|
|
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < p_count; i++) {
|
|
|
|
|
p_tasks[i]->low_priority = !p_high_priority;
|
|
|
|
|
if (p_high_priority || low_priority_threads_used < max_low_priority_threads) {
|
|
|
|
|
task_queue.add_last(&p_tasks[i]->task_elem);
|
|
|
|
|
if (!p_high_priority) {
|
|
|
|
|
low_priority_threads_used++;
|
|
|
|
|
}
|
|
|
|
|
to_process++;
|
|
|
|
|
} else {
|
|
|
|
|
// Too many threads using low priority, must go to queue.
|
|
|
|
|
low_priority_task_queue.add_last(&p_tasks[i]->task_elem);
|
|
|
|
|
to_promote++;
|
|
|
|
|
}
|
|
|
|
|
p_task->low_priority_thread->start(_native_low_priority_thread_function, p_task); // Pask task directly to thread.
|
|
|
|
|
} else if (p_high_priority || low_priority_threads_used < max_low_priority_threads) {
|
|
|
|
|
task_queue.add_last(&p_task->task_elem);
|
|
|
|
|
if (!p_high_priority) {
|
|
|
|
|
low_priority_threads_used++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_notify_threads(caller_pool_thread, to_process, to_promote);
|
|
|
|
|
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_notify_threads(const ThreadData *p_current_thread_data, uint32_t p_process_count, uint32_t p_promote_count) {
|
|
|
|
|
uint32_t to_process = p_process_count;
|
|
|
|
|
uint32_t to_promote = p_promote_count;
|
|
|
|
|
|
|
|
|
|
// This is where which threads are awaken is decided according to the workload.
|
|
|
|
|
// Threads that will anyway have a chance to check the situation and process/promote tasks
|
|
|
|
|
// are excluded from being notified. Others will be tried anyway to try to distribute load.
|
|
|
|
|
// The current thread, if is a pool thread, is also excluded depending on the promoting/processing
|
|
|
|
|
// needs because it will anyway loop again. However, it will contribute to decreasing the count,
|
|
|
|
|
// which helps reducing sync traffic.
|
|
|
|
|
|
|
|
|
|
uint32_t thread_count = threads.size();
|
|
|
|
|
|
|
|
|
|
// First round:
|
|
|
|
|
// 1. For processing: notify threads that are not running tasks, to keep the stacks as shallow as possible.
|
|
|
|
|
// 2. For promoting: since it's exclusive with processing, we fin threads able to promote low-prio tasks now.
|
|
|
|
|
for (uint32_t i = 0;
|
|
|
|
|
i < thread_count && (to_process || to_promote);
|
|
|
|
|
i++, notify_index = (notify_index + 1) % thread_count) {
|
|
|
|
|
ThreadData &th = threads[notify_index];
|
|
|
|
|
|
|
|
|
|
if (th.signaled) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
if (th.current_task) {
|
|
|
|
|
// Good thread for promoting low-prio?
|
|
|
|
|
if (to_promote && th.awaited_task && th.current_task->low_priority) {
|
|
|
|
|
if (likely(&th != p_current_thread_data)) {
|
|
|
|
|
th.cond_var.notify_one();
|
|
|
|
|
}
|
|
|
|
|
th.signaled = true;
|
|
|
|
|
to_promote--;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (to_process) {
|
|
|
|
|
if (likely(&th != p_current_thread_data)) {
|
|
|
|
|
th.cond_var.notify_one();
|
|
|
|
|
}
|
|
|
|
|
th.signaled = true;
|
|
|
|
|
to_process--;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Second round:
|
|
|
|
|
// For processing: if the first round wasn't enough, let's try now with threads processing tasks but currently awaiting.
|
|
|
|
|
for (uint32_t i = 0;
|
|
|
|
|
i < thread_count && to_process;
|
|
|
|
|
i++, notify_index = (notify_index + 1) % thread_count) {
|
|
|
|
|
ThreadData &th = threads[notify_index];
|
|
|
|
|
|
|
|
|
|
if (th.signaled) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
if (th.awaited_task) {
|
|
|
|
|
if (likely(&th != p_current_thread_data)) {
|
|
|
|
|
th.cond_var.notify_one();
|
|
|
|
|
}
|
|
|
|
|
th.signaled = true;
|
|
|
|
|
to_process--;
|
|
|
|
|
}
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
task_available_semaphore.post();
|
|
|
|
|
} else {
|
|
|
|
|
// Too many threads using low priority, must go to queue.
|
|
|
|
|
low_priority_task_queue.add_last(&p_task->task_elem);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -247,23 +298,6 @@ bool WorkerThreadPool::_try_promote_low_priority_task() {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::_prevent_low_prio_saturation_deadlock() {
|
|
|
|
|
if (low_priority_tasks_awaiting_others == low_priority_tasks_running) {
|
|
|
|
|
#ifdef DEV_ENABLED
|
|
|
|
|
print_verbose("WorkerThreadPool: Low-prio slots saturated with tasks all waiting for other low-prio tasks. Attempting to avoid deadlock by scheduling one extra task.");
|
|
|
|
|
#endif
|
|
|
|
|
// In order not to create dependency cycles, we can only schedule the next one.
|
|
|
|
|
// We'll keep doing the same until the deadlock is broken,
|
|
|
|
|
SelfList<Task> *to_promote = low_priority_task_queue.first();
|
|
|
|
|
if (to_promote) {
|
|
|
|
|
low_priority_task_queue.remove(to_promote);
|
|
|
|
|
task_queue.add_last(to_promote);
|
|
|
|
|
low_priority_threads_used++;
|
|
|
|
|
task_available_semaphore.post();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) {
|
|
|
|
|
return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description);
|
|
|
|
|
}
|
|
|
|
@ -273,15 +307,15 @@ WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable,
|
|
|
|
|
// Get a free task
|
|
|
|
|
Task *task = task_allocator.alloc();
|
|
|
|
|
TaskID id = last_task++;
|
|
|
|
|
task->self = id;
|
|
|
|
|
task->callable = p_callable;
|
|
|
|
|
task->native_func = p_func;
|
|
|
|
|
task->native_func_userdata = p_userdata;
|
|
|
|
|
task->description = p_description;
|
|
|
|
|
task->template_userdata = p_template_userdata;
|
|
|
|
|
tasks.insert(id, task);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
_post_task(task, p_high_priority);
|
|
|
|
|
_post_tasks_and_unlock(&task, 1, p_high_priority);
|
|
|
|
|
|
|
|
|
|
return id;
|
|
|
|
|
}
|
|
|
|
@ -313,105 +347,109 @@ Error WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) {
|
|
|
|
|
}
|
|
|
|
|
Task *task = *taskp;
|
|
|
|
|
|
|
|
|
|
if (!task->completed) {
|
|
|
|
|
if (!use_native_low_priority_threads && task->pool_thread_index != -1) { // Otherwise, it's not running yet.
|
|
|
|
|
int caller_pool_th_index = thread_ids.has(Thread::get_caller_id()) ? thread_ids[Thread::get_caller_id()] : -1;
|
|
|
|
|
if (caller_pool_th_index == task->pool_thread_index) {
|
|
|
|
|
// Deadlock prevention.
|
|
|
|
|
// Waiting for a task run on this same thread? That means the task to be awaited started waiting as well
|
|
|
|
|
// and another task was run to make use of the thread in the meantime, with enough bad luck as to
|
|
|
|
|
// the need to wait for the original task arose in turn.
|
|
|
|
|
// In other words, the task we want to wait for is buried in the stack.
|
|
|
|
|
// Let's report the caller about the issue to it handles as it sees fit.
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
return ERR_BUSY;
|
|
|
|
|
}
|
|
|
|
|
if (task->completed) {
|
|
|
|
|
if (task->waiting_pool == 0 && task->waiting_user == 0) {
|
|
|
|
|
tasks.erase(p_task_id);
|
|
|
|
|
task_allocator.free(task);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task->waiting++;
|
|
|
|
|
|
|
|
|
|
bool is_low_prio_waiting_for_another = false;
|
|
|
|
|
if (!use_native_low_priority_threads) {
|
|
|
|
|
// Deadlock prevention:
|
|
|
|
|
// If all low-prio tasks are waiting for other low-prio tasks and there are no more free low-prio slots,
|
|
|
|
|
// we have a no progressable situation. We can apply a workaround, consisting in promoting an awaited queued
|
|
|
|
|
// low-prio task to the schedule queue so it can run and break the "impasse".
|
|
|
|
|
// NOTE: A similar reasoning could be made about high priority tasks, but there are usually much more
|
|
|
|
|
// than low-prio. Therefore, a deadlock there would only happen when dealing with a very complex task graph
|
|
|
|
|
// or when there are too few worker threads (limited platforms or exotic settings). If that turns out to be
|
|
|
|
|
// an issue in the real world, a further fix can be applied against that.
|
|
|
|
|
if (task->low_priority) {
|
|
|
|
|
bool awaiter_is_a_low_prio_task = thread_ids.has(Thread::get_caller_id()) && threads[thread_ids[Thread::get_caller_id()]].current_low_prio_task;
|
|
|
|
|
if (awaiter_is_a_low_prio_task) {
|
|
|
|
|
is_low_prio_waiting_for_another = true;
|
|
|
|
|
low_priority_tasks_awaiting_others++;
|
|
|
|
|
if (low_priority_tasks_awaiting_others == low_priority_tasks_running) {
|
|
|
|
|
_prevent_low_prio_saturation_deadlock();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
if (use_native_low_priority_threads && task->low_priority) {
|
|
|
|
|
task->done_semaphore.wait();
|
|
|
|
|
} else {
|
|
|
|
|
bool current_is_pool_thread = thread_ids.has(Thread::get_caller_id());
|
|
|
|
|
if (current_is_pool_thread) {
|
|
|
|
|
// We are an actual process thread, we must not be blocked so continue processing stuff if available.
|
|
|
|
|
bool must_exit = false;
|
|
|
|
|
while (true) {
|
|
|
|
|
if (task->done_semaphore.try_wait()) {
|
|
|
|
|
// If done, exit
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (!must_exit) {
|
|
|
|
|
if (task_available_semaphore.try_wait()) {
|
|
|
|
|
if (exit_threads) {
|
|
|
|
|
must_exit = true;
|
|
|
|
|
} else {
|
|
|
|
|
// Solve tasks while they are around.
|
|
|
|
|
bool safe_for_nodes_backup = is_current_thread_safe_for_nodes();
|
|
|
|
|
_process_task_queue();
|
|
|
|
|
set_current_thread_safe_for_nodes(safe_for_nodes_backup);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
} else if (!use_native_low_priority_threads && task->low_priority) {
|
|
|
|
|
// A low prioriry task started waiting, so see if we can move a pending one to the high priority queue.
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
bool post = _try_promote_low_priority_task();
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
if (post) {
|
|
|
|
|
task_available_semaphore.post();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
OS::get_singleton()->delay_usec(1); // Microsleep, this could be converted to waiting for multiple objects in supported platforms for a bit more performance.
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
task->done_semaphore.wait();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
if (is_low_prio_waiting_for_another) {
|
|
|
|
|
low_priority_tasks_awaiting_others--;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task->waiting--;
|
|
|
|
|
return OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (task->waiting == 0) {
|
|
|
|
|
if (use_native_low_priority_threads && task->low_priority) {
|
|
|
|
|
task->low_priority_thread->wait_to_finish();
|
|
|
|
|
native_thread_allocator.free(task->low_priority_thread);
|
|
|
|
|
}
|
|
|
|
|
tasks.erase(p_task_id);
|
|
|
|
|
task_allocator.free(task);
|
|
|
|
|
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
|
|
|
|
|
if (caller_pool_thread && p_task_id <= caller_pool_thread->current_task->self) {
|
|
|
|
|
// Deadlock prevention:
|
|
|
|
|
// When a pool thread wants to wait for an older task, the following situations can happen:
|
|
|
|
|
// 1. Awaited task is deep in the stack of the awaiter.
|
|
|
|
|
// 2. A group of awaiter threads end up depending on some tasks buried in the stack
|
|
|
|
|
// of their worker threads in such a way that progress can't be made.
|
|
|
|
|
// Both would entail a deadlock. Some may be handled here in the WorkerThreadPool
|
|
|
|
|
// with some extra logic and bookkeeping. However, there would still be unavoidable
|
|
|
|
|
// cases of deadlock because of the way waiting threads process outstanding tasks.
|
|
|
|
|
// Taking into account there's no feasible solution for every possible case
|
|
|
|
|
// with the current design, we just simply reject attempts to await on older tasks,
|
|
|
|
|
// with a specific error code that signals the situation so the caller can handle it.
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
return ERR_BUSY;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (caller_pool_thread) {
|
|
|
|
|
task->waiting_pool++;
|
|
|
|
|
} else {
|
|
|
|
|
task->waiting_user++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
if (caller_pool_thread) {
|
|
|
|
|
while (true) {
|
|
|
|
|
Task *task_to_process = nullptr;
|
|
|
|
|
{
|
|
|
|
|
MutexLock lock(task_mutex);
|
|
|
|
|
bool was_signaled = caller_pool_thread->signaled;
|
|
|
|
|
caller_pool_thread->signaled = false;
|
|
|
|
|
|
|
|
|
|
if (task->completed) {
|
|
|
|
|
// This thread was awaken also for some reason, but it's about to exit.
|
|
|
|
|
// Let's find out what may be pending and forward the requests.
|
|
|
|
|
if (!exit_threads && was_signaled) {
|
|
|
|
|
uint32_t to_process = task_queue.first() ? 1 : 0;
|
|
|
|
|
uint32_t to_promote = caller_pool_thread->current_task->low_priority && low_priority_task_queue.first() ? 1 : 0;
|
|
|
|
|
if (to_process || to_promote) {
|
|
|
|
|
// This thread must be left alone since it won't loop again.
|
|
|
|
|
caller_pool_thread->signaled = true;
|
|
|
|
|
_notify_threads(caller_pool_thread, to_process, to_promote);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task->waiting_pool--;
|
|
|
|
|
if (task->waiting_pool == 0 && task->waiting_user == 0) {
|
|
|
|
|
tasks.erase(p_task_id);
|
|
|
|
|
task_allocator.free(task);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!exit_threads) {
|
|
|
|
|
// This is a thread from the pool. It shouldn't just idle.
|
|
|
|
|
// Let's try to process other tasks while we wait.
|
|
|
|
|
|
|
|
|
|
if (caller_pool_thread->current_task->low_priority && low_priority_task_queue.first()) {
|
|
|
|
|
if (_try_promote_low_priority_task()) {
|
|
|
|
|
_notify_threads(caller_pool_thread, 1, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (singleton->task_queue.first()) {
|
|
|
|
|
task_to_process = task_queue.first()->self();
|
|
|
|
|
task_queue.remove(task_queue.first());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!task_to_process) {
|
|
|
|
|
caller_pool_thread->awaited_task = task;
|
|
|
|
|
caller_pool_thread->cond_var.wait(lock);
|
|
|
|
|
DEV_ASSERT(exit_threads || caller_pool_thread->signaled || task->completed);
|
|
|
|
|
caller_pool_thread->awaited_task = nullptr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (task_to_process) {
|
|
|
|
|
_process_task(task_to_process);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
task->done_semaphore.wait();
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
task->waiting_user--;
|
|
|
|
|
if (task->waiting_pool == 0 && task->waiting_user == 0) {
|
|
|
|
|
tasks.erase(p_task_id);
|
|
|
|
|
task_allocator.free(task);
|
|
|
|
|
}
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return OK;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -455,11 +493,8 @@ WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_ca
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
groups[id] = group;
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < p_tasks; i++) {
|
|
|
|
|
_post_task(tasks_posted[i], p_high_priority);
|
|
|
|
|
}
|
|
|
|
|
_post_tasks_and_unlock(tasks_posted, p_tasks, p_high_priority);
|
|
|
|
|
|
|
|
|
|
return id;
|
|
|
|
|
}
|
|
|
|
@ -502,21 +537,9 @@ void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) {
|
|
|
|
|
if (!groupp) {
|
|
|
|
|
ERR_FAIL_MSG("Invalid Group ID");
|
|
|
|
|
}
|
|
|
|
|
Group *group = *groupp;
|
|
|
|
|
|
|
|
|
|
if (group->low_priority_native_tasks.size() > 0) {
|
|
|
|
|
for (Task *task : group->low_priority_native_tasks) {
|
|
|
|
|
task->low_priority_thread->wait_to_finish();
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
native_thread_allocator.free(task->low_priority_thread);
|
|
|
|
|
task_allocator.free(task);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
task_mutex.lock();
|
|
|
|
|
group_allocator.free(group);
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
} else {
|
|
|
|
|
{
|
|
|
|
|
Group *group = *groupp;
|
|
|
|
|
group->done_semaphore.wait();
|
|
|
|
|
|
|
|
|
|
uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
|
|
|
|
@ -540,19 +563,13 @@ int WorkerThreadPool::get_thread_index() {
|
|
|
|
|
return singleton->thread_ids.has(tid) ? singleton->thread_ids[tid] : -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void WorkerThreadPool::init(int p_thread_count, bool p_use_native_threads_low_priority, float p_low_priority_task_ratio) {
|
|
|
|
|
void WorkerThreadPool::init(int p_thread_count, float p_low_priority_task_ratio) {
|
|
|
|
|
ERR_FAIL_COND(threads.size() > 0);
|
|
|
|
|
if (p_thread_count < 0) {
|
|
|
|
|
p_thread_count = OS::get_singleton()->get_default_thread_pool_size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (p_use_native_threads_low_priority) {
|
|
|
|
|
max_low_priority_threads = 0;
|
|
|
|
|
} else {
|
|
|
|
|
max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
use_native_low_priority_threads = p_use_native_threads_low_priority;
|
|
|
|
|
max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1);
|
|
|
|
|
|
|
|
|
|
threads.resize(p_thread_count);
|
|
|
|
|
|
|
|
|
@ -576,12 +593,13 @@ void WorkerThreadPool::finish() {
|
|
|
|
|
}
|
|
|
|
|
task_mutex.unlock();
|
|
|
|
|
|
|
|
|
|
exit_threads = true;
|
|
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < threads.size(); i++) {
|
|
|
|
|
task_available_semaphore.post();
|
|
|
|
|
{
|
|
|
|
|
MutexLock lock(task_mutex);
|
|
|
|
|
exit_threads = true;
|
|
|
|
|
}
|
|
|
|
|
for (ThreadData &data : threads) {
|
|
|
|
|
data.cond_var.notify_one();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (ThreadData &data : threads) {
|
|
|
|
|
data.thread.wait_to_finish();
|
|
|
|
|
}
|
|
|
|
|