Add a separate pool for small allocations in Vulkan RD

This commit is contained in:
Pedro J. Estébanez 2022-02-12 12:47:08 +01:00
parent 648a10514b
commit 4e6c9d3ae9
4 changed files with 777 additions and 159 deletions

View File

@ -43,6 +43,8 @@
//#define FORCE_FULL_BARRIER
static const uint32_t SMALL_ALLOCATION_MAX_SIZE = 4096;
// Get the Vulkan object information and possible stage access types (bitwise OR'd with incoming values)
RenderingDeviceVulkan::Buffer *RenderingDeviceVulkan::_get_buffer_from_owner(RID p_buffer, VkPipelineStageFlags &r_stage_mask, VkAccessFlags &r_access_mask, uint32_t p_post_barrier) {
Buffer *buffer = nullptr;
@ -1333,7 +1335,7 @@ Error RenderingDeviceVulkan::_buffer_allocate(Buffer *p_buffer, uint32_t p_size,
allocInfo.requiredFlags = 0;
allocInfo.preferredFlags = 0;
allocInfo.memoryTypeBits = 0;
allocInfo.pool = nullptr;
allocInfo.pool = p_size <= SMALL_ALLOCATION_MAX_SIZE ? small_allocs_pool : nullptr;
allocInfo.pUserData = nullptr;
VkResult err = vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &p_buffer->buffer, &p_buffer->allocation, nullptr);
@ -1836,13 +1838,16 @@ RID RenderingDeviceVulkan::texture_create(const TextureFormat &p_format, const T
//allocate memory
uint32_t width, height;
uint32_t image_size = get_image_format_required_size(p_format.format, p_format.width, p_format.height, p_format.depth, p_format.mipmaps, &width, &height);
VmaAllocationCreateInfo allocInfo;
allocInfo.flags = 0;
allocInfo.pool = image_size <= SMALL_ALLOCATION_MAX_SIZE ? small_allocs_pool : nullptr;
allocInfo.usage = p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT ? VMA_MEMORY_USAGE_CPU_ONLY : VMA_MEMORY_USAGE_GPU_ONLY;
allocInfo.requiredFlags = 0;
allocInfo.preferredFlags = 0;
allocInfo.memoryTypeBits = 0;
allocInfo.pool = nullptr;
allocInfo.pUserData = nullptr;
Texture texture;
@ -8808,6 +8813,18 @@ void RenderingDeviceVulkan::initialize(VulkanContext *p_context, bool p_local_de
vmaCreateAllocator(&allocatorInfo, &allocator);
}
{ //create pool for small objects
VmaPoolCreateInfo pci;
pci.flags = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT;
pci.blockSize = 0;
pci.minBlockCount = 0;
pci.maxBlockCount = SIZE_MAX;
pci.priority = 0.5f;
pci.minAllocationAlignment = 0;
pci.pMemoryAllocateNext = nullptr;
vmaCreatePool(allocator, &pci, &small_allocs_pool);
}
frames = memnew_arr(Frame, frame_count);
frame = 0;
//create setup and frame buffers
@ -9276,6 +9293,7 @@ void RenderingDeviceVulkan::finalize() {
for (int i = 0; i < staging_buffer_blocks.size(); i++) {
vmaDestroyBuffer(allocator, staging_buffer_blocks[i].buffer, staging_buffer_blocks[i].allocation);
}
vmaDestroyPool(allocator, small_allocs_pool);
vmaDestroyAllocator(allocator);
while (vertex_formats.size()) {

View File

@ -1016,6 +1016,7 @@ class RenderingDeviceVulkan : public RenderingDevice {
void _free_pending_resources(int p_frame);
VmaAllocator allocator = nullptr;
VmaPool small_allocs_pool = nullptr;
VulkanContext *context = nullptr;

View File

@ -0,0 +1,567 @@
diff --git a/thirdparty/vulkan/vk_mem_alloc.h b/thirdparty/vulkan/vk_mem_alloc.h
index 74c66b9789..89e00e6326 100644
--- a/thirdparty/vulkan/vk_mem_alloc.h
+++ b/thirdparty/vulkan/vk_mem_alloc.h
@@ -1127,31 +1127,26 @@ typedef struct VmaAllocationCreateInfo
/** \brief Intended usage of memory.
You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.
*/
VmaMemoryUsage usage;
/** \brief Flags that must be set in a Memory Type chosen for an allocation.
- Leave 0 if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.*/
+ Leave 0 if you specify memory requirements in other way.*/
VkMemoryPropertyFlags requiredFlags;
/** \brief Flags that preferably should be set in a memory type chosen for an allocation.
- Set to 0 if no additional flags are preferred. \n
- If `pool` is not null, this member is ignored. */
+ Set to 0 if no additional flags are preferred.*/
VkMemoryPropertyFlags preferredFlags;
/** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
it meets other requirements specified by this structure, with no further
restrictions on memory type index. \n
- If `pool` is not null, this member is ignored.
*/
uint32_t memoryTypeBits;
/** \brief Pool that this allocation should be created in.
- Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
- `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+ Leave `VK_NULL_HANDLE` to allocate from default pool.
*/
VmaPool VMA_NULLABLE pool;
/** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
@@ -1173,9 +1168,6 @@ typedef struct VmaAllocationCreateInfo
/// Describes parameter of created #VmaPool.
typedef struct VmaPoolCreateInfo
{
- /** \brief Vulkan memory type index to allocate this pool from.
- */
- uint32_t memoryTypeIndex;
/** \brief Use combination of #VmaPoolCreateFlagBits.
*/
VmaPoolCreateFlags flags;
@@ -10904,13 +10896,12 @@ struct VmaPool_T
friend struct VmaPoolListItemTraits;
VMA_CLASS_NO_COPY(VmaPool_T)
public:
- VmaBlockVector m_BlockVector;
- VmaDedicatedAllocationList m_DedicatedAllocations;
+ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+ VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
VmaPool_T(
VmaAllocator hAllocator,
- const VmaPoolCreateInfo& createInfo,
- VkDeviceSize preferredBlockSize);
+ const VmaPoolCreateInfo& createInfo);
~VmaPool_T();
uint32_t GetId() const { return m_Id; }
@@ -10924,6 +10915,7 @@ public:
#endif
private:
+ const VmaAllocator m_hAllocator;
uint32_t m_Id;
char* m_Name;
VmaPool_T* m_PrevPool = VMA_NULL;
@@ -11405,8 +11397,10 @@ private:
void ValidateVulkanFunctions();
+public: // I'm sorry
VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+private:
VkResult AllocateMemoryOfType(
VmaPool pool,
VkDeviceSize size,
@@ -14176,30 +14170,36 @@ void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pP
{
VmaPool pool = pPools[poolIndex];
VMA_ASSERT(pool);
- // Pools with algorithm other than default are not defragmented.
- if (pool->m_BlockVector.GetAlgorithm() == 0)
+ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
- VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
-
- for (size_t i = m_CustomPoolContexts.size(); i--; )
+ if(pool->m_pBlockVectors[memTypeIndex])
{
- if (m_CustomPoolContexts[i]->GetCustomPool() == pool)
+ // Pools with algorithm other than default are not defragmented.
+ if (pool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0)
{
- pBlockVectorDefragCtx = m_CustomPoolContexts[i];
- break;
- }
- }
+ VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
- if (!pBlockVectorDefragCtx)
- {
- pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
- m_hAllocator,
- pool,
- &pool->m_BlockVector);
- m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
- }
+ for (size_t i = m_CustomPoolContexts.size(); i--; )
+ {
+ if (m_CustomPoolContexts[i]->GetCustomPool() == pool)
+ {
+ pBlockVectorDefragCtx = m_CustomPoolContexts[i];
+ break;
+ }
+ }
+
+ if (!pBlockVectorDefragCtx)
+ {
+ pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+ m_hAllocator,
+ pool,
+ pool->m_pBlockVectors[memTypeIndex]);
+ m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
+ }
- pBlockVectorDefragCtx->AddAll();
+ pBlockVectorDefragCtx->AddAll();
+ }
+ }
}
}
}
@@ -14214,6 +14214,7 @@ void VmaDefragmentationContext_T::AddAllocations(
{
const VmaAllocation hAlloc = pAllocations[allocIndex];
VMA_ASSERT(hAlloc);
+ const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
// DedicatedAlloc cannot be defragmented.
if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK)
{
@@ -14224,7 +14225,7 @@ void VmaDefragmentationContext_T::AddAllocations(
if (hAllocPool != VK_NULL_HANDLE)
{
// Pools with algorithm other than default are not defragmented.
- if (hAllocPool->m_BlockVector.GetAlgorithm() == 0)
+ if (hAllocPool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0)
{
for (size_t i = m_CustomPoolContexts.size(); i--; )
{
@@ -14239,7 +14240,7 @@ void VmaDefragmentationContext_T::AddAllocations(
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
m_hAllocator,
hAllocPool,
- &hAllocPool->m_BlockVector);
+ hAllocPool->m_pBlockVectors[memTypeIndex]);
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
}
}
@@ -14247,7 +14248,6 @@ void VmaDefragmentationContext_T::AddAllocations(
// This allocation belongs to default pool.
else
{
- const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
if (!pBlockVectorDefragCtx)
{
@@ -14481,41 +14481,61 @@ VkResult VmaDefragmentationContext_T::DefragmentPassEnd()
#ifndef _VMA_POOL_T_FUNCTIONS
VmaPool_T::VmaPool_T(
VmaAllocator hAllocator,
- const VmaPoolCreateInfo& createInfo,
- VkDeviceSize preferredBlockSize)
- : m_BlockVector(
- hAllocator,
- this, // hParentPool
- createInfo.memoryTypeIndex,
- createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
- createInfo.minBlockCount,
- createInfo.maxBlockCount,
- (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
- createInfo.blockSize != 0, // explicitBlockSize
- createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
- createInfo.priority,
- VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
- createInfo.pMemoryAllocateNext),
+ const VmaPoolCreateInfo& createInfo) :
+ m_hAllocator(hAllocator),
+ m_pBlockVectors{},
m_Id(0),
- m_Name(VMA_NULL) {}
+ m_Name(VMA_NULL)
+{
+ for(uint32_t memTypeIndex = 0; memTypeIndex < hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ // Create only supported types
+ if((hAllocator->GetGlobalMemoryTypeBits() & (1u << memTypeIndex)) != 0)
+ {
+ m_pBlockVectors[memTypeIndex] = vma_new(hAllocator, VmaBlockVector)(
+ hAllocator,
+ this, // hParentPool
+ memTypeIndex,
+ createInfo.blockSize != 0 ? createInfo.blockSize : hAllocator->CalcPreferredBlockSize(memTypeIndex),
+ createInfo.minBlockCount,
+ createInfo.maxBlockCount,
+ (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+ false, // explicitBlockSize
+ createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
+ createInfo.priority,
+ VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(memTypeIndex), createInfo.minAllocationAlignment),
+ createInfo.pMemoryAllocateNext);
+ }
+ }
+}
VmaPool_T::~VmaPool_T()
{
VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
+ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ vma_delete(m_hAllocator, m_pBlockVectors[memTypeIndex]);
+ }
}
void VmaPool_T::SetName(const char* pName)
{
- const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
- VmaFreeString(allocs, m_Name);
-
- if (pName != VMA_NULL)
- {
- m_Name = VmaCreateStringCopy(allocs, pName);
- }
- else
+ for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
- m_Name = VMA_NULL;
+ if(m_pBlockVectors[memTypeIndex])
+ {
+ const VkAllocationCallbacks* allocs = m_pBlockVectors[memTypeIndex]->GetAllocator()->GetAllocationCallbacks();
+ VmaFreeString(allocs, m_Name);
+
+ if (pName != VMA_NULL)
+ {
+ m_Name = VmaCreateStringCopy(allocs, pName);
+ }
+ else
+ {
+ m_Name = VMA_NULL;
+ }
+ }
}
}
#endif // _VMA_POOL_T_FUNCTIONS
@@ -15377,15 +15397,22 @@ VkResult VmaAllocator_T::CalcAllocationParams(
inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
}
- if(inoutCreateInfo.pool != VK_NULL_HANDLE)
+ if(inoutCreateInfo.pool != VK_NULL_HANDLE && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
{
- if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
- (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+ // Assuming here every block has the same block size and priority.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
- VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
- return VK_ERROR_FEATURE_NOT_PRESENT;
+ if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex])
+ {
+ if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->HasExplicitBlockSize())
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+ inoutCreateInfo.priority = inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->GetPriority();
+ break;
+ }
}
- inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
}
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
@@ -15429,67 +15456,46 @@ VkResult VmaAllocator_T::AllocateMemory(
if(res != VK_SUCCESS)
return res;
- if(createInfoFinal.pool != VK_NULL_HANDLE)
+ // Bit mask of memory Vulkan types acceptable for this allocation.
+ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+ uint32_t memTypeIndex = UINT32_MAX;
+ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
+ // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+ if(res != VK_SUCCESS)
+ return res;
+ do
{
- VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
- return AllocateMemoryOfType(
+ VmaBlockVector* blockVector = createInfoFinal.pool == VK_NULL_HANDLE ? m_pBlockVectors[memTypeIndex] : createInfoFinal.pool->m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
+ VmaDedicatedAllocationList& dedicatedAllocations = createInfoFinal.pool == VK_NULL_HANDLE ? m_DedicatedAllocations[memTypeIndex] : createInfoFinal.pool->m_DedicatedAllocations[memTypeIndex];
+ res = AllocateMemoryOfType(
createInfoFinal.pool,
vkMemReq.size,
vkMemReq.alignment,
- prefersDedicatedAllocation,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
dedicatedBuffer,
dedicatedBufferUsage,
dedicatedImage,
createInfoFinal,
- blockVector.GetMemoryTypeIndex(),
+ memTypeIndex,
suballocType,
- createInfoFinal.pool->m_DedicatedAllocations,
- blockVector,
+ dedicatedAllocations,
+ *blockVector,
allocationCount,
pAllocations);
- }
- else
- {
- // Bit mask of memory Vulkan types acceptable for this allocation.
- uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
- uint32_t memTypeIndex = UINT32_MAX;
- res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
- // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
- if(res != VK_SUCCESS)
- return res;
- do
- {
- VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
- VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
- res = AllocateMemoryOfType(
- VK_NULL_HANDLE,
- vkMemReq.size,
- vkMemReq.alignment,
- requiresDedicatedAllocation || prefersDedicatedAllocation,
- dedicatedBuffer,
- dedicatedBufferUsage,
- dedicatedImage,
- createInfoFinal,
- memTypeIndex,
- suballocType,
- m_DedicatedAllocations[memTypeIndex],
- *blockVector,
- allocationCount,
- pAllocations);
- // Allocation succeeded
- if(res == VK_SUCCESS)
- return VK_SUCCESS;
+ // Allocation succeeded
+ if(res == VK_SUCCESS)
+ return VK_SUCCESS;
- // Remove old memTypeIndex from list of possibilities.
- memoryTypeBits &= ~(1u << memTypeIndex);
- // Find alternative memTypeIndex.
- res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
- } while(res == VK_SUCCESS);
+ // Remove old memTypeIndex from list of possibilities.
+ memoryTypeBits &= ~(1u << memTypeIndex);
+ // Find alternative memTypeIndex.
+ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
+ } while(res == VK_SUCCESS);
- // No other matching memory type index could be found.
- // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
+ // No other matching memory type index could be found.
+ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
void VmaAllocator_T::FreeMemory(
@@ -15515,16 +15521,16 @@ void VmaAllocator_T::FreeMemory(
{
VmaBlockVector* pBlockVector = VMA_NULL;
VmaPool hPool = allocation->GetParentPool();
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
if(hPool != VK_NULL_HANDLE)
{
- pBlockVector = &hPool->m_BlockVector;
+ pBlockVector = hPool->m_pBlockVectors[memTypeIndex];
}
else
{
- const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
pBlockVector = m_pBlockVectors[memTypeIndex];
- VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
}
+ VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
pBlockVector->Free(allocation);
}
break;
@@ -15564,11 +15570,17 @@ void VmaAllocator_T::CalculateStats(VmaStats* pStats)
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
{
- VmaBlockVector& blockVector = pool->m_BlockVector;
- blockVector.AddStats(pStats);
- const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
- const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
- pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex);
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if (pool->m_pBlockVectors[memTypeIndex])
+ {
+ VmaBlockVector& blockVector = *pool->m_pBlockVectors[memTypeIndex];
+ blockVector.AddStats(pStats);
+ const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
+ const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ pool->m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex);
+ }
+ }
}
}
@@ -15720,27 +15732,26 @@ VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPoo
{
return VK_ERROR_INITIALIZATION_FAILED;
}
- // Memory type index out of range or forbidden.
- if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
- ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
- {
- return VK_ERROR_FEATURE_NOT_PRESENT;
- }
if(newCreateInfo.minAllocationAlignment > 0)
{
VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
}
- const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
-
- *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
+ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
- VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
- if(res != VK_SUCCESS)
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
- vma_delete(this, *pPool);
- *pPool = VMA_NULL;
- return res;
+ // Create only supported types
+ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
+ {
+ VkResult res = (*pPool)->m_pBlockVectors[memTypeIndex]->CreateMinBlocks();
+ if(res != VK_SUCCESS)
+ {
+ vma_delete(this, *pPool);
+ *pPool = VMA_NULL;
+ return res;
+ }
+ }
}
// Add to m_Pools.
@@ -15772,8 +15783,14 @@ void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
pPoolStats->unusedRangeCount = 0;
pPoolStats->blockCount = 0;
- pool->m_BlockVector.AddPoolStats(pPoolStats);
- pool->m_DedicatedAllocations.AddPoolStats(pPoolStats);
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
+ {
+ pool->m_pBlockVectors[memTypeIndex]->AddPoolStats(pPoolStats);
+ pool->m_DedicatedAllocations[memTypeIndex].AddPoolStats(pPoolStats);
+ }
+ }
}
void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
@@ -15790,7 +15807,13 @@ void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
{
- return hPool->m_BlockVector.CheckCorruption();
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
+ {
+ return hPool->m_pBlockVectors[memTypeIndex]->CheckCorruption();
+ }
+ }
}
VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
@@ -15822,18 +15845,21 @@ VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
{
- if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
- VkResult localRes = pool->m_BlockVector.CheckCorruption();
- switch(localRes)
+ if(pool->m_pBlockVectors[memTypeIndex] && ((1u << memTypeIndex) & memoryTypeBits) != 0)
{
- case VK_ERROR_FEATURE_NOT_PRESENT:
- break;
- case VK_SUCCESS:
- finalRes = VK_SUCCESS;
- break;
- default:
- return localRes;
+ VkResult localRes = pool->m_pBlockVectors[memTypeIndex]->CheckCorruption();
+ switch(localRes)
+ {
+ case VK_ERROR_FEATURE_NOT_PRESENT:
+ break;
+ case VK_SUCCESS:
+ finalRes = VK_SUCCESS;
+ break;
+ default:
+ return localRes;
+ }
}
}
}
@@ -16155,7 +16181,7 @@ void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
else
{
// Custom pool
- parentPool->m_DedicatedAllocations.Unregister(allocation);
+ parentPool->m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
}
VkDeviceMemory hMemory = allocation->GetMemory();
@@ -16430,12 +16456,18 @@ void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
json.EndString();
json.BeginObject();
- pool->m_BlockVector.PrintDetailedMap(json);
-
- if (!pool->m_DedicatedAllocations.IsEmpty())
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
- json.WriteString("DedicatedAllocations");
- pool->m_DedicatedAllocations.BuildStatsString(json);
+ if (pool->m_pBlockVectors[memTypeIndex])
+ {
+ pool->m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
+ }
+
+ if (!pool->m_DedicatedAllocations[memTypeIndex].IsEmpty())
+ {
+ json.WriteString("DedicatedAllocations");
+ pool->m_DedicatedAllocations->BuildStatsString(json);
+ }
}
json.EndObject();
}

View File

@ -1127,31 +1127,26 @@ typedef struct VmaAllocationCreateInfo
/** \brief Intended usage of memory.
You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
If `pool` is not null, this member is ignored.
*/
VmaMemoryUsage usage;
/** \brief Flags that must be set in a Memory Type chosen for an allocation.
Leave 0 if you specify memory requirements in other way. \n
If `pool` is not null, this member is ignored.*/
Leave 0 if you specify memory requirements in other way.*/
VkMemoryPropertyFlags requiredFlags;
/** \brief Flags that preferably should be set in a memory type chosen for an allocation.
Set to 0 if no additional flags are preferred. \n
If `pool` is not null, this member is ignored. */
Set to 0 if no additional flags are preferred.*/
VkMemoryPropertyFlags preferredFlags;
/** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
it meets other requirements specified by this structure, with no further
restrictions on memory type index. \n
If `pool` is not null, this member is ignored.
*/
uint32_t memoryTypeBits;
/** \brief Pool that this allocation should be created in.
Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
`usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
Leave `VK_NULL_HANDLE` to allocate from default pool.
*/
VmaPool VMA_NULLABLE pool;
/** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
@ -1173,9 +1168,6 @@ typedef struct VmaAllocationCreateInfo
/// Describes parameter of created #VmaPool.
typedef struct VmaPoolCreateInfo
{
/** \brief Vulkan memory type index to allocate this pool from.
*/
uint32_t memoryTypeIndex;
/** \brief Use combination of #VmaPoolCreateFlagBits.
*/
VmaPoolCreateFlags flags;
@ -10904,13 +10896,12 @@ struct VmaPool_T
friend struct VmaPoolListItemTraits;
VMA_CLASS_NO_COPY(VmaPool_T)
public:
VmaBlockVector m_BlockVector;
VmaDedicatedAllocationList m_DedicatedAllocations;
VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
VmaPool_T(
VmaAllocator hAllocator,
const VmaPoolCreateInfo& createInfo,
VkDeviceSize preferredBlockSize);
const VmaPoolCreateInfo& createInfo);
~VmaPool_T();
uint32_t GetId() const { return m_Id; }
@ -10924,6 +10915,7 @@ public:
#endif
private:
const VmaAllocator m_hAllocator;
uint32_t m_Id;
char* m_Name;
VmaPool_T* m_PrevPool = VMA_NULL;
@ -11405,8 +11397,10 @@ private:
void ValidateVulkanFunctions();
public: // I'm sorry
VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
private:
VkResult AllocateMemoryOfType(
VmaPool pool,
VkDeviceSize size,
@ -14176,30 +14170,36 @@ void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pP
{
VmaPool pool = pPools[poolIndex];
VMA_ASSERT(pool);
// Pools with algorithm other than default are not defragmented.
if (pool->m_BlockVector.GetAlgorithm() == 0)
for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
for (size_t i = m_CustomPoolContexts.size(); i--; )
if(pool->m_pBlockVectors[memTypeIndex])
{
if (m_CustomPoolContexts[i]->GetCustomPool() == pool)
// Pools with algorithm other than default are not defragmented.
if (pool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0)
{
pBlockVectorDefragCtx = m_CustomPoolContexts[i];
break;
VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
for (size_t i = m_CustomPoolContexts.size(); i--; )
{
if (m_CustomPoolContexts[i]->GetCustomPool() == pool)
{
pBlockVectorDefragCtx = m_CustomPoolContexts[i];
break;
}
}
if (!pBlockVectorDefragCtx)
{
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
m_hAllocator,
pool,
pool->m_pBlockVectors[memTypeIndex]);
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
}
pBlockVectorDefragCtx->AddAll();
}
}
if (!pBlockVectorDefragCtx)
{
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
m_hAllocator,
pool,
&pool->m_BlockVector);
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
}
pBlockVectorDefragCtx->AddAll();
}
}
}
@ -14214,6 +14214,7 @@ void VmaDefragmentationContext_T::AddAllocations(
{
const VmaAllocation hAlloc = pAllocations[allocIndex];
VMA_ASSERT(hAlloc);
const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
// DedicatedAlloc cannot be defragmented.
if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK)
{
@ -14224,7 +14225,7 @@ void VmaDefragmentationContext_T::AddAllocations(
if (hAllocPool != VK_NULL_HANDLE)
{
// Pools with algorithm other than default are not defragmented.
if (hAllocPool->m_BlockVector.GetAlgorithm() == 0)
if (hAllocPool->m_pBlockVectors[memTypeIndex]->GetAlgorithm() == 0)
{
for (size_t i = m_CustomPoolContexts.size(); i--; )
{
@ -14239,7 +14240,7 @@ void VmaDefragmentationContext_T::AddAllocations(
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
m_hAllocator,
hAllocPool,
&hAllocPool->m_BlockVector);
hAllocPool->m_pBlockVectors[memTypeIndex]);
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
}
}
@ -14247,7 +14248,6 @@ void VmaDefragmentationContext_T::AddAllocations(
// This allocation belongs to default pool.
else
{
const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
if (!pBlockVectorDefragCtx)
{
@ -14481,41 +14481,61 @@ VkResult VmaDefragmentationContext_T::DefragmentPassEnd()
#ifndef _VMA_POOL_T_FUNCTIONS
VmaPool_T::VmaPool_T(
VmaAllocator hAllocator,
const VmaPoolCreateInfo& createInfo,
VkDeviceSize preferredBlockSize)
: m_BlockVector(
hAllocator,
this, // hParentPool
createInfo.memoryTypeIndex,
createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
createInfo.minBlockCount,
createInfo.maxBlockCount,
(createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
createInfo.blockSize != 0, // explicitBlockSize
createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
createInfo.priority,
VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
createInfo.pMemoryAllocateNext),
const VmaPoolCreateInfo& createInfo) :
m_hAllocator(hAllocator),
m_pBlockVectors{},
m_Id(0),
m_Name(VMA_NULL) {}
m_Name(VMA_NULL)
{
for(uint32_t memTypeIndex = 0; memTypeIndex < hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
// Create only supported types
if((hAllocator->GetGlobalMemoryTypeBits() & (1u << memTypeIndex)) != 0)
{
m_pBlockVectors[memTypeIndex] = vma_new(hAllocator, VmaBlockVector)(
hAllocator,
this, // hParentPool
memTypeIndex,
createInfo.blockSize != 0 ? createInfo.blockSize : hAllocator->CalcPreferredBlockSize(memTypeIndex),
createInfo.minBlockCount,
createInfo.maxBlockCount,
(createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
false, // explicitBlockSize
createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
createInfo.priority,
VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(memTypeIndex), createInfo.minAllocationAlignment),
createInfo.pMemoryAllocateNext);
}
}
}
VmaPool_T::~VmaPool_T()
{
VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
vma_delete(m_hAllocator, m_pBlockVectors[memTypeIndex]);
}
}
void VmaPool_T::SetName(const char* pName)
{
const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
VmaFreeString(allocs, m_Name);
for(uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex)
{
if(m_pBlockVectors[memTypeIndex])
{
const VkAllocationCallbacks* allocs = m_pBlockVectors[memTypeIndex]->GetAllocator()->GetAllocationCallbacks();
VmaFreeString(allocs, m_Name);
if (pName != VMA_NULL)
{
m_Name = VmaCreateStringCopy(allocs, pName);
}
else
{
m_Name = VMA_NULL;
if (pName != VMA_NULL)
{
m_Name = VmaCreateStringCopy(allocs, pName);
}
else
{
m_Name = VMA_NULL;
}
}
}
}
#endif // _VMA_POOL_T_FUNCTIONS
@ -15377,15 +15397,22 @@ VkResult VmaAllocator_T::CalcAllocationParams(
inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
}
if(inoutCreateInfo.pool != VK_NULL_HANDLE)
if(inoutCreateInfo.pool != VK_NULL_HANDLE && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
{
if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
(inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
// Assuming here every block has the same block size and priority.
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
return VK_ERROR_FEATURE_NOT_PRESENT;
if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex])
{
if(inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->HasExplicitBlockSize())
{
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
return VK_ERROR_FEATURE_NOT_PRESENT;
}
inoutCreateInfo.priority = inoutCreateInfo.pool->m_pBlockVectors[memTypeIndex]->GetPriority();
break;
}
}
inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
}
if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
@ -15429,67 +15456,46 @@ VkResult VmaAllocator_T::AllocateMemory(
if(res != VK_SUCCESS)
return res;
if(createInfoFinal.pool != VK_NULL_HANDLE)
// Bit mask of memory Vulkan types acceptable for this allocation.
uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
uint32_t memTypeIndex = UINT32_MAX;
res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
// Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
if(res != VK_SUCCESS)
return res;
do
{
VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
return AllocateMemoryOfType(
VmaBlockVector* blockVector = createInfoFinal.pool == VK_NULL_HANDLE ? m_pBlockVectors[memTypeIndex] : createInfoFinal.pool->m_pBlockVectors[memTypeIndex];
VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
VmaDedicatedAllocationList& dedicatedAllocations = createInfoFinal.pool == VK_NULL_HANDLE ? m_DedicatedAllocations[memTypeIndex] : createInfoFinal.pool->m_DedicatedAllocations[memTypeIndex];
res = AllocateMemoryOfType(
createInfoFinal.pool,
vkMemReq.size,
vkMemReq.alignment,
prefersDedicatedAllocation,
requiresDedicatedAllocation || prefersDedicatedAllocation,
dedicatedBuffer,
dedicatedBufferUsage,
dedicatedImage,
createInfoFinal,
blockVector.GetMemoryTypeIndex(),
memTypeIndex,
suballocType,
createInfoFinal.pool->m_DedicatedAllocations,
blockVector,
dedicatedAllocations,
*blockVector,
allocationCount,
pAllocations);
}
else
{
// Bit mask of memory Vulkan types acceptable for this allocation.
uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
uint32_t memTypeIndex = UINT32_MAX;
// Allocation succeeded
if(res == VK_SUCCESS)
return VK_SUCCESS;
// Remove old memTypeIndex from list of possibilities.
memoryTypeBits &= ~(1u << memTypeIndex);
// Find alternative memTypeIndex.
res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
// Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
if(res != VK_SUCCESS)
return res;
do
{
VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
res = AllocateMemoryOfType(
VK_NULL_HANDLE,
vkMemReq.size,
vkMemReq.alignment,
requiresDedicatedAllocation || prefersDedicatedAllocation,
dedicatedBuffer,
dedicatedBufferUsage,
dedicatedImage,
createInfoFinal,
memTypeIndex,
suballocType,
m_DedicatedAllocations[memTypeIndex],
*blockVector,
allocationCount,
pAllocations);
// Allocation succeeded
if(res == VK_SUCCESS)
return VK_SUCCESS;
} while(res == VK_SUCCESS);
// Remove old memTypeIndex from list of possibilities.
memoryTypeBits &= ~(1u << memTypeIndex);
// Find alternative memTypeIndex.
res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfoFinal, &memTypeIndex);
} while(res == VK_SUCCESS);
// No other matching memory type index could be found.
// Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
// No other matching memory type index could be found.
// Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
void VmaAllocator_T::FreeMemory(
@ -15515,16 +15521,16 @@ void VmaAllocator_T::FreeMemory(
{
VmaBlockVector* pBlockVector = VMA_NULL;
VmaPool hPool = allocation->GetParentPool();
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
if(hPool != VK_NULL_HANDLE)
{
pBlockVector = &hPool->m_BlockVector;
pBlockVector = hPool->m_pBlockVectors[memTypeIndex];
}
else
{
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
pBlockVector = m_pBlockVectors[memTypeIndex];
VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
}
VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
pBlockVector->Free(allocation);
}
break;
@ -15564,11 +15570,17 @@ void VmaAllocator_T::CalculateStats(VmaStats* pStats)
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
{
VmaBlockVector& blockVector = pool->m_BlockVector;
blockVector.AddStats(pStats);
const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex);
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
if (pool->m_pBlockVectors[memTypeIndex])
{
VmaBlockVector& blockVector = *pool->m_pBlockVectors[memTypeIndex];
blockVector.AddStats(pStats);
const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
pool->m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex);
}
}
}
}
@ -15720,27 +15732,26 @@ VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPoo
{
return VK_ERROR_INITIALIZATION_FAILED;
}
// Memory type index out of range or forbidden.
if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
{
return VK_ERROR_FEATURE_NOT_PRESENT;
}
if(newCreateInfo.minAllocationAlignment > 0)
{
VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
}
const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
*pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
*pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
if(res != VK_SUCCESS)
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
vma_delete(this, *pPool);
*pPool = VMA_NULL;
return res;
// Create only supported types
if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
{
VkResult res = (*pPool)->m_pBlockVectors[memTypeIndex]->CreateMinBlocks();
if(res != VK_SUCCESS)
{
vma_delete(this, *pPool);
*pPool = VMA_NULL;
return res;
}
}
}
// Add to m_Pools.
@ -15772,8 +15783,14 @@ void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
pPoolStats->unusedRangeCount = 0;
pPoolStats->blockCount = 0;
pool->m_BlockVector.AddPoolStats(pPoolStats);
pool->m_DedicatedAllocations.AddPoolStats(pPoolStats);
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
{
pool->m_pBlockVectors[memTypeIndex]->AddPoolStats(pPoolStats);
pool->m_DedicatedAllocations[memTypeIndex].AddPoolStats(pPoolStats);
}
}
}
void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
@ -15790,7 +15807,13 @@ void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
{
return hPool->m_BlockVector.CheckCorruption();
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
{
return hPool->m_pBlockVectors[memTypeIndex]->CheckCorruption();
}
}
}
VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
@ -15822,18 +15845,21 @@ VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
{
if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
VkResult localRes = pool->m_BlockVector.CheckCorruption();
switch(localRes)
if(pool->m_pBlockVectors[memTypeIndex] && ((1u << memTypeIndex) & memoryTypeBits) != 0)
{
case VK_ERROR_FEATURE_NOT_PRESENT:
break;
case VK_SUCCESS:
finalRes = VK_SUCCESS;
break;
default:
return localRes;
VkResult localRes = pool->m_pBlockVectors[memTypeIndex]->CheckCorruption();
switch(localRes)
{
case VK_ERROR_FEATURE_NOT_PRESENT:
break;
case VK_SUCCESS:
finalRes = VK_SUCCESS;
break;
default:
return localRes;
}
}
}
}
@ -16155,7 +16181,7 @@ void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
else
{
// Custom pool
parentPool->m_DedicatedAllocations.Unregister(allocation);
parentPool->m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
}
VkDeviceMemory hMemory = allocation->GetMemory();
@ -16430,12 +16456,18 @@ void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
json.EndString();
json.BeginObject();
pool->m_BlockVector.PrintDetailedMap(json);
if (!pool->m_DedicatedAllocations.IsEmpty())
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
{
json.WriteString("DedicatedAllocations");
pool->m_DedicatedAllocations.BuildStatsString(json);
if (pool->m_pBlockVectors[memTypeIndex])
{
pool->m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
}
if (!pool->m_DedicatedAllocations[memTypeIndex].IsEmpty())
{
json.WriteString("DedicatedAllocations");
pool->m_DedicatedAllocations->BuildStatsString(json);
}
}
json.EndObject();
}